diff --git a/agenthub/codeact_agent/__init__.py b/agenthub/codeact_agent/__init__.py index 8b925723b623..90ee2bf40da1 100644 --- a/agenthub/codeact_agent/__init__.py +++ b/agenthub/codeact_agent/__init__.py @@ -2,12 +2,21 @@ import re from litellm import completion from termcolor import colored -from typing import List, Dict +from typing import List, Mapping + +from opendevin.agent import Agent +from opendevin.state import State +from opendevin.action import ( + Action, + CmdRunAction, + AgentEchoAction, + AgentFinishAction, +) +from opendevin.observation import ( + CmdOutputObservation, + AgentMessageObservation, +) -from opendevin.agent import Agent, Message, Role -from opendevin.lib.event import Event -from opendevin.lib.command_manager import CommandManager -from opendevin.sandbox.sandbox import DockerInteractive assert ( "OPENAI_API_KEY" in os.environ @@ -53,9 +62,7 @@ def parse_response(response) -> str: class CodeActAgent(Agent): def __init__( self, - instruction: str, - workspace_dir: str, - max_steps: int = 100 + model_name: str ) -> None: """ Initializes a new instance of the CodeActAgent class. @@ -64,69 +71,68 @@ def __init__( - instruction (str): The instruction for the agent to execute. - max_steps (int): The maximum number of steps to run the agent. """ - super().__init__(instruction, workspace_dir, max_steps) - self._history = [Message(Role.SYSTEM, SYSTEM_MESSAGE)] - self._history.append(Message(Role.USER, instruction)) - self.env = DockerInteractive(workspace_dir=workspace_dir) - print(colored("===USER:===\n" + instruction, "green")) - - def _history_to_messages(self) -> List[Dict]: - return [message.to_dict() for message in self._history] - - def run(self) -> None: - """ - Starts the execution of the assigned instruction. This method should - be implemented by subclasses to define the specific execution logic. - """ - for _ in range(self.max_steps): - response = completion( - messages=self._history_to_messages(), - model=self.model_name, - stop=[""], - temperature=0.0, - seed=42, - ) - action = parse_response(response) - self._history.append(Message(Role.ASSISTANT, action)) - print(colored("===ASSISTANT:===\n" + action, "yellow")) - - command = re.search(r"(.*)", action, re.DOTALL) - if command is not None: - # a command was found - command_group = command.group(1) - if command_group.strip() == "exit": - print(colored("Exit received. Exiting...", "red")) - break - # execute the code - # TODO: does exit_code get loaded into Message? - exit_code, observation = self.env.execute(command_group) - self._history.append(Message(Role.ASSISTANT, observation)) - print(colored("===ENV OBSERVATION:===\n" + observation, "blue")) - else: - # we could provide a error message for the model to continue similar to - # https://github.com/xingyaoww/mint-bench/blob/main/mint/envs/general_env.py#L18-L23 - observation = INVALID_INPUT_MESSAGE - self._history.append(Message(Role.ASSISTANT, observation)) - print(colored("===ENV OBSERVATION:===\n" + observation, "blue")) - - self.env.close() - - def chat(self, message: str) -> None: - """ - Optional method for interactive communication with the agent during its execution. Implementations - can use this method to modify the agent's behavior or state based on chat inputs. + super().