-
Notifications
You must be signed in to change notification settings - Fork 3
/
pca.py
executable file
·609 lines (551 loc) · 23.4 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
""" Principal Component Analysis
"""
# Author: Alexandre Gramfort <[email protected]>
# Olivier Grisel <[email protected]>
# Mathieu Blondel <[email protected]>
# Denis A. Engemann <[email protected]>
# Michael Eickenberg <[email protected]>
#
# License: BSD 3 clause
from math import log, sqrt
import numpy as np
from scipy import linalg
from scipy.special import gammaln
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils import check_random_state, as_float_array
from sklearn.utils import check_array
from sklearn.utils.extmath import fast_dot, fast_logdet, randomized_svd
from sklearn.utils.validation import check_is_fitted
def _assess_dimension_(spectrum, rank, n_samples, n_features):
"""Compute the likelihood of a rank ``rank`` dataset
The dataset is assumed to be embedded in gaussian noise of shape(n,
dimf) having spectrum ``spectrum``.
Parameters
----------
spectrum: array of shape (n)
Data spectrum.
rank: int
Tested rank value.
n_samples: int
Number of samples.
n_features: int
Number of features.
Returns
-------
ll: float,
The log-likelihood
Notes
-----
This implements the method of `Thomas P. Minka:
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
"""
if rank > len(spectrum):
raise ValueError("The tested rank cannot exceed the rank of the"
" dataset")
pu = -rank * log(2.)
for i in range(rank):
pu += (gammaln((n_features - i) / 2.)
- log(np.pi) * (n_features - i) / 2.)
pl = np.sum(np.log(spectrum[:rank]))
pl = -pl * n_samples / 2.
if rank == n_features:
pv = 0
v = 1
else:
v = np.sum(spectrum[rank:]) / (n_features - rank)
pv = -np.log(v) * n_samples * (n_features - rank) / 2.
m = n_features * rank - rank * (rank + 1.) / 2.
pp = log(2. * np.pi) * (m + rank + 1.) / 2.
pa = 0.
spectrum_ = spectrum.copy()
spectrum_[rank:n_features] = v
for i in range(rank):
for j in range(i + 1, len(spectrum)):
pa += log((spectrum[i] - spectrum[j]) *
(1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples)
ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2.
return ll
def _infer_dimension_(spectrum, n_samples, n_features):
"""Infers the dimension of a dataset of shape (n_samples, n_features)
The dataset is described by its spectrum `spectrum`.
"""
n_spectrum = len(spectrum)
ll = np.empty(n_spectrum)
for rank in range(n_spectrum):
ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features)
return ll.argmax()
class PCA(BaseEstimator, TransformerMixin):
"""Principal component analysis (PCA)
Linear dimensionality reduction using Singular Value Decomposition of the
data and keeping only the most significant singular vectors to project the
data to a lower dimensional space.
This implementation uses the scipy.linalg implementation of the singular
value decomposition. It only works for dense arrays and is not scalable to
large dimensional data.
The time complexity of this implementation is ``O(n ** 3)`` assuming
n ~ n_samples ~ n_features.
Read more in the :ref:`User Guide <PCA>`.
Parameters
----------
n_components : int, None or string
Number of components to keep.
if n_components is not set all components are kept::
n_components == min(n_samples, n_features)
if n_components == 'mle', Minka\'s MLE is used to guess the dimension
if ``0 < n_components < 1``, select the number of components such that
the amount of variance that needs to be explained is greater than the
percentage specified by n_components
copy : bool
If False, data passed to fit are overwritten and running
fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.
whiten : bool, optional
When True (False by default) the `components_` vectors are divided
by n_samples times singular values to ensure uncorrelated outputs
with unit component-wise variances.
Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime
improve the predictive accuracy of the downstream estimators by
making there data respect some hard-wired assumptions.
Attributes
----------
components_ : array, [n_components, n_features]
Principal axes in feature space, representing the directions of
maximum variance in the data.
explained_variance_ratio_ : array, [n_components]
Percentage of variance explained by each of the selected components.
If ``n_components`` is not set then all components are stored and the
sum of explained variances is equal to 1.0
mean_ : array, [n_features]
Per-feature empirical mean, estimated from the training set.
n_components_ : int
The estimated number of components. Relevant when n_components is set
to 'mle' or a number between 0 and 1 to select using explained
variance.
noise_variance_ : float
The estimated noise covariance following the Probabilistic PCA model
from Tipping and Bishop 1999. See "Pattern Recognition and
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
http://www.miketipping.com/papers/met-mppca.pdf. It is required to
computed the estimated data covariance and score samples.
Notes
-----
For n_components='mle', this class uses the method of `Thomas P. Minka:
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
Implements the probabilistic PCA model from:
M. Tipping and C. Bishop, Probabilistic Principal Component Analysis,
Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622
via the score and score_samples methods.
