From c3611fc92b2d075b63cadce16aada51ffd31d50b Mon Sep 17 00:00:00 2001 From: nikosbosse Date: Mon, 22 Apr 2024 10:11:37 +0200 Subject: [PATCH 1/4] add additional tests to `score()` --- tests/testthat/test-score.R | 43 ++++++++++++++++++++++++++++++++++++- 1 file changed, 42 insertions(+), 1 deletion(-) diff --git a/tests/testthat/test-score.R b/tests/testthat/test-score.R index a51ffc2a5..908c2f540 100644 --- a/tests/testthat/test-score.R +++ b/tests/testthat/test-score.R @@ -241,8 +241,30 @@ test_that("score.forecast_quantile() errors with only NA values", { ) }) +test_that("score.forecast_quantile() works as expected in edge cases", { + # only the median + onlymedian <- example_quantile[quantile_level == 0.5] %>% + as_forecast() + expect_no_condition( + s <- score(onlymedian, metrics = metrics_quantile( + exclude = c("interval_coverage_50", "interval_coverage_90") + )) + ) + expect_equal( + s$wis, abs(onlymedian$observed - onlymedian$predicted) + ) - + # only one symmetric interval is present + oneinterval <- example_quantile[quantile_level %in% c(0.25,0.75)] %>% + as_forecast() + expect_message( + s <- score( + oneinterval, + metrics = metrics_quantile(exclude = c("interval_coverage_90", "ae_median")) + ), + "Median not available" + ) +}) # test integer and continuous case --------------------------------------------- @@ -271,6 +293,25 @@ test_that("function throws an error if data is missing", { expect_error(suppressMessages(score(forecast = NULL))) }) +test_that("score() works with only one sample", { + + # with only one sample, dss returns NaN and log_score fails + onesample <- na.omit(example_sample_continuous)[sample_id == 20] %>% + as_forecast() + expect_warning( + expect_warning( + scoreonesample <- score(onesample), + "Function execution failed, returning NULL. Error: need at least 2 data points." #dss + ), + "Column 'log_score' does not exist to remove" #log_score + ) + + # verify that all goes well with two samples + twosample <- na.omit(example_sample_continuous)[sample_id %in% c(20, 21)] %>% + as_forecast() + expect_no_condition(score(twosample)) +}) + # ============================================================================= # `apply_metrics()` # ============================================================================= From ed90dd903795c94f16d8286e1e4f607477e308df Mon Sep 17 00:00:00 2001 From: nikosbosse Date: Sun, 5 May 2024 13:32:50 +0200 Subject: [PATCH 2/4] add more tests --- R/correlations.R | 2 +- tests/testthat/test-convenience-functions.R | 45 +++++++---- tests/testthat/test-customise_metric.R | 55 ------------- tests/testthat/test-default-scoring-rules.R | 79 ++++++++++++++++++- tests/testthat/test-forecast.R | 34 ++++----- tests/testthat/test-get_-functions.R | 85 +++++++++++++++------ tests/testthat/test-get_correlations.R | 19 ++++- tests/testthat/test-pairwise_comparison.R | 13 ++++ tests/testthat/test-pit.R | 8 +- tests/testthat/test-score.R | 33 ++++++-- tests/testthat/test-summarise_scores.R | 18 ++++- 11 files changed, 261 insertions(+), 130 deletions(-) diff --git a/R/correlations.R b/R/correlations.R index 387ffaa90..6f6cbed8b 100644 --- a/R/correlations.R +++ b/R/correlations.R @@ -48,7 +48,7 @@ get_correlations <- function(scores, return(correlations[]) } -# define function to obtain upper triangle of matrix +# helper function to obtain upper triangle of matrix get_lower_tri <- function(cormat) { cormat[lower.tri(cormat)] <- NA return(cormat) diff --git a/tests/testthat/test-convenience-functions.R b/tests/testthat/test-convenience-functions.R index 3060e09f0..81317c1a2 100644 --- a/tests/testthat/test-convenience-functions.R +++ b/tests/testthat/test-convenience-functions.R @@ -1,3 +1,7 @@ +# ============================================================================ # +# `transform_forecasts()` +# ============================================================================ # + test_that("function transform_forecasts works", { predictions_original <- example_quantile$predicted predictions <- example_quantile %>% @@ -59,6 +63,11 @@ test_that("transform_forecasts() outputs an object of class forecast_*", { expect_s3_class(transformed, "forecast_binary") }) + +# ============================================================================ # +# `log_shift()` +# ============================================================================ # + test_that("log_shift() works as expected", { expect_equal(log_shift(1:10, 1), log(1:10 + 1)) @@ -76,6 +85,15 @@ test_that("log_shift() works as expected", { # test that it does not accept a complex number expect_error(log_shift(1:10, offset = 1, base = 1i)) + + # test that it does not accept a negative base + expect_error( + log_shift(1:10, offset = 1, base = -1), + "Assertion on 'base' failed: Element 1 is not >= 0." + ) + + # test output class is numeric as expected + checkmate::expect_class(log_shift(1:10, 1), "numeric") }) @@ -109,11 +127,17 @@ test_that("set_forecast_unit() works on input that's not a data.table", { colnames(set_forecast_unit(df, c("a", "b"))), c("a", "b") ) - # apparently it also works on a matrix... good to know :) + expect_equal( names(set_forecast_unit(as.matrix(df), "a")), "a" ) + + expect_s3_class( + set_forecast_unit(df, c("a", "b")), + c("data.table", "data.frame"), + exact = TRUE + ) }) test_that("set_forecast_unit() revalidates a forecast object", { @@ -145,20 +169,11 @@ test_that("function get_forecast_unit() and set_forecast_unit() work together", expect_equal(fu_set, fu_get) }) - -test_that("set_forecast_unit() works on input that's not a data.table", { - df <- data.frame( - a = 1:2, - b = 2:3, - c = 3:4 - ) - expect_equal( - colnames(set_forecast_unit(df, c("a", "b"))), - c("a", "b") - ) - # apparently it also works on a matrix... good to know :) +test_that("output class of set_forecast_unit() is as expected", { + ex <- as_forecast(na.omit(example_binary)) expect_equal( - names(set_forecast_unit(as.matrix(df), "a")), - "a" + class(ex), + class(set_forecast_unit(ex, c("location", "target_end_date", "target_type", "horizon", "model"))) ) }) + diff --git a/tests/testthat/test-customise_metric.R b/tests/testthat/test-customise_metric.R index 0b9efad9b..e69de29bb 100644 --- a/tests/testthat/test-customise_metric.R +++ b/tests/testthat/test-customise_metric.R @@ -1,55 +0,0 @@ -test_that("customise_metric works correctly", { - # Create a customised metric function - custom_metric <- customise_metric(mean, na.rm = TRUE) - - # Use the customised metric function - values <- c(1, 2, NA, 4, 5) - expect_equal(custom_metric(values), 3) - - # Test with a different metric function - custom_metric <- customise_metric(sum, na.rm = TRUE) - expect_equal(custom_metric(values), 12) - - # Test with no additional arguments - custom_metric <- customise_metric(mean) - expect_true(is.na(custom_metric(values))) - - # make sure that customise_metric fails immediately (instead of at runtime) - # when object doesn't exist - expect_error( - custom_metric <- customise_metric(print, x = doesnotexist), - "object 'doesnotexist' not found" - ) - - # make sure that customise_metric still works even if original object is - # deleted, meaning that the object is stored as part of the function - argument <- c("hi", "hello", "I'm here") - custom_metric <- customise_metric(print, x = argument) - expect_output(custom_metric(), "I'm here") - - argument <- NULL - expect_output(custom_metric(), "I'm here") - - # make sure that all of this still works even if argument is called "dots" - # which is used internally - dots <- "test" - expect_output( - # dots argument should be ignored and output should stay the same - expect_equal(custom_metric(dots = dots), c("hi", "hello", "I'm here")), - "I'm here" - ) -}) - - - -test_that("customise_metric handles errors correctly", { - # Test with a non-function metric - expect_error( - customise_metric("not_a_function", na.rm = TRUE), - "Must be a function, not 'character'" - ) -}) - -test_that("customise_metric is exported", { - expect_equal(customise_metric, customise_metric) -}) diff --git a/tests/testthat/test-default-scoring-rules.R b/tests/testthat/test-default-scoring-rules.R index 0ad5cc0de..3495731a6 100644 --- a/tests/testthat/test-default-scoring-rules.R +++ b/tests/testthat/test-default-scoring-rules.R @@ -1,3 +1,7 @@ +# ============================================================================== +# select_metrics() +# ============================================================================== + test_that("`select_metrics` works as expected", { expect_equal( @@ -31,9 +35,83 @@ test_that("`select_metrics` works as expected", { scoringutils:::select_metrics(metrics_point, select = NULL), "Assertion on 'metrics' failed: Must be of type 'list', not 'closure'." ) + + expect_type( + scoringutils:::select_metrics(metrics_point(), select = NULL), + "list" + ) }) +# ============================================================================== +# customise_metric() +# ============================================================================== + +test_that("customise_metric handles errors correctly", { + # Test with a non-function metric + expect_error( + customise_metric("not_a_function", na.rm = TRUE), + "Must be a function, not 'character'" + ) +}) + +test_that("customize_metric is exported", { + expect_equal(customise_metric, customize_metric) +}) + + +test_that("customise_metric works correctly", { + # Create a customised metric function + custom_metric <- customise_metric(mean, na.rm = TRUE) + + # Use the customised metric function + values <- c(1, 2, NA, 4, 5) + expect_equal(custom_metric(values), 3) + + # Test with a different metric function + custom_metric <- customise_metric(sum, na.rm = TRUE) + expect_equal(custom_metric(values), 12) + + # Test with no additional arguments + custom_metric <- customise_metric(mean) + expect_true(is.na(custom_metric(values))) + + # make sure that customise_metric fails immediately (instead of at runtime) + # when object doesn't exist + expect_error( + custom_metric <- customise_metric(print, x = doesnotexist), + "object 'doesnotexist' not found" + ) + + # make sure that customise_metric still works even if original object is + # deleted, meaning that the object is stored as part of the function + argument <- c("hi", "hello", "I'm here") + custom_metric <- customise_metric(print, x = argument) + expect_output(custom_metric(), "I'm here") + + argument <- NULL + expect_output(custom_metric(), "I'm here") + + # make sure that all of this still works even if argument is called "dots" + # which is used internally + dots <- "test" + expect_output( + # dots argument should be ignored and output should stay the same + expect_equal(custom_metric(dots = dots), c("hi", "hello", "I'm here")), + "I'm here" + ) +}) + +test_that("customise_metric() has the expected output class", { + custom_metric <- customise_metric(mean, na.rm = TRUE) + checkmate::expect_class(custom_metric, "function") +}) + + +# ============================================================================== +# default scoring rules +# ============================================================================== + test_that("default rules work as expected", { expect_true( @@ -73,4 +151,3 @@ test_that("default rules work as expected", { "Must be a subset of" ) }) - diff --git a/tests/testthat/test-forecast.R b/tests/testthat/test-forecast.R index aa7207cf7..c6128ebe2 100644 --- a/tests/testthat/test-forecast.R +++ b/tests/testthat/test-forecast.R @@ -1,3 +1,7 @@ +# ============================================================================== +# as_forecast() +# ============================================================================== + test_that("Running `as_forecast()` twice returns the same object", { ex <- na.omit(example_sample_continuous) @@ -9,7 +13,11 @@ test_that("Running `as_forecast()` twice returns the same object", { test_that("as_forecast() works as expected", { test <- na.omit(data.table::copy(example_quantile)) - expect_s3_class(as_forecast(test), "forecast_quantile") + + expect_s3_class( + as_forecast(test), + c("forecast_quantile", "data.table", "data.frame"), + exact = TRUE) # expect error when arguments are not correct expect_error(as_forecast(test, observed = 3), "Must be of type 'character'") @@ -108,25 +116,6 @@ test_that("check_duplicates() works", { ) }) -# test_that("as_forecast() function returns a message with NA in the data", { -# expect_message( -# { check <- as_forecast(example_quantile) }, -# "\\d+ values for `predicted` are NA" -# ) -# expect_match( -# unlist(check$messages), -# "\\d+ values for `predicted` are NA" -# ) -# }) - -# test_that("as_forecast() function returns messages with NA in the data", { -# example <- data.table::copy(example_quantile) -# example[horizon == 2, observed := NA] -# check <- suppressMessages(as_forecast(example)) -# -# expect_equal(length(check$messages), 2) -# }) - test_that("as_forecast() function throws an error with duplicate forecasts", { example <- rbind(example_quantile, example_quantile[1000:1010]) @@ -283,4 +272,9 @@ test_that("validate_forecast() works as expected", { out <- validate_forecast(as_forecast(na.omit(example_point))) ) expect_true(!is.null(out)) + + expect_equal( + validate_forecast(as_forecast(na.omit(example_point))), + as_forecast(na.omit(example_point)) + ) }) diff --git a/tests/testthat/test-get_-functions.R b/tests/testthat/test-get_-functions.R index 3eb62f6df..e9310b2a8 100644 --- a/tests/testthat/test-get_-functions.R +++ b/tests/testthat/test-get_-functions.R @@ -1,3 +1,43 @@ +# ============================================================================== +# `get_forecast_type` +# ============================================================================== +test_that("get_forecast_type() works as expected", { + expect_equal(get_forecast_type(as.data.frame(example_quantile)), "quantile") + expect_equal(get_forecast_type(example_sample_continuous), "sample") + expect_equal(get_forecast_type(example_sample_discrete), "sample") + expect_equal(get_forecast_type(example_binary), "binary") + expect_equal(get_forecast_type(example_point), "point") + + expect_error( + get_forecast_type(data.frame(x = 1:10)), + "Assertion on 'data' failed: Columns 'observed', 'predicted' not found in data.", + fixed = TRUE + ) + + df <- data.frame(observed = 1:10, predicted = factor(1:10), model = "model") + expect_error( + get_forecast_type(df), + "input doesn't satisfy criteria for any forecast type", + fixed = TRUE + ) +}) + + +# ============================================================================== +# get_metrics() +# ============================================================================== +test_that("get_metrics() works as expected", { + expect_equal( + get_metrics(scores_point), + c("ae_point", "se_point", "ape") + ) + + expect_null( + get_metrics(as.data.frame(as.matrix(scores_point))) + ) +}) + + # ============================================================================== # `get_forecast_unit()` # ============================================================================== @@ -30,9 +70,10 @@ test_that("removing NA rows from data works as expected", { # test that attributes and classes are retained ex <- as_forecast(na.omit(example_sample_discrete)) - expect_equal( - class(na.omit(ex)), - c("forecast_sample", "data.table", "data.frame") + expect_s3_class( + na.omit(ex), + c("forecast_sample", "data.table", "data.frame"), + exact = TRUE ) attributes <- attributes(ex) @@ -120,7 +161,9 @@ test_that("get_type() handles `NA` values", { }) -# `get_duplicate_forecasts()` ================================================== +# ============================================================================== +# get_duplicate_forecasts() +# ============================================================================== test_that("get_duplicate_forecasts() works as expected for quantile", { expect_equal(nrow(get_duplicate_forecasts(example_quantile)), 0) expect_equal( @@ -158,28 +201,16 @@ test_that("get_duplicate_forecasts() works as expected for point", { ) }) - -# ============================================================================== -# `get_forecast_type` -# ============================================================================== -test_that("get_forecast_type() works as expected", { - expect_equal(get_forecast_type(as.data.frame(example_quantile)), "quantile") - expect_equal(get_forecast_type(example_sample_continuous), "sample") - expect_equal(get_forecast_type(example_sample_discrete), "sample") - expect_equal(get_forecast_type(example_binary), "binary") - expect_equal(get_forecast_type(example_point), "point") - - expect_error( - get_forecast_type(data.frame(x = 1:10)), - "Assertion on 'data' failed: Columns 'observed', 'predicted' not found in data.", - fixed = TRUE +test_that("get_duplicate_forecasts() returns the expected class", { + expect_equal( + class(get_duplicate_forecasts(example_point)), + class(example_point) ) - df <- data.frame(observed = 1:10, predicted = factor(1:10), model = "model") - expect_error( - get_forecast_type(df), - "input doesn't satisfy criteria for any forecast type", - fixed = TRUE + expect_s3_class( + get_duplicate_forecasts(as.data.frame(example_point)), + c("data.table", "data.frame"), + exact = TRUE ) }) @@ -204,6 +235,12 @@ test_that("get_coverage() works as expected", { ) expect_equal(nrow(cov), nrow(na.omit(example_quantile))) + + expect_s3_class( + cov, + c("data.table", "data.frame"), + exact = TRUE + ) }) test_that("get_coverage() outputs an object of class c('data.table', 'data.frame'", { diff --git a/tests/testthat/test-get_correlations.R b/tests/testthat/test-get_correlations.R index 8e77664ed..eebba6bd8 100644 --- a/tests/testthat/test-get_correlations.R +++ b/tests/testthat/test-get_correlations.R @@ -10,11 +10,28 @@ test_that("get_correlations() works as expected", { colnames(correlations), c(get_metrics(scores_quantile), "metric") ) - # expect no error even if scores are unsummarised + # expect no error if scores are unsummarised # (meaning that coverage will be a logical vector instead of a numeric) expect_no_condition( correlations2 <- scores_quantile %>% get_correlations(digits = 2) ) expect_equal(correlations, correlations2) + + expect_s3_class( + get_correlations(scores_quantile, digits = 2), + c("scores", "data.table", "data.frame"), + exact = TRUE + ) + + # passing a data.frame works as long as the metrics attribute is still there + expect_no_condition( + get_correlations(as.data.frame(scores_quantile), digits = 2) + ) + + # check we get an error if metrics attribute is missing. + expect_error( + get_correlations(as.data.frame(as.matrix(scores_quantile))), + "Assertion on 'metrics' failed: Must be a subset of" + ) }) diff --git a/tests/testthat/test-pairwise_comparison.R b/tests/testthat/test-pairwise_comparison.R index 2e806ed06..0058362d8 100644 --- a/tests/testthat/test-pairwise_comparison.R +++ b/tests/testthat/test-pairwise_comparison.R @@ -253,6 +253,13 @@ test_that("get_pairwise_comparisons() works", { ) expect_true(all(colnames %in% colnames(res))) + + # output class is as expected + expect_s3_class(res, c("data.table", "data.frame"), exact = TRUE) + expect_s3_class( + get_pairwise_comparisons(scores_quantile), + c("data.table", "data.frame"), exact = TRUE + ) }) @@ -471,6 +478,12 @@ test_that("add_relative_skill() can compute relative measures", { scores_with <- add_relative_skill( scores_quantile, ) + expect_s3_class( + scores_with, + c("scores", "data.table", "data.frame"), + exact = TRUE + ) + scores_with <- summarise_scores(scores_with, by = "model") expect_equal( diff --git a/tests/testthat/test-pit.R b/tests/testthat/test-pit.R index ca5b318b7..052a6de30 100644 --- a/tests/testthat/test-pit.R +++ b/tests/testthat/test-pit.R @@ -1,5 +1,5 @@ # ============================================================================ # -# Test `pit_sample()` function +# pit_sample() # ============================================================================ # test_that("pit_sample() function throws an error when missing args", { @@ -29,6 +29,8 @@ test_that("pit_sample() function works for integer observed and predicted", { length(output), 560 ) + + checkmate::expect_class(output, "numeric") }) test_that("pit_sample() function works for continuous observed and predicted", { @@ -62,7 +64,7 @@ test_that("pit_sample() works with a single observvation", { # ============================================================================ # -# Test `get_pit()` function +# get_pit() # ============================================================================ # test_that("pit function works for continuous integer and quantile data", { @@ -77,6 +79,8 @@ test_that("pit function works for continuous integer and quantile data", { expect_equal(names(pit_continuous), c("model", "target_type", "pit_value")) expect_equal(names(pit_integer), c("model", "location", "pit_value")) + expect_s3_class(pit_quantile, c("data.table", "data.frame"), exact = TRUE) + # check printing works testthat::expect_output(print(pit_quantile)) testthat::expect_output(print(pit_continuous)) diff --git a/tests/testthat/test-score.R b/tests/testthat/test-score.R index 908c2f540..f40f35cc4 100644 --- a/tests/testthat/test-score.R +++ b/tests/testthat/test-score.R @@ -1,11 +1,12 @@ # ============================================================================= -# Check creation of objects of class `scores` +# new_scores() # ============================================================================= test_that("new_scores() works", { - expect_equal( - class(new_scores(data.frame(), metrics = "")), - c("scores", "data.table", "data.frame") + expect_s3_class( + new_scores(data.frame(), metrics = ""), + c("scores", "data.table", "data.frame"), + exact = TRUE ) expect_error( @@ -36,7 +37,7 @@ test_that("Output of `score()` has the class `scores()`", { }) # ============================================================================= -# `score()` +# score() # ============================================================================= # common error handling -------------------------------------------------------- @@ -80,6 +81,8 @@ test_that("function produces output for a binary case", { ) expect_true("brier_score" %in% names(eval)) + + expect_s3_class(eval, c("scores", "data.table", "data.frame"), exact = TRUE) }) test_that("score.forecast_binary() errors with only NA values", { @@ -132,6 +135,8 @@ test_that("function produces output for a point case", { colnames(eval), c("model", "target_type", names(metrics_point())) ) + + expect_s3_class(eval, c("scores", "data.table", "data.frame"), exact = TRUE) }) test_that("Changing metrics names works", { @@ -169,6 +174,8 @@ test_that("score_quantile correctly handles separate results = FALSE", { TRUE ) expect_true(all(names(metrics_quantile()) %in% colnames(eval))) + + expect_s3_class(eval, c("scores", "data.table", "data.frame"), exact = TRUE) }) @@ -287,6 +294,8 @@ test_that("function produces output for a continuous format case", { nrow(eval), 887 ) + + expect_s3_class(eval, c("scores", "data.table", "data.frame"), exact = TRUE) }) test_that("function throws an error if data is missing", { @@ -313,7 +322,7 @@ test_that("score() works with only one sample", { }) # ============================================================================= -# `apply_metrics()` +# apply_metrics() # ============================================================================= test_that("apply_metrics() works", { @@ -333,7 +342,6 @@ test_that("apply_metrics() works", { ) # additional unnamed argument does not work - expect_warning( scoringutils:::apply_metrics( forecast = dt, metrics = list("test" = function(x) x + 1), @@ -348,3 +356,14 @@ test_that("`[` preserves attributes", { expect_true("metrics" %in% names(attributes(test))) expect_true("metrics" %in% names(attributes(test[1:10]))) }) + + +# ============================================================================= +# validate_scores() +# ============================================================================= +test_that("validate_scores() works", { + expect_no_condition(validate_scores(scores_binary)) + expect_null( + validate_scores(scores_binary), + ) +}) diff --git a/tests/testthat/test-summarise_scores.R b/tests/testthat/test-summarise_scores.R index 0ac0f58fd..9d07e9d9f 100644 --- a/tests/testthat/test-summarise_scores.R +++ b/tests/testthat/test-summarise_scores.R @@ -1,9 +1,20 @@ -test_that("summarise_scores() works without any arguments", { +test_that("summarise_scores() works as expected with by = forecast unit", { + expect_no_condition( + summarised_scores <- summarise_scores(scores_quantile) + ) + expect_s3_class(summarised_scores, c("scores", "data.table", "data.frame"), exact = TRUE) +}) + +test_that("summarise_scores() works as expected with by = forecast unit", { + # the only effect of running summarise_scores with by = forecast unit is + # that coverage is now a numeric instead of a boolean summarised_scores <- summarise_scores( scores_quantile, by = get_forecast_unit(scores_quantile) ) - expect_false("quantile" %in% names(summarised_scores)) + + expect_equal(dim(summarised_scores), dim(scores_quantile)) + expect_equal(summarised_scores$wis, scores_quantile$wis) s2 <- summarise_scores(scores_quantile, by = c( @@ -12,8 +23,7 @@ test_that("summarise_scores() works without any arguments", { "horizon" ) ) - - expect_equal(nrow(summarised_scores), nrow(s2)) + expect_equal(dim(summarised_scores), dim(s2)) }) test_that("summarise_scores() handles wrong by argument well", { From 12cd1aa8a2d68f099b4be8daf0dfa63ced699d9a Mon Sep 17 00:00:00 2001 From: nikosbosse Date: Sat, 18 May 2024 21:07:46 +0200 Subject: [PATCH 3/4] fix merge --- tests/testthat/test-get_-functions.R | 2 ++ 1 file changed, 2 insertions(+) diff --git a/tests/testthat/test-get_-functions.R b/tests/testthat/test-get_-functions.R index b9511e358..13780d76f 100644 --- a/tests/testthat/test-get_-functions.R +++ b/tests/testthat/test-get_-functions.R @@ -204,6 +204,8 @@ test_that("get_duplicate_forecasts() returns the expected class", { expect_equal( class(get_duplicate_forecasts(example_point)), class(example_point) + ) +}) test_that("get_duplicate_forecasts() works as expected with a data.frame", { duplicates <- get_duplicate_forecasts( From 2bec0b43f9b2f3ad7480b3a2eb61198ccf81d479 Mon Sep 17 00:00:00 2001 From: nikosbosse Date: Sat, 18 May 2024 21:20:24 +0200 Subject: [PATCH 4/4] update test --- tests/testthat/test-score.R | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/tests/testthat/test-score.R b/tests/testthat/test-score.R index f40f35cc4..d5b81e7ba 100644 --- a/tests/testthat/test-score.R +++ b/tests/testthat/test-score.R @@ -308,11 +308,8 @@ test_that("score() works with only one sample", { onesample <- na.omit(example_sample_continuous)[sample_id == 20] %>% as_forecast() expect_warning( - expect_warning( - scoreonesample <- score(onesample), - "Function execution failed, returning NULL. Error: need at least 2 data points." #dss - ), - "Column 'log_score' does not exist to remove" #log_score + scoreonesample <- score(onesample), + "Computation for `log_score` failed. Error: need at least 2 data points." ) # verify that all goes well with two samples