__init__(model_name) + self.messages: List[Mapping[str, str]] = [] + self.instruction: str = "" + + def step(self, state: State) -> Action: + if len(self.messages) == 0: + assert self.instruction, "Expecting instruction to be set" + self.messages = [ + {"role": "system", "content": SYSTEM_MESSAGE}, + {"role": "user", "content": self.instruction}, + ] + print(colored("===USER:===\n" + self.instruction, "green")) + + updated_info = state.updated_info + + if updated_info: + for prev_action, obs in updated_info: + assert isinstance(prev_action, (CmdRunAction, AgentEchoAction)), "Expecting CmdRunAction or AgentEchoAction for Action" + + if isinstance(obs, AgentMessageObservation): # warning message from itself + self.messages.append({"role": "user", "content": obs.content}) + print(colored("===USER:===\n" + obs.content, "green")) + elif isinstance(obs, CmdOutputObservation): + content = "OBSERVATION:\n" + obs.content + content += f"\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]" + self.messages.append({"role": "user", "content": content}) + print(colored("===ENV OBSERVATION:===\n" + content, "blue")) + else: + raise NotImplementedError(f"Unknown observation type: {obs.__class__}") + + response = completion( + messages=self.messages, + model=self.model_name, + stop=[""], + temperature=0.0, + seed=42, + ) + action_str: str = parse_response(response) + self.messages.append({"role": "assistant", "content": action_str}) + print(colored("===ASSISTANT:===\n" + action_str, "yellow")) + + command = re.search(r"(.*)", action_str, re.DOTALL) + if command is not None: + # a command was found + command_group = command.group(1) + if command_group.strip() == "exit": + print(colored("Exit received. Exiting...", "red")) + return AgentFinishAction() + return CmdRunAction(command = command_group) + # # execute the code + # # TODO: does exit_code get loaded into Message? + # exit_code, observation = self.env.execute(command_group) + # self._history.append(Message(Role.ASSISTANT, observation)) + # print(colored("===ENV OBSERVATION:===\n" + observation, "blue")) + else: + # we could provide a error message for the model to continue similar to + # https://github.com/xingyaoww/mint-bench/blob/main/mint/envs/general_env.py#L18-L23 + # observation = INVALID_INPUT_MESSAGE + # self._history.append(Message(Role.ASSISTANT, observation)) + # print(colored("===ENV OBSERVATION:===\n" + observation, "blue")) + return AgentEchoAction(content=INVALID_INPUT_MESSAGE) # warning message to itself - Parameters: - - message (str): The chat message or command. - """ - raise NotImplementedError - - # TODO: implement these abstract methods - def add_event(self, event: Event) -> None: - raise NotImplementedError("Implement this abstract method") - - def step(self, cmd_mgr: CommandManager) -> Event: - raise NotImplementedError("Implement this abstract method") def search_memory(self, query: str) -> List[str]: raise NotImplementedError("Implement this abstract method") diff --git a/agenthub/langchains_agent/__init__.py b/agenthub/langchains_agent/__init__.py index b1a06b452689..5546eaf33e44 100644 --- a/agenthub/langchains_agent/__init__.py +++ b/agenthub/langchains_agent/__init__.py @@ -1,8 +1,28 @@ -from typing import List, Any +from typing import List, Dict, Type +import agenthub.langchains_agent.utils.llm as llm from opendevin.agent import Agent -from agenthub.langchains_agent.utils.agent import Agent as LangchainsAgentImpl -from opendevin.lib.event import Event +from opendevin.action import ( + Action, + CmdRunAction, + CmdKillAction, + BrowseURLAction, + FileReadAction, + FileWriteAction, + AgentRecallAction, + AgentThinkAction, + AgentFinishAction, +) +from opendevin.observation import ( + Observation, + CmdOutputObservation, + BrowserOutputObservation, +) +from opendevin.state import State + +from agenthub.langchains_agent.utils.monologue import Monologue +from agenthub.langchains_agent.utils.memory import LongTermMemory + INITIAL_THOUGHTS = [ "I exist!", @@ -43,59 +63,135 @@ ] +MAX_OUTPUT_LENGTH = 5000 +MAX_MONOLOGUE_LENGTH = 20000 + + +ACTION_TYPE_TO_CLASS: Dict[str, Type[Action]] = { + "run": CmdRunAction, + "kill": CmdKillAction, + "browse": BrowseURLAction, + "read": FileReadAction, + "write": FileWriteAction, + "recall": AgentRecallAction, + "think": AgentThinkAction, + "finish": AgentFinishAction, +} + +CLASS_TO_ACTION_TYPE: Dict[Type[Action], str] = {v: k for k, v in ACTION_TYPE_TO_CLASS.items()} + class LangchainsAgent(Agent): _initialized = False - agent: Any = None + + def __init__(self, model_name: str): + super().