-
Notifications
You must be signed in to change notification settings - Fork 1
/
prune_espn_imagenet_rewind.py
263 lines (215 loc) · 11.3 KB
/
prune_espn_imagenet_rewind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import os
from datasets import get_dataset, DATASETS, get_num_classes
from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import SGD, Optimizer
from torch.optim.lr_scheduler import StepLR, MultiStepLR
import datetime
import time
import numpy as np
import copy
import types
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from architectures import get_architecture, ARCHITECTURES
from math import ceil
from train_utils import AverageMeter, accuracy, accuracy_list, init_logfile, log
from utils import *
import utils
from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator
from ignite.metrics import Accuracy, Loss
from ignite.contrib.handlers import ProgressBar
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data_train', metavar='DIR',
help='path to train dataset')
parser.add_argument('data_val', metavar='DIR', help='path to valid dataset')
parser.add_argument('arch', type=str, default="resnet50")
parser.add_argument('outdir', type=str, help='folder to save model and training log)')
parser.add_argument('--keep_mask', type=str, default='rewind_10percent_keep_mask.pt')
parser.add_argument('--save_model', type=str, default='rewind_10percent_save_model.pt')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=160, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--epochs_warmup', default=10, type=int)
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--logname', type=str, default='log.txt')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--alpha', default=1e-4, type=float,
help='Lasso coefficient')
parser.add_argument('--keep_ratio', default=0.1, type=float)
parser.add_argument('--round', default=1, type=int)
parser.add_argument('--lr_step_size', type=int, default=30,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--gpu', default=0, type=int,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
args = parser.parse_args()
def main():
if not os.path.exists(args.outdir):
os.mkdir(args.outdir)
device = torch.device("cuda")
torch.cuda.set_device(args.gpu)
logfilename = os.path.join(args.outdir, args.logname)
init_logfile(logfilename, "epoch\ttime\tlr\ttrain loss\ttrain acc\ttestloss\ttest acc")
log(logfilename, "Hyperparameter List")
log(logfilename, "Epochs: {:}".format(args.epochs))
log(logfilename, "Learning Rate: {:}".format(args.lr))
log(logfilename, "Alpha: {:}".format(args.alpha))
log(logfilename, "Keep ratio: {:}".format(args.keep_ratio))
log(logfilename, "Warmup Epochs: {:}".format(args.epochs_warmup))
test_acc_list = []
for _ in range(args.round):
traindir = os.path.join(args.data_train, 'train')
valdir = os.path.join(args.data_val, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch, shuffle=False,
num_workers=args.workers, pin_memory=True)
base_classifier = models.__dict__[args.arch](pretrained=False).cuda()
print("Loaded the base_classifier")
criterion = nn.CrossEntropyLoss().to(device)
optimizer = SGD(base_classifier.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
# Warmup training for the rewinding.
for epoch in range(args.epochs_warmup):
print("Warmup Training Epochs: {:}".format(epoch))
log(logfilename, "Warmup current epochs: {}".format(epoch))
train_loss, train_top1, train_top5 = utils.train(train_loader,
base_classifier,
criterion,
optimizer,
epoch,
device,
print_freq=100,
display=True)
original_acc = model_inference(base_classifier, test_loader,
device, display=True)
log(logfilename, "Warmup Model Test Accuracy: {:.5}".format(original_acc))
print("Warmup Model Test Accuracy, ", original_acc)
# Creating a fresh copy of network not affecting the original network.
# Goal is to find the supermask.
net = copy.deepcopy(base_classifier)
net = net.to(device)
# Generating the mask 'm'
for layer in net.modules():
if isinstance(layer, nn.Linear) or isinstance(layer, nn.Conv2d):
layer.weight_mask = nn.Parameter(torch.ones_like(layer.weight))
layer.weight.requires_grad = True
layer.weight_mask.requires_grad = True
# This is the monkey-patch overriding layer.forward to custom function.
# layer.forward will pass nn.Linear with weights: 'w' and 'm' elementwised
if isinstance(layer, nn.Linear):
layer.forward = types.MethodType(mask_forward_linear, layer)
if isinstance(layer, nn.Conv2d):
layer.forward = types.MethodType(mask_forward_conv2d, layer)
criterion = nn.CrossEntropyLoss().to(device) # Criterion for training the mask.
optimizer = SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=0)
# weight_decay = 0 for training the mask.
# warm_scheduler = StepLR(optimizer, step_size=args.epochs_mask-10, gamma=0.2)
sparsity, total = 0, 0
breakFlag = False
net.train()
# Training the mask with the training set.
for epoch in range(100000):
# if epoch % 5 == 0:
print("Current epochs: ", epoch)
print("Sparsity: {:}".format(sparsity))
log(logfilename, "Current epochs: {}".format(epoch))
log(logfilename, "Sparsity: {:}".format(sparsity))
for i, (inputs, targets) in enumerate(train_loader):
inputs = inputs.cuda()
targets = targets.cuda()
reg_loss = 0
for layer in net.modules():
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
reg_loss += torch.norm(layer.weight_mask, p=1)
outputs = net(inputs)
loss = criterion(outputs, targets) + args.alpha * reg_loss
# Computing gradient and do SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
sparsity, total = 0, 0
for layer in net.modules():
if isinstance(layer, nn.Linear) or isinstance(layer, nn.Conv2d):
boolean_list = layer.weight_mask.data > 1e-3
sparsity += (boolean_list == 1).sum()
total += layer.weight.numel()
if i % 50 == 0:
print("Current Epochs: {}, Current i: {}, Current Sparsity: {}".format(epoch, i, sparsity))
if sparsity <= total*args.keep_ratio:
print("Current epochs breaking loop at {:}".format(epoch))
log(logfilename, "Current epochs breaking loop at {:}".format(epoch))
breakFlag = True
break
# if breakFlag == True:
# break
if breakFlag == True:
break
# print("W 1-norm: ", torch.norm(layer.weight_mask, p=1))
# Just checking the 1-norm of weights in each layer.
# Approximates how sparse the mask is..
# This line allows to calculate the threshold to satisfy the keep_ratio.
c_abs = []
for layer in net.modules():
if isinstance(layer, nn.Linear) or isinstance(layer, nn.Conv2d):
c_abs.append(torch.abs(layer.weight_mask))
all_scores = torch.cat([torch.flatten(x) for x in c_abs])
num_params_to_keep = int(len(all_scores) * args.keep_ratio)
threshold, _ = torch.topk(all_scores, num_params_to_keep, sorted=True)
threshold = threshold[-1]
print("Threshold found: ", threshold)
keep_masks = []
for c in c_abs:
keep_masks.append((c >= threshold).float())
print("Number of ones.", torch.sum(torch.cat([torch.flatten(x == 1) for x in keep_masks])))
torch.save(base_classifier.state_dict(), os.path.join(args.outdir, args.save_model))
base_classifier_acc = model_inference(base_classifier, test_loader, device, display=True)
log(logfilename, "Weight Update Test Accuracy: {:.5}".format(base_classifier_acc))
print("Saved the rewind model.")
for masks in keep_masks:
masks = masks.data
torch.save(keep_masks, os.path.join(args.outdir, args.keep_mask))
print("Saved the masking function.")
log(logfilename, "Finished finding the mask. (REWIND)")
if __name__ == "__main__":
main()