forked from nico/collectiveintelligence-book
-
Notifications
You must be signed in to change notification settings - Fork 1
/
docclass.py
231 lines (179 loc) · 6.65 KB
/
docclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import collections
import math
import operator
import re
from pysqlite2 import dbapi2 as sqlite
def getwords(doc):
splitter = re.compile(r'\W*')
words = [s.lower() for s in splitter.split(doc) if 2 < len(s) < 20]
return set(words)
class classifier(object):
def __init__(self, getfeatures, filename=None):
# Counts of ofeature/category combinations
self.fc = collections.defaultdict(lambda: collections.defaultdict(int))
# Counts of documents in each category
self.cc = collections.defaultdict(int)
self.getfeatures = getfeatures
def setdb(self, dbfile):
self.con = sqlite.connect(dbfile)
self.con.execute('create table if not exists fc(feature, category, count)')
self.con.execute('create table if not exists cc(category, count)')
# Dict-based methods
# (XXX: The methods should delegate to a Store object, which could then be
# a dict- or db-based class. But this is for fun only, so...)
#def incf(self, f, cat):
#self.fc[f][cat] += 1
#def incc(self, cat):
#self.cc[cat] += 1
#def fcount(self, f, cat):
#if f in self.fc and cat in self.fc[f]:
#return float(self.fc[f][cat])
#return 0.0
#def catcount(self, cat):
#if cat in self.cc:
#return float(self.cc[cat])
#return 0.0
#def totalcount(self):
#return sum(self.cc.values())
#def categories(self):
#return self.cc.keys()
def incf(self, f, cat):
count = self.fcount(f, cat)
if count == 0:
self.con.execute('insert into fc values ("%s", "%s", 1)' % (f, cat))
else:
self.con.execute(
'update fc set count = %d where feature="%s" and category="%s"'
% (count + 1, f, cat))
def incc(self, cat):
count = self.catcount(cat)
if count == 0:
self.con.execute('insert into cc values ("%s", 1)' % cat)
else:
self.con.execute(
'update cc set count = %d where category="%s"' % (count + 1, cat))
def fcount(self, f, cat):
res = self.con.execute(
'select count from fc where feature="%s" and category="%s"'
% (f, cat)).fetchone()
if not res: return 0.0
return float(res[0])
def catcount(self, cat):
res = self.con.execute(
'select count from cc where category="%s"' % cat).fetchone()
if not res: return 0.0
return float(res[0])
def totalcount(self):
res = self.con.execute('select sum(count) from cc').fetchone()
if not res: return 0.0
return float(res[0])
def categories(self):
cur = self.con.execute('select category from cc')
return [d[0] for d in cur]
def train(self, item, cat):
features = self.getfeatures(item)
for f in features:
self.incf(f, cat)
self.incc(cat)
def cprob(self, cat):
"""Returns P(cat)."""
if self.totalcount() == 0: return 0.0
return self.catcount(cat) / self.totalcount()
def fprob(self, f, cat):
"""Returns P(f | cat), i.e. chance that a document in category cat contains
the given feature."""
if self.catcount(cat) == 0: return 0.0
return self.fcount(f, cat)/self.catcount(cat)
def weightedprob(self, f, cat, prf, weight=1.0, ap=0.5):
"""Returns guess for P(f | cat). The guess starts near `ap` if only few
data is known."""
basicprob = prf(f, cat)
# Count how often this feature has occurred in any category
totals = sum([self.fcount(f, c) for c in self.categories()])
weightedp = ((weight*ap) + (totals*basicprob))/(weight + totals)
return weightedp
class naivebayes(classifier):
def __init__(self, getfeatures):
classifier.__init__(self, getfeatures) # XXX: use super()?
self.thresholds = collections.defaultdict(lambda: 1.0)
def setthreshold(self, cat, t):
self.thresholds[cat] = t
def getthreshold(self, cat):
return self.thresholds[cat]
def classify(self, doc, default=None):
probs = {}
# Find category with highest "probability"
max = 0.0
for cat in self.categories():
probs[cat] = self.prob(cat, doc)
if probs[cat] > max:
max = probs[cat]
best = cat
# make sure the classifier is sure about what it's saying
for cat in probs:
if cat == best: continue
if probs[cat]*self.getthreshold(best) > probs[best]: return default
return best
def docprob(self, doc, cat):
"""Returns P(doc | cat), assuming all words in doc are independent (which
is not true, hence this does not really return a probability. The result is
still useful, though)."""
features = self.getfeatures(doc)
probs = [self.weightedprob(f, cat, self.fprob) for f in features]
return reduce(operator.mul, probs, 1.0)
def prob(self, cat, doc):
"""Returns P(cat | doc), with the same caveats as listed for docprob().
Also omits the division by P(doc), which would be required by Bayes's
Theorem -- we don't care about that term."""
# XXX: work out (on paper) what this does in terms of catcount etc
return self.docprob(doc, cat) * self.cprob(cat)
class fisherclassifier(classifier):
def __init__(self, getfeatures):
classifier.__init__(self, getfeatures) # XXX: use super()?
self.minimums = collections.defaultdict(int)
def setminimum(self, cat, min):
self.minimums[cat] = min
def getminimum(self, cat):
return self.minimums[cat]
def cprob(self, f, cat):
"""As far as I understand, this returns P(cat | f), but with a fancy method
to avoid normalization issues?"""
clf = self.fprob(f, cat)
if clf == 0: return 0.0 # else testOneCategory() fails
freqsum = sum([self.fprob(f, c) for c in self.categories()])
p = clf/freqsum
return p
def fisherprob(self, doc, cat):
features = self.getfeatures(doc)
# XXX: If cprob returns P(cat | f), why can I use it with weightedprob?
probs = [self.weightedprob(f, cat, self.cprob) for f in features]
p = reduce(operator.mul, probs, 1.0)
fscore = -2*math.log(p)
return self.invchi2(fscore, len(features)*2)
def invchi2(self, chi, df):
m = chi / 2.0
sum = term = math.exp(-m)
for i in range(1, df // 2):
term *= m / i
sum += term
return min(sum, 1.0)
def classify(self, item, default=None):
best = default
max = 0.0
for c in self.categories():
p = self.fisherprob(item, c)
if p > self.getminimum(c) and p > max:
best = c;
max = p
return best
def sampletrain(cl):
cl.train('Nobody owns the water.', 'good')
cl.train('the quick rabbit jumps fences', 'good')
cl.train('buy pharmaceuticals now', 'bad')
cl.train('make quick money at the online casino', 'bad')
cl.train('the quick brown fox jumps', 'good')
if __name__ == '__main__':
cl = classifier(getwords)
sampletrain(cl)
print cl.fcount('quick', 'good')
print cl.fcount('quick', 'bad')