__init__(model_name) + self.monologue = Monologue(self.model_name) + self.memory = LongTermMemory() + + def _add_event(self, event: dict): + if 'output' in event['args'] and len(event['args']['output']) > MAX_OUTPUT_LENGTH: + event['args']['output'] = event['args']['output'][:MAX_OUTPUT_LENGTH] + "..." + + self.monologue.add_event(event) + self.memory.add_event(event) + if self.monologue.get_total_length() > MAX_MONOLOGUE_LENGTH: + self.monologue.condense() def _initialize(self): if self._initialized: return + if self.instruction is None or self.instruction == "": raise ValueError("Instruction must be provided") - self.agent = LangchainsAgentImpl(self.instruction, self.model_name) + next_is_output = False for thought in INITIAL_THOUGHTS: thought = thought.replace("$TASK", self.instruction) if next_is_output: - event = Event("output", {"output": thought}) + d = {"action": "output", "args": {"output": thought}} next_is_output = False else: if thought.startswith("RUN"): command = thought.split("RUN ")[1] - event = Event("run", {"command": command}) + d = {"action": "run", "args": {"command": command}} next_is_output = True + elif thought.startswith("RECALL"): query = thought.split("RECALL ")[1] - event = Event("recall", {"query": query}) + d = {"action": "recall", "args": {"query": query}} next_is_output = True + elif thought.startswith("BROWSE"): url = thought.split("BROWSE ")[1] - event = Event("browse", {"url": url}) + d = {"action": "browse", "args": {"url": url}} next_is_output = True else: - event = Event("think", {"thought": thought}) - self.agent.add_event(event) - self._initialized = True + d = {"action": "think", "args": {"thought": thought}} - def add_event(self, event: Event) -> None: - if self.agent: - self.agent.add_event(event) + self._add_event(d) + self._initialized = True - def step(self, cmd_mgr) -> Event: + def step(self, state: State) -> Action: self._initialize() - return self.agent.get_next_action(cmd_mgr) + # TODO: make langchains agent use Action & Observation + # completly from ground up - def search_memory(self, query: str) -> List[str]: - return self.agent.memory.search(query) + # Translate state to action_dict + for prev_action, obs in state.updated_info: + if isinstance(obs, CmdOutputObservation): + if obs.error: + d = {"action": "error", "args": {"output": obs.content}} + else: + d = {"action": "output", "args": {"output": obs.content}} + # elif isinstance(obs, UserMessageObservation): + # d = {"action": "output", "args": {"output": obs.message}} + # elif isinstance(obs, AgentMessageObservation): + # d = {"action": "output", "args": {"output": obs.message}} + elif isinstance(obs, (BrowserOutputObservation, Observation)): + d = {"action": "output", "args": {"output": obs.content}} + else: + raise NotImplementedError(f"Unknown observation type: {obs}") + self._add_event(d) - def chat(self, message: str) -> None: - """ - Optional method for interactive communication with the agent during its execution. Implementations - can use this method to modify the agent's behavior or state based on chat inputs. - Parameters: - - message (str): The chat message or command. - """ - raise NotImplementedError + if isinstance(prev_action, CmdRunAction): + d = {"action": "run", "args": {"command": prev_action.command}} + elif isinstance(prev_action, CmdKillAction): + d = {"action": "kill", "args": {"id": prev_action.id}} + elif isinstance(prev_action, BrowseURLAction): + d = {"action": "browse", "args": {"url": prev_action.url}} + elif isinstance(prev_action, FileReadAction): + d = {"action": "read", "args": {"file": prev_action.path}} + elif isinstance(prev_action, FileWriteAction): + d = {"action": "write", "args": {"file": prev_action.path, "content": prev_action.contents}} + elif isinstance(prev_action, AgentRecallAction): + d = {"action": "recall", "args": {"query": prev_action.query}} + elif isinstance(prev_action, AgentThinkAction): + d = {"action": "think", "args": {"thought": prev_action.thought}} + elif isinstance(prev_action, AgentFinishAction): + d = {"action": "finish"} + else: + raise NotImplementedError(f"Unknown action type: {prev_action}") + self._add_event(d) + + state.updated_info = [] + + action_dict = llm.request_action( + self.instruction, + self.monologue.get_thoughts(), + self.model_name, + state.background_commands_obs, + ) + if action_dict is None: + action_dict = {"action": "think", "args": {"thought": "..."}} + + # Translate action_dict to Action + action = ACTION_TYPE_TO_CLASS[action_dict["action"]](**action_dict["args"]) + self.latest_action = action + return action + + def search_memory(self, query: str) -> List[str]: + return self.memory.search(query) + Agent.register("LangchainsAgent", LangchainsAgent) diff --git a/agenthub/langchains_agent/utils/agent.py b/agenthub/langchains_agent/utils/agent.py deleted file mode 100644 index eab6caee7f9b..000000000000 --- a/agenthub/langchains_agent/utils/agent.py +++ /dev/null @@ -1,37 +0,0 @@ -from agenthub.langchains_agent.utils.monologue import Monologue -from agenthub.langchains_agent.utils.memory import LongTermMemory -from opendevin.lib.event import Event -import agenthub.langchains_agent.utils.llm as llm - -MAX_OUTPUT_LENGTH = 5000 -MAX_MONOLOGUE_LENGTH = 20000 - -class Agent: - def __init__(self, task, model_name): - self.task = task - self.model_name = model_name - self.monologue = Monologue(model_name) - self.memory = LongTermMemory() - - def add_event(self, event): - if 'output' in event.args and len(event.args['output']) > MAX_OUTPUT_LENGTH: - event.args['output'] = event.args['output'][:MAX_OUTPUT_LENGTH] + "..." - self.monologue.add_event(event) - self.memory.add_event(event) - if self.monologue.get_total_length() > MAX_MONOLOGUE_LENGTH: - self.monologue.condense() - - def get_next_action(self, cmd_mgr): - action_dict = llm.request_action( - self.task, - self.monologue.get_thoughts(), - self.model_name, - cmd_mgr.background_commands - ) - if action_dict is None: - # TODO: this seems to happen if the LLM response isn't valid JSON. Maybe it should be an `error` instead? How should we handle this case? - return Event('think', {'thought': '...'}) - event = Event(action_dict['action'], action_dict['args']) - self.latest_action = event - return event - diff --git a/agenthub/langchains_agent/utils/llm.py b/agenthub/langchains_agent/utils/llm.py index 98475e3cedaf..d3885ad67fe4 100644 --- a/agenthub/langchains_agent/utils/llm.py +++ b/agenthub/langchains_agent/utils/llm.py @@ -4,11 +4,16 @@ if os.getenv("DEBUG"): from langchain.globals import set_debug + set_debug(True) from typing import List from langchain_core.pydantic_v1 import BaseModel +from opendevin.observation import ( + CmdOutputObservation, +) + from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_core.output_parsers import JsonOutputParser @@ -88,60 +93,73 @@ You can also use the same action and args from the source monologue. """ -class Action(BaseModel): + +class _ActionDict(BaseModel): action: str args: dict + class NewMonologue(BaseModel): - new_monologue: List[Action] + new_monologue: List[_ActionDict] + def get_chain(template, model_name): - assert "OPENAI_API_KEY" in os.environ, "Please set the OPENAI_API_KEY environment variable to use langchains_agent." - llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model_name=model_name) + assert ( + "OPENAI_API_KEY" in os.environ + ), "Please set the OPENAI_API_KEY environment variable to use