See http://www.miketipping.com/papers/met-mppca.pdf
Due to implementation subtleties of the Singular Value Decomposition (SVD),
which is used in this implementation, running fit twice on the same matrix
can lead to principal components with signs flipped (change in direction).
For this reason, it is important to always use the same estimator object to
transform data in a consistent fashion.
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, n_components=2, whiten=False)
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
[ 0.99244... 0.00755...]
See also
--------
RandomizedPCA
KernelPCA
SparsePCA
TruncatedSVD
"""
def __init__(self, n_components=None, mean_centering=True, copy=True, whiten=False):
self.n_components = n_components
self.mean_centering = mean_centering
self.copy = copy
self.whiten = whiten
def fit(self, X, y=None):
"""Fit the model with X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
self._fit(X)
return self
def fit_transform(self, X, y=None):
"""Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
U, S, V = self._fit(X)
U = U[:, :self.n_components_]
if self.whiten:
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
U *= sqrt(X.shape[0])
else:
# X_new = X * V = U * S * V^T * V = U * S
U *= S[:self.n_components_]
return U
def _fit(self, X):
"""Fit the model on X
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
Returns
-------
U, s, V : ndarrays
The SVD of the input data, copied and centered when
requested.
"""
X = check_array(X)
n_samples, n_features = X.shape
X = as_float_array(X, copy=self.copy)
# Center data
self.mean_ = np.mean(X, axis=0)
#self.mean_ = np.zeros(X[0].shape)
if self.mean_centering:
X -= self.mean_
U, S, V = linalg.svd(X, full_matrices=False)
explained_variance_ = (S ** 2) / (n_samples - 1)
explained_variance_ratio_ = (explained_variance_ /
explained_variance_.sum())
singular_values_ = S.copy() # Store the singular values.
components_ = V
n_components = self.n_components
if n_components is None:
n_components = n_features
elif n_components == 'mle':
if n_samples < n_features:
raise ValueError("n_components='mle' is only supported "
"if n_samples >= n_features")
n_components = _infer_dimension_(explained_variance_,
n_samples, n_features)
elif not 0 <= n_components <= n_features:
raise ValueError("n_components=%r invalid for n_features=%d"
% (n_components, n_features))
if 0 < n_components < 1.0:
# number of components for which the cumulated explained variance
# percentage is superior to the desired threshold
ratio_cumsum = explained_variance_ratio_.cumsum()
n_components = np.sum(ratio_cumsum < n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = explained_variance_[n_components:].mean()
else:
self.noise_variance_ = 0.
# store n_samples to revert whitening when getting covariance
self.n_samples_ = n_samples
self.components_ = components_[:n_components]
self.explained_variance_ = explained_variance_[:n_components]
explained_variance_ratio_ = explained_variance_ratio_[:n_components]
self.explained_variance_ratio_ = explained_variance_ratio_
self.n_components_ = n_components
self.singular_values_ = singular_values_[:n_components]
return (U, S, V)
def get_covariance(self):
"""Compute data covariance with the generative model.
``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
where S**2 contains the explained variances.
Returns
-------
cov : array, shape=(n_features, n_features)
Estimated covariance of data.
"""
components_ = self.components_
exp_var = self.explained_variance_
if self.whiten:
components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.)
cov = np.dot(components_.T * exp_var_diff, components_)
cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace
return cov
def get_precision(self):
"""Compute data precision matrix with the generative model.
Equals the inverse of the covariance but computed with
the matrix inversion lemma for efficiency.
Returns
-------
precision : array, shape=(n_features, n_features)
Estimated precision of data.
"""
n_features = self.components_.shape[1]
# handle corner cases first
if self.n_components_ == 0:
return np.eye(n_features) / self.noise_variance_
if self.n_components_ == n_features:
return linalg.inv(self.get_covariance())
# Get precision using matrix inversion lemma
components_ = self.components_
exp_var = self.explained_variance_
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.)
precision = np.dot(components_, components_.T) / self.noise_variance_
precision.flat[::len(precision) + 1] += 1. / exp_var_diff
precision = np.dot(components_.T,
np.dot(linalg.inv(precision), components_))
precision /= -(self.noise_variance_ ** 2)
precision.flat[::len(precision) + 1] += 1. / self.noise_variance_
return precision
def transform(self, X):
"""Apply the dimensionality reduction on X.
X is projected on the first principal components previous extracted
from a training set.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
check_is_fitted(self, 'mean_')
X = check_array(X)
if self.mean_ is not None:
X = X - self.mean_
X_transformed = fast_dot(X, self.components_.T)
if self.whiten:
X_transformed /= np.sqrt(self.explained_variance_)
return X_transformed
def inverse_transform(self, X):
"""Transform data back to its original space, i.e.,
return an input X_original whose transform would be X
Parameters
----------
X : array-like, shape (n_samples, n_components)
New data, where n_samples is the number of samples
and n_components is the number of components.
