forked from nico/collectiveintelligence-book
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayoutgraph.py
114 lines (88 loc) · 3.17 KB
/
layoutgraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import math
# Idea: first use optimization to create a layout with few intersections.
# Then a mass-spring model could be used to produce nice distances.
People=['Charlie','Augustus','Veruca','Violet','Mike','Joe','Willy','Miranda']
Links=[('Augustus', 'Willy'),
('Mike', 'Joe'),
('Miranda', 'Mike'),
('Violet', 'Augustus'),
('Miranda', 'Willy'),
('Charlie', 'Mike'),
('Veruca', 'Joe'),
('Miranda', 'Augustus'),
('Willy', 'Augustus'),
('Joe', 'Charlie'),
('Veruca', 'Augustus'),
('Miranda', 'Joe')]
def solutiontodict(v, people):
return dict([(people[i], (v[i*2], v[i*2 + 1])) for i in range(len(people))])
def testintersect(l1, l2):
"""Returns if two lines intersect. Parallel lines count as intersection if
they overlap in more than one point. Lines touching at their end points do
not count as intersection."""
(x1, y1), (x2, y2) = l1
(x3, y3), (x4, y4) = l2
den = (y4 - y3)*(x2 - x1) - (x4 - x3)*(y2 - y1)
# XXX: if den is 0, then lines are parallel (possibly identical)
if den == 0: return False
ua = ((x4 - x3)*(y1 - y3) - (y4 - y3)*(x1 - x3)) / float(den)
ub = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / float(den)
return 0 < ua < 1 and 0 < ub < 1
def cross(p1, p2):
return p1[0]*p2[1] - p1[1]*p2[0]
def vec_length(p):
return math.sqrt(p[0]*p[0] + p[1]*p[1])
def vec_angle(p1, p0, p2):
d1 = (p1[0] - p0[0], p1[1] - p0[1])
d2 = (p2[0] - p0[0], p2[1] - p0[1])
c = cross(d1, d2)
a = math.asin(c/vec_length(d1)/vec_length(d2))
return a / math.pi * 180
def makecost(people, links):
def crosscost(v):
"""Returns a cost based on line crossing count, people distance, and
line angle."""
loc = solutiontodict(v, people)
cost = 0
# Count line crossings
# O(n^2) - don't use with large (>= 10000 links) input!
for i in range(len(links)):
for j in range(i+1, len(links)):
l1 = loc[links[i][0]], loc[links[i][1]]
l2 = loc[links[j][0]], loc[links[j][1]]
if testintersect(l1, l2):
cost += 1
# Assign a cost to small angles
for i in range(len(people)):
points = []
for j in range(len(links)):
if links[j][0] == people[i]:
points.append(links[j][1])
elif links[j][1] == people[i]:
points.append(links[j][0])
else: continue
p0 = loc[people[i]]
for j in range(len(points)):
for k in range(j+1, len(points)):
p1 = loc[points[j]]
p2 = loc[points[k]]
angle = vec_angle(p1, p0, p2)
if angle < 30:
cost += 0.4*(1.0 - angle/30.0)
# Distribute people evenly by assigning a cost to near people
for i in range(len(people)):
for j in range(i+1, len(people)):
(x1, y1), (x2, y2) = loc[people[i]], loc[people[j]]
dist = math.sqrt((x1 - x2)**2 + (y1 - y2)**2)
if dist < 50:
cost += 1.0 - dist/50.0
print cost
return cost
return crosscost
if __name__ == '__main__':
import optimization
domain = [(10, 370)] * (len(People) * 2)
f = makecost(People, Links)
s = optimization.annealingoptimize(domain, f, step=50, cool=0.99)
print f(s)
print s