langchains_agent." + llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model_name=model_name) # type: ignore prompt = PromptTemplate.from_template(template) llm_chain = LLMChain(prompt=prompt, llm=llm) return llm_chain -def summarize_monologue(thoughts, model_name): + +def summarize_monologue(thoughts: List[dict], model_name): llm_chain = get_chain(MONOLOGUE_SUMMARY_PROMPT, model_name) parser = JsonOutputParser(pydantic_object=NewMonologue) - resp = llm_chain.invoke({'monologue': json.dumps({'old_monologue': thoughts})}) + resp = llm_chain.invoke({"monologue": json.dumps({"old_monologue": thoughts})}) + if os.getenv("DEBUG"): print("resp", resp) - parsed = parser.parse(resp['text']) - return parsed['new_monologue'] + parsed = parser.parse(resp["text"]) + return parsed["new_monologue"] + -def request_action(task, thoughts, model_name, background_commands=[]): +def request_action( + task, + thoughts: List[dict], + model_name: str, + background_commands_obs: List[CmdOutputObservation] = [], +): llm_chain = get_chain(ACTION_PROMPT, model_name) - parser = JsonOutputParser(pydantic_object=Action) - hint = '' + parser = JsonOutputParser(pydantic_object=_ActionDict) + hint = "" if len(thoughts) > 0: latest_thought = thoughts[-1] - if latest_thought.action == 'think': - if latest_thought.args['thought'].startswith("OK so my task is"): + if latest_thought["action"] == 'think': + if latest_thought["args"]['thought'].startswith("OK so my task is"): hint = "You're just getting started! What should you do first?" else: hint = "You've been thinking a lot lately. Maybe it's time to take action?" - elif latest_thought.action == 'error': + elif latest_thought["action"] == 'error': hint = "Looks like that last command failed. Maybe you need to fix it, or try something else." bg_commands_message = "" - if len(background_commands) > 0: + if len(background_commands_obs) > 0: bg_commands_message = "The following commands are running in the background:" - for id, command in background_commands.items(): - bg_commands_message += f"\n`{id}`: {command.command}" + for command_obs in background_commands_obs: + bg_commands_message += f"\n`{command_obs.command_id}`: {command_obs.command}" bg_commands_message += "\nYou can end any process by sending a `kill` action with the numerical `id` above." latest_thought = thoughts[-1] - resp = llm_chain.invoke({ - "monologue": json.dumps(thoughts), - "hint": hint, - "task": task, - "background_commands": bg_commands_message, - }) + resp = llm_chain.invoke( + { + "monologue": json.dumps(thoughts), + "hint": hint, + "task": task, + "background_commands": bg_commands_message, + } + ) if os.getenv("DEBUG"): print("resp", resp) - parsed = parser.parse(resp['text']) + parsed = parser.parse(resp["text"]) return parsed - - diff --git a/agenthub/langchains_agent/utils/memory.py b/agenthub/langchains_agent/utils/memory.py index c73bc613e95d..0611a5aac6dd 100644 --- a/agenthub/langchains_agent/utils/memory.py +++ b/agenthub/langchains_agent/utils/memory.py @@ -18,9 +18,9 @@ def __init__(self): def add_event(self, event): doc = Document( text=json.dumps(event), - doc_id=self.thought_idx, + doc_id=str(self.thought_idx), extra_info={ - "type": event.action, + "type": event["action"], "idx": self.thought_idx, }, ) diff --git a/agenthub/langchains_agent/utils/monologue.py b/agenthub/langchains_agent/utils/monologue.py index 53ca081c5447..c9de0c79ffe3 100644 --- a/agenthub/langchains_agent/utils/monologue.py +++ b/agenthub/langchains_agent/utils/monologue.py @@ -1,6 +1,4 @@ import agenthub.langchains_agent.utils.json as json -from opendevin.lib.event import Event - import agenthub.langchains_agent.utils.llm as llm class Monologue: @@ -8,7 +6,7 @@ def __init__(self, model_name): self.thoughts = [] self.model_name = model_name - def add_event(self, t): + def add_event(self, t: dict): self.thoughts.append(t) def