-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
269 lines (204 loc) · 9.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import sys
from torch import nn
import torch
import numpy as np
import json
import numpy as np
from copy import deepcopy
from functools import partial
import math
from pathlib import Path
from collections import namedtuple
from itertools import product
import random
import argparse
import copy
import uuid
#import retro
def setup_exp(args):
exp_name = ("nb_" if args.test_notebook else "") + "_".join([args.task, args.mode, args.embedder_name, get_hyp_str(args)])
exp_kwargs = dict(project_name="self-supervised-survey",
workspace="eracah")
if args.comet_mode == "online":
from comet_ml import Experiment
exp_kwargs.update(api_key=args.api_key)
elif args.comet_mode == "offline":
from comet_ml.offline import OfflineExperiment as Experiment
offline_directory = Path(".logs")
exp_kwargs.update(offline_directory=str(offline_directory))
experiment = Experiment(**exp_kwargs)
experiment.set_name(exp_name)
experiment.log_parameters(args.__dict__)
exp_id = experiment.id
print(exp_id)
args.exp_id = exp_id
return experiment
def setup_dir(args,exp_id,basename=".models"):
dir_ = Path(basename) / get_child_dir(args,task=args.task,env_name=args.env_name,level=args.level) / Path(exp_id)
dir_.mkdir(exist_ok=True,parents=True)
print("%s save_dir: %s"%(basename,str(model_dir)))
setattr(args,basename.strip(".")+"_dir",str(dir_))
return dir_
def setup_args():
test_notebook= True if "ipykernel_launcher" in sys.argv[0] else False
tmp_argv = copy.deepcopy(sys.argv)
if test_notebook:
sys.argv = [""]
parser = argparse.ArgumentParser()
parser.add_argument("--api_key", type=str)
parser.add_argument("--small_scale", action="store_true")
#env params
parser.add_argument("--embed_env",type=str, default="FlappyBirdDay-v0")
parser.add_argument("--transfer_env",type=str, default="FlappyBirdDay-v0")
parser.add_argument("--test_env",type=str, default="FlappyBirdDay-v0")
#level params
parser.add_argument("--embed_level",type=str, default="None")
parser.add_argument("--transfer_level",type=str, default="None")
parser.add_argument("--test_level",type=str, default="None")
#mode params
parser.add_argument('--mode', choices=["train","test", "viz"],default="train")
parser.add_argument("--task", choices=["embed","infer","predict","control", "viz"], default="embed")
#embed params
parser.add_argument("--base_enc_name",type=str,default="world_models")
embedder_names = ['inv_model', 'vae','rand_cnn',"tdc", "snl"]
parser.add_argument("--embedder_name",choices=embedder_names,default="inv_model")
parser.add_argument("--embed_len",type=int,default=32)
# embedder specific args
parser.add_argument("--num_time_dist_buckets",default=4)
parser.add_argument("--seq_tasks_num_frames",default=10)
#data params
parser.add_argument("--resize_to",type=int, nargs=2, default=[128, 128])
parser.add_argument("--seed",type=int,default=4)
parser.add_argument("--frames_per_example",type=int)
parser.add_argument("--tr_size",type=int,default=10000)
parser.add_argument("--val_size",type=int,default=1000)
parser.add_argument("--test_size",type=int,default=1000)
parser.add_argument("--episode_max_frames", type=int, default=500)
#general params
parser.add_argument("--num_workers",type=int,default=4)
parser.add_argument("--no_actions",action="store_true")
parser.add_argument("--comet_mode",type=str, choices=["online", "offline"],default="online")
# inference (non-control) params
parser.add_argument("--lr", type=float, default=0.00025)
parser.add_argument("--batch_size",type=int,default=32)
parser.add_argument("--epochs",type=int,default=10000)
parser.add_argument("--buckets",type=int,default=16)
parser.add_argument("--label_name",type=str,default="x_coord")
# prediction parameters
parser.add_argument("--pred_num_params", type=int, default=10)
# control args
parser.add_argument("--rollouts",type=str,default=10)
parser.add_argument("--val_rollouts",type=str,default=5)
parser.add_argument("--eval_best_freq",type=int,default=5)
parser.add_argument("--viz_num_frames", type=int, default=30)
parser.add_argument("--viz_fmap_index",type=int, default=212)
#unused?
