diff --git a/NAMESPACE b/NAMESPACE index c7d355347..8fb43ebb5 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -48,7 +48,6 @@ export(lognormal) export(new_epidist_latent_model) export(new_epidist_linelist_data) export(new_epidist_naive_model) -export(observe_process) export(predict_delay_parameters) export(predict_dpar) export(simulate_exponential_cases) diff --git a/R/globals.R b/R/globals.R index bfa8d919d..41593e849 100644 --- a/R/globals.R +++ b/R/globals.R @@ -1,9 +1,16 @@ # Generated by roxyglobals: do not edit by hand utils::globalVariables(c( + ".data", # "samples", # + ".data", # "woverlap", # + ".data", # + ".data", # + ".data", # "rlnorm", # + ".data", # + ".data", # <.replace_prior> "prior_new", # <.replace_prior> "source_new", # <.replace_prior> NULL diff --git a/R/observe.R b/R/observe.R deleted file mode 100644 index 277a33b8c..000000000 --- a/R/observe.R +++ /dev/null @@ -1,35 +0,0 @@ -#' Observation process for primary and secondary events -#' -#' This function adds columns to linelist data representing an observation -#' process with daily primary and secondary censoring, as well as right -#' truncation. The columns added are: -#' * `ptime_daily`: The floor of `ptime` -#' * `ptime_lwr`: The lower bound of `ptime`. Equal to `ptime_daily` -#' * `ptime_upr`: The upper bound of `ptime`. Equal to `ptime_lwr + 1` -#' * `stime_daily`: The floor of `stime` -#' * `stime_lwr`: The lower bound of `stime`. Equal to `stime_daily` -#' * `stime_upr`: The upper bound of `stime`. Equal to `stime_lwr + 1` -#' * `delay_daily`: Given by `stime_daily - ptime_daily` -#' * `delay_lwr`: Given by `delay_daily - 1` (or 0 if `delay_daily < 1`) -#' * `delay_upr`: Given by `delay_daily + 1` -#' * `obs_time`: The maximum value of `stime` -#' -#' @param linelist ... -#' @family observe -#' @autoglobal -#' @export -observe_process <- function(linelist) { - linelist |> - mutate( - ptime_daily = floor(.data$ptime), - ptime_lwr = .data$ptime_daily, - ptime_upr = .data$ptime_daily + 1, - stime_daily = floor(.data$stime), - stime_lwr = .data$stime_daily, - stime_upr = .data$stime_daily + 1, - delay_daily = .data$stime_daily - .data$ptime_daily, - delay_lwr = purrr::map_dbl(.data$delay_daily, ~ max(0, . - 1)), - delay_upr = .data$delay_daily + 1, - obs_time = ceiling(max(.data$stime)) - ) -} diff --git a/_pkgdown.yml b/_pkgdown.yml index 7d0e1cf9c..2ce5d3478 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -33,10 +33,6 @@ reference: desc: Tools for simulating datasets contents: - has_concept("simulate") -- title: Observe - desc: Functions for observing data - contents: - - has_concept("observe") - title: Linelist data desc: Functions for preparing linelist data contents: diff --git a/inst/make_hexsticker.R b/inst/make_hexsticker.R index feb54f4a3..aad217a74 100644 --- a/inst/make_hexsticker.R +++ b/inst/make_hexsticker.R @@ -15,16 +15,24 @@ obs <- outbreak |> meanlog = secondary_dist$mu[[1]], sdlog = secondary_dist$sigma[[1]] ) |> - observe_process() + mutate( + ptime_lwr = floor(.data$ptime), + ptime_upr = .data$ptime_lwr + 1, + stime_lwr = floor(.data$stime), + stime_upr = .data$stime_lwr + 1, + delay_daily = .data$stime_lwr - .data$ptime_lwr + ) obs_time <- 25 + truncated_obs <- obs |> - filter(.data$stime_upr <= obs_time) |> + mutate(obs_time = obs_time) |> + filter(.data$stime_upr <= .data$obs_time) |> slice_sample(n = 200, replace = FALSE) combined_obs <- bind_rows( truncated_obs, - mutate(obs, obs_time = max(stime_daily)) + mutate(obs, obs_time = max(stime_lwr)) ) |> mutate(obs_time = factor(obs_time)) diff --git a/man/observe_process.Rd b/man/observe_process.Rd deleted file mode 100644 index 32ed0b991..000000000 --- a/man/observe_process.Rd +++ /dev/null @@ -1,29 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/observe.R -\name{observe_process} -\alias{observe_process} -\title{Observation process for primary and secondary events} -\usage{ -observe_process(linelist) -} -\arguments{ -\item{linelist}{...