-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
executable file
·215 lines (192 loc) · 10.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import sys
import re
import numpy as np
import random
import csv
import pickle
random_seed = 7
np.random.seed(random_seed)
random.seed(random_seed)
import itertools
from collections import Counter
import gensim
from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
from gensim.models.keyedvectors import KeyedVectors
from pca import PCA
from wpca import WPCA
from numpy.linalg import svd, norm
def writeDebuggingLogs(sentence, debugInfo, ferr):
if len(debugInfo)==3:
ferr.write("[No Representation Possible for Context]: None of the sentence words were found in the pretrained embeddings: "+" ".join(sentence)+" "+"_".join(debugInfo)+"\n")
if len(debugInfo)==2:
ferr.write("[No Representation Possible for Entity]: None of the description words were found in the pretrained embeddings: "+" ".join(sentence)+" "+"_".join(debugInfo)+"\n")
if len(debugInfo)==1:
ferr.write("[No Coherence Representation Possible]: for the entities: "+" ".join(sentence)+" in the document: "+"_".join(debugInfo)+"\n")
def loadWordVectors(path):
if "bin" in path:
isBinary = True
else:
isBinary = False
word_vectors = KeyedVectors.load_word2vec_format(path, binary=isBinary)
return word_vectors
def loadWikipedia2VecVectors(path):
wikipedia2vec_vectors = pickle.load(open(path,"rb"))
return wikipedia2vec_vectors
def loadGaneaVectors(path, redirect=False, glove=False):
ganea_vectors = {}
if glove==True:
wv = np.load(path+'glove/word_embeddings.npy')
words = open(path+'glove/dict.word')
else:
wv = np.load(path+'word_embeddings.npy')
words = open(path+'dict.word')
ev = np.load(path+'entity_embeddings.npy')
if redirect==True:
entities = open(path+'dict_redirects.entity')
else:
entities = open(path+'dict.entity')
it = 0
for line in words:
line = line.strip().split("\t")
word = line[0].strip()
ganea_vectors[word] = wv[it]
it+=1
it = 0
for line in entities:
line = line.strip().split("\t")
entity = line[0].strip().split("wiki/")[-1]
ganea_vectors["ENTITY/"+entity] = ev[it]
it+=1
return ganea_vectors
def cosineSimilarity(vector1, vector2):
if (norm(vector1) * norm(vector2)) == 0:
return 0
return np.dot(vector1, vector2) / (norm(vector1) * norm(vector2))
def computeVecSubspaceSimilarity(vector, subspace, singularValues, weighted=False):
if subspace.ndim == 1:
return cosineSimilarity(vector, subspace)
if weighted == True:
mat = np.dot(vector, np.multiply(subspace.T,singularValues))/np.sum(singularValues) # scaling each singular vector by the corresponding singular values, thus, valuing their contribution more towards the overall similarity
else:
mat = np.dot(vector, subspace.T)
if norm(vector) != 0.0:
sim = (np.sum(mat ** 2) ** 0.5)/norm(vector)
else:
sim = 0.0
return sim
def computeSubspaceSimilarity(subspace1, subspace2):
if subspace1.ndim == 1 and subspace2.ndim != 1:
# subspace1 is the vector
sim = computeVecSubspaceSimilarity(subspace1,subspace2,None)
elif subspace1.ndim != 1 and subspace2.ndim == 1:
# subspace2 is the vector
sim = computeVecSubspaceSimilarity(subspace2,subspace1,None)
elif subspace1.ndim == 1 and subspace2.ndim == 1:
sim = (cosineSimilarity(subspace1,subspace2)**2)**0.5 # sqrt of (sum of squares of cosSims)
else: # Figure out a way to normalize the similairity score (between 0 and 1)
# compute principal angles between the subspaces
mat = np.dot(subspace1, subspace2.T)
