-
Notifications
You must be signed in to change notification settings - Fork 0
/
02_descriptive.R
36 lines (26 loc) · 998 Bytes
/
02_descriptive.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
### Forecasting the geographic spread of Ebola Virus Disease in the Democratic Republic of the Congo during the 2018-2020 outbreak
### Alicia Rosello
# Expert elicitation descriptive
## PREP
# packages
require(ggplot2)
require(lubridate)
require(dplyr)
# paths
files<-"Outputs/"
plots<-"Plots/"
## read in data
file<-paste0(files, "results_all.csv")
df<-read.csv(file, row.names = 1)
## experts
length(table(df$expert))
length(table(df$expert.date))
table(is.na(df$expert.date))
filter(df,forecast.month=="November 2019")%>%group_by(expert.date)%>%summarise(n=n())
length(unique(df$expert.date))
df%>%group_by(expert, institution)%>%summarise(n=n())%>%group_by(institution)%>%summarise(n=n())
df%>%group_by(expert, experience.ide)%>%summarise(n=n())%>%group_by(experience.ide)%>%summarise(n=n())
df%>%group_by(expert.date, last.in.field)%>%summarise(n=n())%>%group_by(last.in.field)%>%summarise(n=n())
## health zones
HZ_by_month<-df%>%group_by(forecast.month, HZ)%>%summarise(n=n())
##