diff --git a/R/checks.R b/R/checks.R index c72914b9a..20150cb51 100644 --- a/R/checks.R +++ b/R/checks.R @@ -201,6 +201,10 @@ test_data_complete <- function(data, cols_to_check) { ) } # Check for explicit missingness in the specified columns + data_has_explicit_na <- any( + vapply(data[, cols_to_check, with = FALSE], anyNA, logical(1)) + ) + if (data_has_explicit_na) { return(FALSE) } @@ -210,7 +214,8 @@ test_data_complete <- function(data, cols_to_check) { max(data$date, na.rm = TRUE), by = "1 day" ) - if (!setequal(complete_dates, unique(data$date))) { + data_has_implicit_na <- !all(complete_dates %in% data$date) + if (data_has_implicit_na) { return(FALSE) } @@ -232,6 +237,7 @@ test_data_complete <- function(data, cols_to_check) { #' #' @param obs A call to [obs_opts()] #' @param data The raw data +#' @inheritParams test_data_complete #' @importFrom cli cli_inform col_red #' #' @return [obs_opts()] @@ -239,9 +245,10 @@ test_data_complete <- function(data, cols_to_check) { check_na_setting_against_data <- function(data, cols_to_check, obs) { # If users are using the default treatment of NA's and their data has # implicit or explicit NA's, inform them of what's happening and alternatives + data_is_complete <- test_data_complete(data, cols_to_check) if (!obs$accumulate && obs$na_as_missing_default_used && - !test_data_complete(data)) { + !data_is_complete) { #nolint start: duplicate_argument_linter cli_inform( c(