From b4543c8f6bf67a7f1a0d6d0fd6cf5697c7eeaabb Mon Sep 17 00:00:00 2001 From: ywfang <47963924+SUDA-HLT-ywfang@users.noreply.github.com> Date: Mon, 8 Apr 2024 18:28:36 +0800 Subject: [PATCH] [Model] add minicpm (#3893) --- README.md | 1 + docs/source/models/supported_models.rst | 4 + vllm/model_executor/models/__init__.py | 1 + vllm/model_executor/models/minicpm.py | 537 ++++++++++++++++++++++++ 4 files changed, 543 insertions(+) create mode 100644 vllm/model_executor/models/minicpm.py diff --git a/README.md b/README.md index 2a070b9e2064a..d53227b82d87a 100644 --- a/README.md +++ b/README.md @@ -70,6 +70,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi - InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.) - Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.) - LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.) +- MiniCPM (`openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, etc.) - Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.) - Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.) - MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.) diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 9c2f5ba458eb4..e7bfdcb65316e 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -83,6 +83,10 @@ Alongside each architecture, we include some popular models that use it. - LLaMA, LLaMA-2, Vicuna, Alpaca, Yi - :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc. - ✅︎ + * - :code:`MiniCPMForCausalLM` + - MiniCPM + - :code:`openbmb/MiniCPM-2B-sft-bf16`, :code:`openbmb/MiniCPM-2B-dpo-bf16`, etc. + - * - :code:`MistralForCausalLM` - Mistral, Mistral-Instruct - :code:`mistralai/Mistral-7B-v0.1`, :code:`mistralai/Mistral-7B-Instruct-v0.1`, etc. diff --git a/vllm/model_executor/models/__init__.py b/vllm/model_executor/models/__init__.py index 4647947f695aa..17fc970568042 100755 --- a/vllm/model_executor/models/__init__.py +++ b/vllm/model_executor/models/__init__.py @@ -41,6 +41,7 @@ # transformers's mpt class has lower case "MptForCausalLM": ("mpt", "MPTForCausalLM"), "MPTForCausalLM": ("mpt", "MPTForCausalLM"), + "MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"), "OLMoForCausalLM": ("olmo", "OLMoForCausalLM"), "OPTForCausalLM": ("opt", "OPTForCausalLM"), "OrionForCausalLM": ("orion", "OrionForCausalLM"), diff --git a/vllm/model_executor/models/minicpm.py b/vllm/model_executor/models/minicpm.py new file mode 100644 index 0000000000000..99d1b4eb97bb8 --- /dev/null +++ b/vllm/model_executor/models/minicpm.py @@ -0,0 +1,537 @@ +# coding=utf-8 +# Adapted from +# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py +# Copyright 2023 The vLLM team. +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Inference-only MiniCPM model compatible with HuggingFace weights.""" +import math +from typing import Any, Dict, List, Optional, Tuple + +import torch +from torch import nn + +from vllm.attention import Attention, AttentionMetadata +from vllm.config import LoRAConfig +from vllm.model_executor.layers.activation import SiluAndMul +from vllm.model_executor.layers.fused_moe import fused_moe +from vllm.model_executor.layers.layernorm import RMSNorm +from vllm.model_executor.layers.linear import (LinearMethodBase, + MergedColumnParallelLinear, + QKVParallelLinear, + ReplicatedLinear, + RowParallelLinear) +from vllm.model_executor.layers.logits_processor import LogitsProcessor +from vllm.model_executor.layers.rotary_embedding import get_rope +from vllm.model_executor.layers.sampler import Sampler +from vllm.model_executor.layers.vocab_parallel_embedding import ( + DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) +from vllm.model_executor.parallel_utils.communication_op import ( + tensor_model_parallel_all_reduce) +from vllm.model_executor.parallel_utils.parallel_state import ( + get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) +from vllm.model_executor.sampling_metadata import SamplingMetadata +from vllm.model_executor.utils import set_weight_attrs +from vllm.model_executor.weight_utils import (default_weight_loader, + hf_model_weights_iterator) +from vllm.sequence import SamplerOutput + + +class MiniCPMMoE(nn.Module): + """A tensor-parallel MoE implementation that shards each expert + across all ranks. + + Each expert's weights are sharded across all ranks and a fused MoE + kernel is used for the forward pass, and finally we reduce the outputs + across ranks. + """ + + def __init__( + self, + num_experts: int, + top_k: int, + hidden_size: int, + intermediate_size: int, + params_dtype: Optional[torch.dtype] = None, + tp_size: Optional[int] = None, + ): + super().