Skip to content

Latest commit

 

History

History
217 lines (189 loc) · 19.9 KB

README.md

File metadata and controls

217 lines (189 loc) · 19.9 KB

QML-VQA Library

Star Badge License: CC0 1.0

A curated list of recent textbooks, reviews, perspectives, and research papers related to quantum machine learning, variational quantum algorithms, tensor networks, and classical machine learning applications in quantum systems.

QML Scheme of a hybrid quantum-classical algorithm for supervised learning[1].

Table of Contents

Press ^ to return to the Table of Contents.


Contents

Textbooks ^

Reviews & Perspectives ^

Quantum Classifier ^

Quantum Neural Networks & Variational Quantum Classifier ^

Quantum Support Vector Machine ^

Quantum Ensembles ^

Quantum k-Nearest Neighbors ^

Quantum Convolutional Neural Networks ^

Near Term (without QRAM) ^

Need QRAM ^

Quantum Graph Neural Networks ^

Quantum Generative Models & Quantum GANs ^

Quantum Boltzmann Machines ^

Variational Quantum Eigensolver ^

Quantum Optimization ^

Quantum Reinforcement Learning ^

Quantum Autoencoders ^

Training & Circuit Construction Techniques ^

Embedding/Encoding Techniques ^

Circuit Learning Capability Analysis (Expressivity, Entanglement, etc.) ^

Barren Plateaus Analysis ^

Gradient Techniques ^

Tensor Networks ^

Quantum Image Processing ^

Classical Machine Learning Applications in Quantum Computing ^

Uncategorized (yet) ^


References

1. Macaluso A., Clissa L., Lodi S., Sartori C. (2020) A Variational Algorithm for Quantum Neural Networks. In: Krzhizhanovskaya V. et al. (eds) Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science, vol 12142. Springer, Cham. https://doi.org/10.1007/978-3-030-50433-5_45