diff --git a/vignettes/ebola.Rmd b/vignettes/ebola.Rmd index e764eabb8..cde97afd4 100644 --- a/vignettes/ebola.Rmd +++ b/vignettes/ebola.Rmd @@ -216,13 +216,13 @@ Now we are ready to fit the latent individual model. We start by fitting a single lognormal distribution to the data. This model assumes that a single distribution describes all delays in the data, regardless of the case's location, sex, or any other covariates. To do this, we set `formula = bf(mu ~ 1, sigma ~ 1)` to place an model with only and intercept parameter (i.e. `~ 1` in R formula syntax) on the `mu` and `sigma` parameters of the lognormal distribution. -This distribution is specified using `family = "lognormal"`. +This distribution is specified using `family = lognormal()`. ```{r} fit <- epidist( data = obs_prep, formula = bf(mu ~ 1, sigma ~ 1), - family = "lognormal", + family = lognormal(), algorithm = "sampling", refresh = 0, silent = 2, @@ -246,7 +246,7 @@ To fit a model which varies the parameters of the fitted lognormal distribution, fit_sex <- epidist( data = obs_prep, formula = bf(mu ~ 1 + sex, sigma ~ 1 + sex), - family = "lognormal", + family = lognormal(), algorithm = "sampling", refresh = 0, silent = 2, @@ -275,7 +275,7 @@ fit_sex_district <- epidist( mu ~ 1 + sex + (1 | district), sigma ~ 1 + sex + (1 | district) ), - family = "lognormal", + family = lognormal(), algorithm = "sampling", refresh = 0, silent = 2,