__init__() + self.tp_size = tp_size or get_tensor_model_parallel_world_size() + self.num_total_experts = num_experts + self.top_k = top_k + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size // self.tp_size + + if params_dtype is None: + params_dtype = torch.get_default_dtype() + self.params_dtype = params_dtype + + self.gate = ReplicatedLinear(self.hidden_size, + self.num_total_experts, + bias=False, + params_dtype=self.params_dtype, + linear_method=None) + + self.ws = nn.Parameter( + torch.empty(self.num_total_experts, + 2 * self.intermediate_size, + self.hidden_size, + device="cuda", + dtype=self.params_dtype)) + self.w2s = nn.Parameter( + torch.empty(self.num_total_experts, + self.hidden_size, + self.intermediate_size, + device="cuda", + dtype=self.params_dtype)) + + set_weight_attrs(self.ws, { + "weight_loader": self.weight_loader, + }) + set_weight_attrs(self.w2s, { + "weight_loader": self.weight_loader, + }) + + def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor, + weight_name: str, expert_id: int): + tp_rank = get_tensor_model_parallel_rank() + param_data = param.data + shard_size = self.intermediate_size + shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size) + if weight_name.endswith("w1.weight"): + param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :] + if weight_name.endswith("w3.weight"): + param_data[expert_id, + shard_size:2 * shard_size, :] = loaded_weight[shard, :] + if weight_name.endswith("w2.weight"): + param_data[expert_id, :, :] = loaded_weight[:, shard] + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + num_tokens, hidden_size = hidden_states.shape + hidden_states = hidden_states.view(-1, self.hidden_size) + # router_logits: (num_tokens, n_experts) + router_logits, _ = self.gate(hidden_states) + final_hidden_states = fused_moe(hidden_states, + self.ws, + self.w2s, + router_logits, + self.top_k, + renormalize=True, + inplace=True) + + if self.tp_size > 1: + final_hidden_states = tensor_model_parallel_all_reduce( + final_hidden_states) + + return final_hidden_states.view(num_tokens, hidden_size) + + +class MiniCPMMLP(nn.Module): + + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.gate_up_proj = MergedColumnParallelLinear( + hidden_size, [intermediate_size] * 2, + bias=False, + linear_method=linear_method) + self.down_proj = RowParallelLinear(intermediate_size, + hidden_size, + bias=False, + linear_method=linear_method) + if hidden_act != "silu": + raise ValueError(f"Unsupported activation: {hidden_act}. " + "Only silu is supported for now.") + self.act_fn = SiluAndMul() + + def forward(self, x): + gate_up, _ = self.gate_up_proj(x) + x = self.act_fn(gate_up) + x, _ = self.down_proj(x) + return x + + +class MiniCPMAttention(nn.Module): + + def __init__( + self, + hidden_size: int, + num_heads: int, + num_kv_heads: int, + rope_theta: float = 10000, + rope_scaling: Optional[Dict[str, Any]] = None, + max_position_embeddings: int = 8192, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.hidden_size = hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = num_heads + assert self.total_num_heads % tp_size == 0 + self.num_heads = self.total_num_heads // tp_size + self.total_num_kv_heads = num_kv_heads + if self.total_num_kv_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_kv_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_kv_heads == 0 + self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) + self.head_dim = hidden_size // self.total_num_heads + self.q_size = self.num_heads * self.head_dim + self.kv_size = self.num_kv_heads * self.head_dim + self.scaling = self.head_dim**-0.5 + self.rope_theta = rope_theta + self.max_position_embeddings = max_position_embeddings + + self.qkv_proj = QKVParallelLinear( + hidden_size, + self.head_dim, + self.total_num_heads, + self.total_num_kv_heads, + bias=False, + linear_method=linear_method, + ) + self.o_proj = RowParallelLinear( + self.total_num_heads * self.head_dim, + hidden_size, + bias=False, + linear_method=linear_method, + ) + + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.head_dim, + max_position=max_position_embeddings, + base=rope_theta, + rope_scaling=rope_scaling, + ) + # set rope as fp32 instead of bf16 + self.rotary_emb.cos_sin_cache = self.rotary_emb._compute_cos_sin_cache( + ) + self.attn = Attention(self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_kv_heads) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + kv_cache: torch.Tensor, + attn_metadata: AttentionMetadata, + ) -> torch.Tensor: + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) + orig_dtype = q.dtype + q, k = q.float(), k.float() + q, k = self.rotary_emb(positions, q, k) + q, k = q.to(orig_dtype), k.to(orig_dtype) + attn_output = self.attn(q, k, v, kv_cache, attn_metadata) + output, _ = self.o_proj(attn_output) + return output + + +class MiniCPMDecoderLayer(nn.Module): + + def __init__( + self, + config, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + rope_theta = getattr(config, "rope_theta", 10000) + rope_scaling = getattr(config, "rope_scaling", None) + max_position_embeddings = getattr(config, "max_position_embeddings", + 8192) + self.self_attn = MiniCPMAttention( + hidden_size=self.hidden_size, + num_heads=config.num_attention_heads, + num_kv_heads=config.num_key_value_heads, + rope_theta=rope_theta, + rope_scaling=rope_scaling, + max_position_embeddings=max_position_embeddings, + linear_method=linear_method, + ) + self.num_experts = getattr(self.config, "num_experts", 0) + if self.num_experts == 0: + self.mlp = MiniCPMMLP( + hidden_size=self.hidden_size, + intermediate_size=config.intermediate_size, + hidden_act=config.hidden_act, + linear_method=linear_method, + ) + else: + self.mlp = MiniCPMMoE(num_experts=config.num_experts, + top_k=config.num_experts_per_tok, + hidden_size=config.hidden_size, + intermediate_size=config.intermediate_size) + self.input_layernorm = RMSNorm(config.hidden_size, + eps=config.rms_norm_eps) + self.post_attention_layernorm = RMSNorm(config.hidden_size, + eps=config.rms_norm_eps) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + kv_cache: torch.Tensor, + attn_metadata: AttentionMetadata, + residual: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + # Self Attention + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + hidden_states = self.self_attn( + positions=positions, + hidden_states=hidden_states, + kv_cache=kv_cache, + attn_metadata=attn_metadata, + ) + hidden_states = residual + hidden_states * \ + (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers)) + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states * \ + (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers)) + + return hidden_states, None + + +class MiniCPMModel(nn.Module): + + def __init__( + self, + config, + linear_method: Optional[LinearMethodBase] = None, + lora_config: Optional[LoRAConfig] = None, + ) -> None: + super().__init__() + self.config = config + self.padding_idx = config.pad_token_id + lora_vocab = (lora_config.lora_extra_vocab_size * + (lora_config.max_loras or 1)) if lora_config else 0 + self.vocab_size = config.vocab_size + lora_vocab + self.org_vocab_size = config.vocab_size + self.embed_tokens = VocabParallelEmbedding( + self.vocab_size, + config.hidden_size, + org_num_embeddings=config.vocab_size, + ) + self.layers = nn.ModuleList([ + MiniCPMDecoderLayer(config, linear_method) + for _ in range(config.num_hidden_layers) + ]) + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: + embedding = self.embed_tokens(input_ids) + return embedding * self.config.scale_emb + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + kv_caches: List[torch.Tensor], + attn_metadata: AttentionMetadata, + inputs_embeds: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + if inputs_embeds is not None: + hidden_states = inputs_embeds + else: + hidden_states = self.get_input_embeddings(input_ids) + residual = None + + for i in range(len(self.layers)): + layer = self.layers[i] + hidden_states, residual = layer( + positions, + hidden_states, + kv_caches[i], + attn_metadata, + residual, + ) + hidden_states = self.norm(hidden_states) + return hidden_states + + +class MiniCPMForCausalLM(nn.Module): + packed_modules_mapping = { + "qkv_proj": [ + "q_proj", + "k_proj", + "v_proj", + ], + "gate_up_proj": [ + "gate_proj", + "up_proj", + ], + } + + # LoRA specific attributes + supported_lora_modules = [ + "qkv_proj", + "o_proj", + "gate_up_proj", + "down_proj", + "embed_tokens", + "lm_head", + ] + embedding_modules = { + "embed_tokens": "input_embeddings", + "lm_head": "output_embeddings", + } + embedding_padding_modules = ["lm_head"] + + def __init__( + self, + config, + linear_method: Optional[LinearMethodBase] = None, + lora_config: Optional[LoRAConfig] = None, + ) -> None: + super().__init__() + self.config = config + self.num_experts = getattr(self.config, "num_experts", 0) + self.linear_method = linear_method + self.model = MiniCPMModel(config, + linear_method, + lora_config=lora_config) + unpadded_vocab_size = config.vocab_size + if lora_config: + unpadded_vocab_size += lora_config.lora_extra_vocab_size + if not self.config.tie_word_embeddings: + self.lm_head = ParallelLMHead( + unpadded_vocab_size, + config.hidden_size, + org_num_embeddings=config.vocab_size, + padding_size=DEFAULT_VOCAB_PADDING_SIZE + # We need bigger padding if using lora for kernel + # compatibility + if not lora_config else lora_config.lora_vocab_padding_size, + ) + self.scale_width = self.config.hidden_size / self.config.dim_model_base + + self.logits_processor = LogitsProcessor(unpadded_vocab_size, + config.vocab_size) + self.sampler = Sampler() + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + kv_caches: List[torch.Tensor], + attn_metadata: AttentionMetadata, + ) -> torch.Tensor: + hidden_states = self.model(input_ids, positions, kv_caches, + attn_metadata) + return hidden_states + + def compute_logits(self, hidden_states: torch.Tensor, + sampling_metadata: SamplingMetadata) -> torch.Tensor: + hidden_states = hidden_states / self.scale_width + if self.config.tie_word_embeddings: + lm_head_weight = self.model.embed_tokens.weight + else: + lm_head_weight = self.lm_head.weight + logits = self.logits_processor(lm_head_weight, hidden_states, + sampling_metadata) + return logits + + def sample( + self, + logits: torch.Tensor, + sampling_metadata: SamplingMetadata, + ) -> Optional[SamplerOutput]: + next_tokens = self.sampler(logits, sampling_metadata) + return next_tokens + + def load_weights(self, + model_name_or_path: str, + cache_dir: Optional[str] = None, + load_format: str = "auto", + revision: Optional[str] = None): + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + ("qkv_proj", "q_proj", "q"), + ("qkv_proj", "k_proj", "k"), + ("qkv_proj", "v_proj", "v"), + ("gate_up_proj", "gate_proj", 0), + ("gate_up_proj", "up_proj", 1), + ] + expert_params_mapping = [ + # (param_name, weight_name, expert_id) + ("ws" if weight_name in ["w1", "w3"] else "w2s", + f"experts.{expert_id}.{weight_name}.weight", expert_id) + for expert_id in range(self.num_experts) + for weight_name in ["w1", "w2", "w3"] + ] + params_dict = dict(self.named_parameters()) + for name, loaded_weight in hf_model_weights_iterator( + model_name_or_path, cache_dir, load_format, revision): + if "rotary_emb.inv_freq" in name: + continue + if ("rotary_emb.cos_cached" in name + or "rotary_emb.sin_cached" in name): + # Models trained using ColossalAI may include these tensors in + # the checkpoint. Skip them. + continue + + for (param_name, weight_name, shard_id) in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + break + else: + for param_name, weight_name, expert_id in expert_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, + loaded_weight, + weight_name, + expert_id=expert_id) + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight)