diff --git a/R/checks.R b/R/checks.R index 99e9a0539..c72914b9a 100644 --- a/R/checks.R +++ b/R/checks.R @@ -186,17 +186,21 @@ check_sparse_pmf_tail <- function(pmf, span = 5, tol = 1e-6) { #' @param cols_to_check A character vector of the columns to check #' @return `TRUE` if data is complete, else if data has implicit or explicit #' missingness, `FALSE`. +#' @importFrom cli cli_abort col_blue #' @keywords internal test_data_complete <- function(data, cols_to_check) { data <- setDT(data) # Convert data to data.table - # Check for explicit missingness in required columns - # (date, confirm, primary, secondary) - columns_to_check <- c( - "date", - intersect(c("confirm", "primary", "secondary"), names(data)) - ) - if (any(vapply(data[, columns_to_check, with = FALSE], anyNA, logical(1)))) { + if (!all(cols_to_check %in% names(data))) { + cli_abort( + c( + "x" = "{.var cols_to_check} must be present in the data.", + "i" = "{.var data} has columns: {col_blue(names(data))} but you + specified {.var cols_to_expect}: {col_blue(cols_to_check)}." + ) + ) + } + # Check for explicit missingness in the specified columns return(FALSE) }