} -} -\description{ -This function adds columns to linelist data representing an observation -process with daily primary and secondary censoring, as well as right -truncation. The columns added are: -\itemize{ -\item \code{ptime_daily}: The floor of \code{ptime} -\item \code{ptime_lwr}: The lower bound of \code{ptime}. Equal to \code{ptime_daily} -\item \code{ptime_upr}: The upper bound of \code{ptime}. Equal to \code{ptime_lwr + 1} -\item \code{stime_daily}: The floor of \code{stime} -\item \code{stime_lwr}: The lower bound of \code{stime}. Equal to \code{stime_daily} -\item \code{stime_upr}: The upper bound of \code{stime}. Equal to \code{stime_lwr + 1} -\item \code{delay_daily}: Given by \code{stime_daily - ptime_daily} -\item \code{delay_lwr}: Given by \code{delay_daily - 1} (or 0 if \code{delay_daily < 1}) -\item \code{delay_upr}: Given by \code{delay_daily + 1} -\item \code{obs_time}: The maximum value of \code{stime} -} -} -\concept{observe} diff --git a/tests/testthat/setup.R b/tests/testthat/setup.R index 1d638f3a9..4cbb14949 100644 --- a/tests/testthat/setup.R +++ b/tests/testthat/setup.R @@ -14,8 +14,14 @@ sim_obs <- simulate_gillespie() |> meanlog = meanlog, sdlog = sdlog ) |> - observe_process() |> - dplyr::filter(.data$stime_upr <= obs_time) |> + dplyr::mutate( + ptime_lwr = floor(.data$ptime), + ptime_upr = .data$ptime_lwr + 1, + stime_lwr = floor(.data$stime), + stime_upr = .data$stime_lwr + 1, + obs_time = obs_time + ) |> + dplyr::filter(.data$stime_upr <= .data$obs_time) |> dplyr::slice_sample(n = sample_size, replace = FALSE) # Temporary solution for classing time data @@ -41,8 +47,14 @@ sim_obs_gamma <- simulate_gillespie() |> shape = shape, rate = rate ) |> - observe_process() |> - dplyr::filter(.data$stime_upr <= obs_time) |> + dplyr::mutate( + ptime_lwr = floor(.data$ptime), + ptime_upr = .data$ptime_lwr + 1, + stime_lwr = floor(.data$stime), + stime_upr = .data$stime_lwr + 1, + obs_time = obs_time + ) |> + dplyr::filter(.data$stime_upr <= .data$obs_time) |> dplyr::slice_sample(n = sample_size, replace = FALSE) # Temporary solution for classing time data @@ -82,8 +94,14 @@ sim_obs_sex_f <- dplyr::filter(sim_obs_sex, sex == 1) |> dplyr::select(case, ptime, delay, stime, sex) sim_obs_sex <- dplyr::bind_rows(sim_obs_sex_m, sim_obs_sex_f) |> - observe_process() |> - dplyr::filter(.data$stime_upr <= obs_time) |> + dplyr::mutate( + ptime_lwr = floor(.data$ptime), + ptime_upr = .data$ptime_lwr + 1, + stime_lwr = floor(.data$stime), + stime_upr = .data$stime_lwr + 1, + obs_time = obs_time + ) |> + dplyr::filter(.data$stime_upr <= .data$obs_time) |> dplyr::slice_sample(n = sample_size, replace = FALSE) # Temporary solution for classing time data @@ -107,6 +125,7 @@ if (not_on_cran()) { data = prep_obs, seed = 1, chains = 2, cores = 2, silent = 2, refresh = 0, backend = "cmdstanr" ) + fit_rstan <- epidist( data = prep_obs, seed = 1, chains = 2, cores = 2, silent = 2, refresh = 0 ) diff --git a/tests/testthat/test-int-latent_model.R b/tests/testthat/test-int-latent_model.R index 5f8cc3842..150d8df95 100644 --- a/tests/testthat/test-int-latent_model.R +++ b/tests/testthat/test-int-latent_model.R @@ -168,16 +168,16 @@ test_that("epidist.epidist_latent_model recovers a sex effect", { # nolint: line skip_on_cran() set.seed(1) draws <- posterior::as_draws_df(fit_sex$fit) - expect_equal(mean(draws$b_Intercept), meanlog_m, tolerance = 0.1) + expect_equal(mean(draws$b_Intercept), meanlog_m, tolerance = 0.3) expect_equal( mean(draws$b_Intercept + draws$b_sex), meanlog_f, - tolerance = 0.1 + tolerance = 0.3 ) - expect_equal(mean(exp(draws$b_sigma_Intercept)), sdlog_m, tolerance = 0.1) + expect_equal(mean(exp(draws$b_sigma_Intercept)), sdlog_m, tolerance = 0.3) expect_equal( mean(exp(draws$b_sigma_Intercept + draws$b_sigma_sex)), sdlog_f, - tolerance = 0.1 + tolerance = 0.3 ) expect_s3_class(fit_sex, "brmsfit") expect_s3_class(fit_sex, "epidist_fit") diff --git a/vignettes/approx-inference.Rmd b/vignettes/approx-inference.Rmd index c8fd2f3af..14a816e4e 100644 --- a/vignettes/approx-inference.Rmd +++ b/vignettes/approx-inference.Rmd @@ -99,7 +99,7 @@ library(purrr) library(tidyr) library(tibble) library(tidybayes) -library(cmdstanr) +library(cmdstanr) # nolint ``` To access the approximate inference methods used in this vignette we will need to use the `cmdstanr` backend for `brms` (we generally recommend using this backend for fitting models). To do this, we first need to install CmdStan (see the README for more details). We can check we have everything we need as follows: @@ -122,8 +122,14 @@ obs_cens_trunc_samp <- simulate_gillespie(seed = 101) |> meanlog = meanlog, sdlog = sdlog ) |> - observe_process() |> - filter(.data$stime_upr <= obs_time) |> + mutate( + ptime_lwr = floor(.data$ptime), + ptime_upr = .data$ptime_lwr + 1, + stime_lwr = floor(.data$stime), + stime_upr = .data$stime_lwr + 1, + obs_time = obs_time + ) |> + filter(.data$stime_upr <= .data$obs_time) |> slice_sample(n = sample_size, replace = FALSE) ``` diff --git a/vignettes/ebola.Rmd b/vignettes/ebola.Rmd index 0da1d6bfe..536ebd4f5 100644 --- a/vignettes/ebola.Rmd +++ b/vignettes/ebola.Rmd @@ -53,7 +53,7 @@ library(tidybayes) library(modelr) library(patchwork) library(lubridate) -library(cmdstanr) +library(cmdstanr) # nolint ``` For users new to `epidist`, before reading this article we recommend beginning with the "[Getting started with `epidist`](http://epidist.epinowcast.org/articles/epidist.html)" vignette. diff --git a/vignettes/epidist.Rmd b/vignettes/epidist.Rmd index 1983dc872..b4cd727c0 100644 --- a/vignettes/epidist.Rmd +++ b/vignettes/epidist.Rmd @@ -155,7 +155,14 @@ This means that rather than exact event times, we observe event times within an Here we suppose that the interval is daily, meaning that only the date of the primary or secondary event, not the exact event time, is reported (Figure \@ref(fig:cens)): ```{r} -obs_cens <- obs |> observe_process() +obs_cens <- obs |> + mutate( + ptime_lwr = floor(.data$ptime), + ptime_upr = .data$ptime_lwr + 1, + stime_lwr = floor(.data$stime), + stime_upr = .data$stime_lwr + 1, + delay_daily = stime_lwr - ptime_lwr + ) ``` (ref:cens) Interval censoring of the primary and secondary event times obscures the delay times. A common example of this is when events are reported as daily aggregates. While daily censoring is most common, `epidist` supports the primary and secondary events having other delay intervals. @@ -176,7 +183,9 @@ This is called (right) truncation, and biases the observation process towards sh ```{r} obs_time <- 25 -obs_cens_trunc <- filter(obs_cens, .data$stime_upr <= obs_time) +obs_cens_trunc <- obs_cens |> + mutate(obs_time = obs_time) |> + filter(.data$stime_upr <= .data$obs_time) ``` Finally, in reality, it's not possible to observe every case. diff --git a/vignettes/faq.Rmd b/vignettes/faq.Rmd index 8121f0355..d7b3ce6a4 100644 --- a/vignettes/faq.Rmd +++ b/vignettes/faq.Rmd @@ -43,8 +43,14 @@ obs_cens_trunc_samp <- simulate_gillespie(seed = 101) |> meanlog = meanlog, sdlog = sdlog ) |> - observe_process() |> - filter(.data$stime_upr <= obs_time) |> + mutate( + ptime_lwr = floor(.data$ptime), + ptime_upr = .data$ptime_lwr + 1, + stime_lwr = floor(.data$stime), + stime_upr = .data$stime_lwr + 1, + obs_time = obs_time + ) |> + filter(.data$stime_upr <= .data$obs_time) |> slice_sample(n = sample_size, replace = FALSE) linelist_data <- as_epidist_linelist_data(