get_thoughts(self): @@ -19,6 +17,7 @@ def get_total_length(self): def condense(self): new_thoughts = llm.summarize_monologue(self.thoughts, self.model_name) - self.thoughts = [Event(t['action'], t['args']) for t in new_thoughts] + # self.thoughts = [Event(t['action'], t['args']) for t in new_thoughts] + self.thoughts = new_thoughts diff --git a/opendevin/action/__init__.py b/opendevin/action/__init__.py new file mode 100644 index 000000000000..814842cac5eb --- /dev/null +++ b/opendevin/action/__init__.py @@ -0,0 +1,19 @@ +from .base import Action, NullAction +from .bash import CmdRunAction, CmdKillAction +from .browse import BrowseURLAction +from .fileop import FileReadAction, FileWriteAction +from .agent import AgentRecallAction, AgentThinkAction, AgentFinishAction, AgentEchoAction + +__all__ = [ + "Action", + "NullAction", + "CmdRunAction", + "CmdKillAction", + "BrowseURLAction", + "FileReadAction", + "FileWriteAction", + "AgentRecallAction", + "AgentThinkAction", + "AgentFinishAction", + "AgentEchoAction", +] diff --git a/opendevin/action/agent.py b/opendevin/action/agent.py new file mode 100644 index 000000000000..48463dbb88e9 --- /dev/null +++ b/opendevin/action/agent.py @@ -0,0 +1,58 @@ +from dataclasses import dataclass +from typing import TYPE_CHECKING + +from opendevin.observation import AgentRecallObservation, AgentMessageObservation, Observation +from .base import ExecutableAction, NotExecutableAction +if TYPE_CHECKING: + from opendevin.controller import AgentController + + +@dataclass +class AgentRecallAction(ExecutableAction): + query: str + + def run(self, controller: "AgentController") -> AgentRecallObservation: + return AgentRecallObservation( + content="Recalling memories...", + memories=controller.agent.search_memory(self.query) + ) + + @property + def message(self) -> str: + return f"Recalling memories with query: {self.query}" + + +@dataclass +class AgentThinkAction(NotExecutableAction): + thought: str + runnable: bool = False + + def run(self, controller: "AgentController") -> "Observation": + raise NotImplementedError + + @property + def message(self) -> str: + return f"Thinking: {self.thought}" + +@dataclass +class AgentEchoAction(ExecutableAction): + content: str + runnable: bool = True + + def run(self, controller: "AgentController") -> "Observation": + return AgentMessageObservation(self.content) + + @property + def message(self) -> str: + return f"Echoing: {self.content}" + +@dataclass +class AgentFinishAction(NotExecutableAction): + runnable: bool = False + + def run(self, controller: "AgentController") -> "Observation": + raise NotImplementedError + + @property + def message(self) -> str: + return "Finished!" diff --git a/opendevin/action/base.py b/opendevin/action/base.py new file mode 100644 index 000000000000..4932a43f53e8 --- /dev/null +++ b/opendevin/action/base.py @@ -0,0 +1,45 @@ +from dataclasses import dataclass + +from typing import TYPE_CHECKING + +if TYPE_CHECKING: + from opendevin.controller import AgentController + from opendevin.observation import Observation + +@dataclass +class Action: + def run(self, controller: "AgentController") -> "Observation": + raise NotImplementedError + + def to_dict(self): + return {"action": self.__class__.__name__, "args": self.__dict__, "message": self.message} + + @property + def executable(self) -> bool: + raise NotImplementedError + + @property + def message(self) -> str: + raise NotImplementedError + + + +class ExecutableAction(Action): + @property + def executable(self) -> bool: + return True + + +class NotExecutableAction(Action): + @property + def executable(self) -> bool: + return False + +class NullAction(NotExecutableAction): + """An action that does nothing. + This is used when the agent need to receive user follow-up messages from the frontend. + """ + + @property + def message(self) -> str: + return "No action" diff --git a/opendevin/action/bash.py b/opendevin/action/bash.py new file mode 100644 index 000000000000..4342e970785c --- /dev/null +++ b/opendevin/action/bash.py @@ -0,0 +1,32 @@ +from dataclasses import dataclass +from typing import TYPE_CHECKING + +from .base import ExecutableAction + +if TYPE_CHECKING: + from opendevin.controller import AgentController + from opendevin.observation import CmdOutputObservation + + +@dataclass +class CmdRunAction(ExecutableAction): + command: str + background: bool = False + + def run(self, controller: "AgentController") -> "CmdOutputObservation": + return controller.command_manager.run_command(self.command, self.background) + + @property + def message(self) -> str: + return f"Running command: {self.command}" + +@dataclass +class CmdKillAction(ExecutableAction): + id: int + + def run(self, controller: "AgentController") -> "CmdOutputObservation": + return controller.command_manager.kill_command(self.id) + + @property + def message(self) -> str: + return f"Killing command: {self.id}" diff --git a/opendevin/action/browse.py b/opendevin/action/browse.py new file mode 100644 index 000000000000..6c9bfd8bf915 --- /dev/null +++ b/opendevin/action/browse.py @@ -0,0 +1,21 @@ +import requests + +from dataclasses import dataclass +from opendevin.observation import BrowserOutputObservation + +from .base import ExecutableAction + +@dataclass +class BrowseURLAction(ExecutableAction): + url: str + + def run(self, *args, **kwargs) -> BrowserOutputObservation: + response = requests.get(self.url) + return BrowserOutputObservation( + content=response.text, + url=self.url + ) + + @property + def message(self) -> str: + return f"Browsing URL: {self.url}" diff --git a/opendevin/action/fileop.py b/opendevin/action/fileop.py new file mode 100644 index 000000000000..77accb8e77bb --- /dev/null +++ b/opendevin/action/fileop.py @@ -0,0 +1,47 @@ +import os +from dataclasses import dataclass + +from opendevin.observation import Observation +from .base import ExecutableAction + +# This is the path where the workspace is mounted in the container +# The LLM sometimes returns paths with this prefix, so we need to remove it +PATH_PREFIX = "/workspace/" + +def resolve_path(base_path, file_path): + if file_path.startswith(PATH_PREFIX): + file_path = file_path[len(PATH_PREFIX):] + return os.path.join(base_path, file_path) + + +@dataclass +class FileReadAction(ExecutableAction): + path: str + base_path: str = "" + + def run(self, *args, **kwargs) -> Observation: + path = resolve_path(self.base_path, self.path) + with open(path, 'r') as file: + return Observation(file.read()) + + @property + def message(self) -> str: + return f"Reading file: {self.path}" + + +@dataclass +class FileWriteAction(ExecutableAction): + path: str + contents: str + base_path: str = "" + + def run(self, *args, **kwargs) -> Observation: + path = resolve_path(self.base_path, self.path) + with open(path, 'w') as file: + file.write(self.contents) + return Observation(f"File written to {path}") + + @property + def message(self) -> str: + return f"Writing file: {self.path}" + diff --git a/opendevin/agent.py b/opendevin/agent.py index c6cf0bc1502b..09ede60cc7c2 100644 --- a/opendevin/agent.py +++ b/opendevin/agent.py @@ -1,40 +1,9 @@ from abc import ABC, abstractmethod -from typing import List, Dict, Type -from dataclasses import dataclass -from enum import Enum +from typing import List, Dict, Type, TYPE_CHECKING -from .lib.event import Event -from .lib.command_manager import CommandManager - -class Role(Enum): - SYSTEM = "system" # system message for LLM - USER = "user" # the user - ASSISTANT = "assistant" # the agent - ENVIRONMENT = "environment" # the environment (e.g., bash shell, web browser, etc.) - -@dataclass -class Message: - """ - This data class represents a message