parser.add_argument("--stride",type=int,default=1)
parser.add_argument("--hidden_width",type=int,default=32)
parser.add_argument("--model_type",type=str,default="classifier")
args = parser.parse_args()
args.test_notebook = test_notebook
if args.test_notebook:
args.workers=1
args.batch_size = 8
<<<<<<< HEAD
args.tr_size = 500
=======
args.tr_size = 64
>>>>>>> parent of 0e2938f... fixed bug with pipes in flappybird
args.test_size= 64
args.val_size = 48
args.resize_to = (128,128)
args.mode="train"
args.task="embed"
args.embedder_name = "vae"
args.embed_env=args.transfer_env=args.test_env="Pitfall-v0" #"SonicTheHedgehog-Genesis"
args.embed_level=args.transfer_level=args.test_level= "None" #'GreenHillZone.Act1'
# args.embed_env="SonicAndKnuckles3-Genesis"
# args.transfer_env="SonicAndKnuckles3-Genesis"
# args.transfer_level="CarnivalNightZone.Act1"
# args.embed_level = "AngelIslandZone.Act1"
args.label_name="y_coord"
args.comet_mode = "online"
if args.mode == "train":
if args.task == "embed":
args.regime = "embed"
assert args.embedder_name != "rand_cnn", "Random CNN needs no training!"
elif args.task in ["predict","infer","control"]:
args.regime = "transfer"
else:
assert False, "what task did you pick???!! %s"%(args.task)
if args.mode == "test":
if args.task == "embed":
print("no testing for embed!")
else:
args.regime = "test"
if args.mode == "viz":
args.regime = "transfer"
args.env_name = getattr(args, args.regime + "_env")
if args.env_name in ["Snake-v0", "FlappyBird-v0","FlappyBirdDay-v0","FlappyBirdNight-v0", "WaterWorld-v0", 'Catcher-v0','originalGame-v0','nosemantics-v0','noobject-v0','nosimilarity-v0','noaffordance-v0 ']:
args.ple =True
else:
args.ple = False
args.retro = True if "sonic" in args.env_name.lower() else False
if args.retro:
args.level = getattr(args, args.regime + "_level")
assert args.level != "None", "must specify a level!"
else:
args.level = "None"
args.resize_to = tuple(args.resize_to)
sys.argv = tmp_argv
args.device = "cuda" if torch.cuda.is_available() else "cpu"
args.needs_labels = True if args.task == "infer" or (args.mode == "test" and args.task == "predict") else False
if args.task == "infer":
args.frames_per_example = 1
if args.task == "predict":
args.frames_per_example = args.pred_num_params
args.there_are_actions = True
if args.task == "embed":
if args.embedder_name in ['vae','rand_cnn']:
args.frames_per_example = 1
elif args.embedder_name == "inv_model":
args.frames_per_example = 2
args.there_are_actions = True
elif args.embedder_name in ["snl", "tdc"]:
args.frames_per_example = args.seq_tasks_num_frames
if args.mode == "viz":
args.frames_per_example = args.viz_num_frames
print("num_frames_per_example",args.frames_per_example)
if args.small_scale:
args.batch_size = 8
args.tr_size = 64
args.test_size= 32
args.val_size = 32
print(args.mode,args.task)
return args
def convert_to1hot(a,n_actions):
dims = a.size()
batch_size = dims[0]
if len(dims) < 2:
a = a[:,None]
a = a.long()
a_1hot = torch.zeros((batch_size,n_actions)).long().to(a.device)
src = torch.ones_like(a).to(a.device)
a_1hot = a_1hot.scatter_(dim=1,index=a,src=src)
return a_1hot
def get_env_nickname(env_name,level, resize_to):
return str(resize_to[0]) + env_name.split("-")[0] + "_" + str(level)
def get_hyp_str(args):
hyp_str = ("lr%f"%args.lr).rstrip('0').rstrip('.')
if args.embedder_name == "beta_vae":
hyp_str += ("beta=%f"%args.beta).rstrip('0').rstrip('.')
return hyp_str
def get_child_dir(args, task, env_name, level):
env_nn = get_env_nickname(env_name,level, args.resize_to)
child_dir = Path(task)
if task=="infer":
child_dir = child_dir / Path(args.label_name)
child_dir = child_dir / Path(args.embedder_name) / Path(env_nn) / Path(("nb_" if args.test_notebook else "") + get_hyp_str(args))
return child_dir
def write_to_config_file(dict_,log_dir):
config_file_path = Path(log_dir) / "config.json"
dict_string = json.dumps(dict_) + "\n"
with open(config_file_path, "w") as f:
f.write(dict_string)