# mean centre the data??
#mat -= np.mean(mat,axis=0)
singularValues = svd(mat,compute_uv=False)
sim = np.sqrt(np.sum(singularValues ** 2,axis=0))
return sim
def constructEmbeddingMatrix(elements, weights, vectors):
embedding_matrix = np.array([]) # Initialize with an empty size 0 array
weight_array = []
if vectors.__class__.__name__ == 'Word2VecKeyedVectors': # pre-trained word-vectors (w2v, glove, fasttext)
dim = vectors['the'].shape[0] # [hack] Better to fix the number of dimensions of the embeddings from the code
else: # custom embedding dictionary
dim = list(vectors.values())[0].shape[0]
element_weight_pairs = zip(elements, weights)
for (element, weight) in element_weight_pairs:
try:
if embedding_matrix.size == 0:
embedding_matrix = vectors[element]/norm(vectors[element])
else:
embedding_matrix = np.vstack((embedding_matrix,vectors[element]/norm(vectors[element])))
weight_array.append(weight) # keep weights only for those elements existent in the supplied embedding vectors
except KeyError:
continue
weight_array = np.array(weight_array).astype(np.float)
return embedding_matrix, weight_array, dim
def average(elements, embedding_matrix, weight_array, vector_dim, debugInfo):
ferr = open("errors_average_representation","a+")
embedding_matrix = (embedding_matrix.T * weight_array).T
if embedding_matrix.size == 0: # assign a vector of all 0s to the representation in this case
representation = np.zeros((vector_dim,))
if debugInfo: # Write Debugging Logs
writeDebuggingLogs(elements, debugInfo, ferr)
elif embedding_matrix.ndim == 1:
representation = embedding_matrix
else:
#representation = np.mean(embedding_matrix,axis=0)
representation = np.sum(embedding_matrix,axis=0)/np.sum(weight_array)
ferr.close()
return representation
def pca_subspace(elements, embedding_matrix, vector_dim, mean_centering, numComponents, debugInfo):
ferr = open("errors_pca_representation","a+")
flog = open("logs_pca_representation","a+")
if embedding_matrix.ndim == 1: # only one word in the sentence, do nothing (no PCA), the vector-space of the word itself is the subspace
ferr.write("[No PCA]: Only a single element from "+" ".join(elements)+" found in supplied embeddings for the document"+"_".join(debugInfo)+"\n")
subspace = embedding_matrix; singularValues = np.array([1.0]); energyRetained = 1.0
else:
flog.write("Original NumComponents: "+str(numComponents)+" NumElements: "+str(embedding_matrix.shape[0])+"\t")
numComponents = min(embedding_matrix.shape[0], embedding_matrix.shape[1], numComponents)
flog.write("New NumComponents: "+str(numComponents)+"\n")
pca = PCA(n_components=numComponents, mean_centering=mean_centering)
try:
pca.fit(embedding_matrix)
subspace = pca.components_
if numComponents == 1: # convert matrix to vector when numComponents = 1
subspace = subspace.T.reshape(-1)
energyRetained = np.sum(pca.explained_variance_ratio_)
singularValues = pca.singular_values_
except (np.linalg.LinAlgError, ZeroDivisionError) as e: # Fails (svd doesn't converge) for some reason. Use the word-vector average in this case!
ferr.write("[SVD Error]: No subspace constructed for "+" ".join(elements)+" in the document: "+"_".join(debugInfo)+"\n")
subspace = np.mean(embedding_matrix,axis=0); singularValues = np.array([1.0]); energyRetained = 1.0
ferr.close()
flog.close()
return subspace, singularValues, energyRetained
def wpca_subspace(elements, embedding_matrix, weight_array, vector_dim, mean_centering, numComponents, debugInfo):
ferr = open("errors_wpca_representation","a+")
flog = open("logs_pca_representation","a+")
weight_matrix = np.tile(weight_array.reshape(-1,1), vector_dim)
if embedding_matrix.ndim == 1: # only one word in the sentence, do nothing (no PCA), the vector-space of the word itself is the subspace
ferr.write("[No WPCA]: Only a single element from "+" ".join(elements)+" found in supplied embeddings for the document"+"_".join(debugInfo)+"\n")
subspace = embedding_matrix; singularValues = np.array([1.0]); energyRetained = 1.0
else:
flog.write("Original NumComponents: "+str(numComponents)+" NumElements: "+str(embedding_matrix.shape[0])+"\t")
numComponents = min(embedding_matrix.shape[0], embedding_matrix.shape[1], numComponents)
flog.write("New NumComponents: "+str(numComponents)+"\n")
pca = WPCA(n_components=numComponents, mean_centering=mean_centering) #WPCA centers the matrix automatically
try:
kwds = {'weights': weight_matrix}
pca.fit(embedding_matrix, **kwds)
subspace = pca.components_
if numComponents == 1: # convert matrix to vector when numComponents = 1
subspace = subspace.T.reshape(-1)
energyRetained = np.sum(pca.explained_variance_ratio_)
if np.any(pca.explained_variance_ < 0): # Hack
explained_variance = np.abs(pca.explained_variance_)
ferr.write("[Numerical Precision Error]: Negative variance "+str(pca.explained_variance_)+" in subspace constructed for "+" ".join(elements)+" in the document: "+"_".join(debugInfo)+"\n")
else:
explained_variance = pca.explained_variance_
#singularValues = np.sqrt( explained_variance * (embedding_matrix.shape[0] - 1) )
singularValues = np.sqrt( explained_variance )
except (np.linalg.LinAlgError, ZeroDivisionError) as e: # Fails (svd doesn't converge) for some reason. Use the word-vector average in this case!
ferr.write("[WPCA Error]: No subspace constructed for "+" ".join(elements)+" in the document: "+"_".join(debugInfo)+"\n")
subspace = np.mean(embedding_matrix,axis=0); singularValues = np.array([1.0]); energyRetained = 1.0
ferr.close()
flog.close()
return subspace, singularValues, energyRetained
def constructRepresentation(elements, weights, vectors, mode, mean_centering=True, numComponents=None, debugInfo=None):
embedding_matrix, weight_array, vector_dim = constructEmbeddingMatrix(elements, weights, vectors)
if mode == 'pca':
return pca_subspace(elements, embedding_matrix, vector_dim, mean_centering, numComponents, debugInfo)
elif mode == 'wpca':
return wpca_subspace(elements, embedding_matrix, weight_array, vector_dim, mean_centering, numComponents, debugInfo)
else:
return average(elements, embedding_matrix, weight_array, vector_dim, debugInfo)