Returns
-------
X_original array-like, shape (n_samples, n_features)
"""
check_is_fitted(self, 'mean_')
if self.whiten:
return fast_dot(
X,
np.sqrt(self.explained_variance_[:, np.newaxis]) *
self.components_) + self.mean_
else:
return fast_dot(X, self.components_) + self.mean_
def score_samples(self, X):
"""Return the log-likelihood of each sample
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X: array, shape(n_samples, n_features)
The data.
Returns
-------
ll: array, shape (n_samples,)
Log-likelihood of each sample under the current model
"""
check_is_fitted(self, 'mean_')
X = check_array(X)
Xr = X - self.mean_
n_features = X.shape[1]
log_like = np.zeros(X.shape[0])
precision = self.get_precision()
log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
log_like -= .5 * (n_features * log(2. * np.pi)
- fast_logdet(precision))
return log_like
def score(self, X, y=None):
"""Return the average log-likelihood of all samples
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X: array, shape(n_samples, n_features)
The data.
Returns
-------
ll: float
Average log-likelihood of the samples under the current model
"""
return np.mean(self.score_samples(X))
class RandomizedPCA(BaseEstimator, TransformerMixin):
"""Principal component analysis (PCA) using randomized SVD
Linear dimensionality reduction using approximated Singular Value
Decomposition of the data and keeping only the most significant
singular vectors to project the data to a lower dimensional space.
Read more in the :ref:`User Guide <RandomizedPCA>`.
Parameters
----------
n_components : int, optional
Maximum number of components to keep. When not given or None, this
is set to n_features (the second dimension of the training data).
copy : bool
If False, data passed to fit are overwritten and running
fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.
iterated_power : int, optional
Number of iterations for the power method. 3 by default.
whiten : bool, optional
When True (False by default) the `components_` vectors are divided
by the singular values to ensure uncorrelated outputs with unit
component-wise variances.
Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime
improve the predictive accuracy of the downstream estimators by
making their data respect some hard-wired assumptions.
random_state : int or RandomState instance or None (default)
Pseudo Random Number generator seed control. If None, use the
numpy.random singleton.
Attributes
----------
components_ : array, [n_components, n_features]
Components with maximum variance.
explained_variance_ratio_ : array, [n_components]
Percentage of variance explained by each of the selected components. \
k is not set then all components are stored and the sum of explained \
variances is equal to 1.0
mean_ : array, [n_features]
Per-feature empirical mean, estimated from the training set.
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
RandomizedPCA(copy=True, iterated_power=3, n_components=2,
random_state=None, whiten=False)
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
[ 0.99244... 0.00755...]
See also
--------
PCA
TruncatedSVD
References
----------
.. [Halko2009] `Finding structure with randomness: Stochastic algorithms
for constructing approximate matrix decompositions Halko, et al., 2009
(arXiv:909)`
.. [MRT] `A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert`
"""
def __init__(self, n_components=None, copy=True, iterated_power=3,
whiten=False, random_state=None):
self.n_components = n_components
self.copy = copy
self.iterated_power = iterated_power
self.whiten = whiten
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model with X by extracting the first principal components.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
self._fit(check_array(X))
return self
def _fit(self, X):
"""Fit the model to the data X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
Returns
-------
X : ndarray, shape (n_samples, n_features)
The input data, copied, centered and whitened when requested.
"""
random_state = check_random_state(self.random_state)
X = np.atleast_2d(as_float_array(X, copy=self.copy))
n_samples = X.shape[0]
# Center data
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
U, S, V = randomized_svd(X, n_components,
n_iter=self.iterated_power,
random_state=random_state)
self.explained_variance_ = exp_var = (S ** 2) / n_samples
full_var = np.var(X, axis=0).sum()
self.explained_variance_ratio_ = exp_var / full_var
if self.whiten:
self.components_ = V / S[:, np.newaxis] * sqrt(n_samples)
else:
self.components_ = V
return X
def transform(self, X, y=None):
"""Apply dimensionality reduction on X.
X is projected on the first principal components previous extracted
from a training set.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
check_is_fitted(self, 'mean_')
X = check_array(X)
if self.mean_ is not None:
X = X - self.mean_
X = fast_dot(X, self.components_.T)
return X
def fit_transform(self, X, y=None):
"""Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
X = check_array(X)
X = self._fit(X)
return fast_dot(X, self.components_.T)
def inverse_transform(self, X, y=None):
"""Transform data back to its original space.
Returns an array X_original whose transform would be X.
Parameters
----------
X : array-like, shape (n_samples, n_components)
New data, where n_samples in the number of samples
and n_components is the number of components.
Returns
-------
X_original array-like, shape (n_samples, n_features)
Notes
-----
If whitening is enabled, inverse_transform does not compute the
exact inverse operation of transform.
"""
check_is_fitted(self, 'mean_')
X_original = fast_dot(X, self.components_)
if self.mean_ is not None:
X_original = X_original + self.mean_
return X_original