-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweil.py
109 lines (80 loc) · 2.64 KB
/
weil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import random
from elliptical import Fq1, Fq2, Point, Curve
random.seed(1234)
Fq1.set_q(631)
Fq2.set_q(1)
Curve.set_a_b(30, 34)
for i in range(10):
a = Fq1(random.randrange(1, Fq1.Q))
b = Fq1.one() // a
assert a * b == Fq1.one()
P = Point(x=Fq1(36), y=Fq1(60))
Q = Point(x=Fq1(121), y=Fq1(387))
# for i in range(1, 12):
# print(i, Curve.multiply(P, i))
# for i in range(1, 12):
# print(i, Curve.multiply(Q, i))
S = Point(x=Fq1(0), y=Fq1(36))
Q_plus_S = Curve.add(Q, S)
P_minus_S = Curve.add(P, Curve.negate(S))
def g_pq(p, q, point):
if p.x == q.x and p.y != q.y: # Two different points forming a vertical line
return point.x - p.x # Vertical line
elif p == q: # One point duplicated
slope = (3 * p.x**2 + Curve.A) // (2 * p.y)
else:
slope = (q.x - p.x) // (q.y - q.y)
numerator = point.y - p.y - slope * (point.x - p.x)
xyz = point.x + p.x
denominator = xyz + q.x - slope**2
return numerator // denominator
m = 5 # 101 -> 0 1 msb->lsb not including msb
def weil(P, XXX):
T = P
f = 1
for i in [0, 1]:
f = f * f * g_pq(T, T, XXX)
T = Curve.multiply(T, 2)
if i == 1:
f = f * g_pq(T, P, XXX)
T = Curve.add(T, P)
return f
x1 = weil(P, Q_plus_S)
x2 = weil(P, S)
x3 = x1 // x2
print("x1 {} // x2 {} = {}".format(x1, x2, x3))
y1 = weil(Q, P_minus_S)
y2 = weil(Q, Curve.negate(S))
y3 = y1 // y2
print("y1 {} // y2 {} = {}".format(y1, y2, y3))
e5 = x3 // y3
e6 = e5 ** 5
print("242==GOOD e5(P,Q) = {} and **5->{}".format(e5, e6))
def full_weil(P, Q, S, R, order):
#S = Point(x=Fq1(0), y=Fq1(36))
x1 = weil(P, Curve.add(Q, S))
x2 = weil(P, S)
x3 = weil(Q, Curve.add(P, R)) # Curve.negate(S)))
x4 = weil(Q, R) # Curve.negate(S))
result = (x1 // x2) // (x3 // x4)
print("debug x1 {}; x2 {}; x3 {}; x4 {}".format(x1, x2, x3, x4))
print("result: {} ; Raised={}".format(result, result**order))
print("\n\nGOOD=512")
full_weil(P=Point(x=Fq1(617), y=Fq1(5)), Q=Point(x=Fq1(121), y=Fq1(244)), S=S, R=Curve.negate(S), order=5)
print("\n\n")
Fq1.set_q(59)
Fq2.set_q(59)
Curve.set_a_b(1, 0)
for i in range(10):
a = Fq2(random.randrange(1, Fq2.Q), random.randrange(1, Fq2.Q))
b = Fq2.one() // a
res = a * b
assert res == Fq2.one()
print("\n\nTHESIS==46+56i")
P = Point(x=Fq2(25, 0), y=Fq2(30, 0)) # (25, 30)
# P = Point(x=Fq1(25), y=Fq1(30)) # (25, 30)
Q = Point(x=Fq2(-25, 0), y=Fq2(0, 30)) # (−25, 30i)
S = Point(x=Fq2(48, 55), y=Fq2(28, 51)) # (48 + 55i, 28 + 51i)
# R = Point(x=Fq2(40, 0), y=Fq2(54, 0))
R = Point(x=Fq1(40), y=Fq1(54))
full_weil(P=P, Q=Q, S=S, R=Curve.negate(S), order=5)