sent by an agent to another agent or user. - """ - - role: Role - content: str - # TODO: add more fields as needed - - def to_dict(self) -> Dict: - """ - Converts the message to a dictionary (OpenAI chat-completion format). - - Returns: - - message (Dict): A dictionary representation of the message. - """ - role = self.role.value - content = self.content - if self.role == Role.ENVIRONMENT: - content = f"Environment Observation:\n{content}" - role = "user" # treat environment messages as user messages - return {"role": role, "content": content} +if TYPE_CHECKING: + from opendevin.action import Action + from opendevin.state import State class Agent(ABC): @@ -45,26 +14,15 @@ class Agent(ABC): It tracks the execution status and maintains a history of interactions. :param instruction: The instruction for the agent to execute. - :param workspace_dir: The working directory for the agent. :param model_name: The litellm name of the model to use for the agent. - :param max_steps: The maximum number of steps to run the agent. """ - _registry: Dict[str, Type['Agent']] = {} + _registry: Dict[str, Type["Agent"]] = {} - def __init__( - self, - workspace_dir: str, - model_name: str, - max_steps: int = 100 - ): - self.instruction = "" - self.workspace_dir = workspace_dir + def __init__(self, model_name: str): self.model_name = model_name - self.max_steps = max_steps - + self.instruction: str = "" # need to be set before step self._complete = False - self._history: List[Message] = [] @property def complete(self) -> bool: @@ -76,28 +34,8 @@ def complete(self) -> bool: """ return self._complete - @property - def history(self) -> List[Message]: - """ - Provides the history of interactions or state changes since the instruction was initiated. - - Returns: - - history (List[str]): A list of strings representing the history. - """ - return self._history - @abstractmethod - def add_event(self, event: Event) -> None: - """ - Adds an event to the agent's history. - - Parameters: - - event (Event): The event to add to the history. - """ - pass - - @abstractmethod - def step(self, cmd_mgr: CommandManager) -> Event: + def step(self, state: "State") -> "Action": """ Starts the execution of the assigned instruction. This method should be implemented by subclasses to define the specific execution logic. @@ -123,12 +61,11 @@ def reset(self) -> None: to prepare the agent for restarting the instruction or cleaning up before destruction. """ - self.instruction = '' + self.instruction = "" self._complete = False - self._history = [] @classmethod - def register(cls, name: str, agent_cls: Type['Agent']): + def register(cls, name: str, agent_cls: Type["Agent"]): """ Registers an agent class in the registry. @@ -141,7 +78,7 @@ def register(cls, name: str, agent_cls: Type['Agent']): cls._registry[name] = agent_cls @classmethod - def get_cls(cls, name: str) -> Type['Agent']: + def get_cls(cls, name: str) -> Type["Agent"]: """ Retrieves an agent class from the registry. diff --git a/opendevin/controller.py b/opendevin/controller.py deleted file mode 100644 index 008440ed60aa..000000000000 --- a/opendevin/controller.py +++ /dev/null @@ -1,68 +0,0 @@ -import asyncio - -from opendevin.lib.command_manager import CommandManager -from opendevin.lib.event import Event - -def print_callback(event): - print(event.str_truncated(), flush=True) - -class AgentController: - def __init__(self, agent, workdir, max_iterations=100, callbacks=[]): - self.agent = agent - self.max_iterations = max_iterations - self.background_commands = [] - self.command_manager = CommandManager(workdir) - self.callbacks = callbacks - self.callbacks.append(self.agent.add_event) - self.callbacks.append(print_callback) - - async def add_user_event(self, event: Event): - await self.handle_action(event) - - async def start_loop(self, task): - try: - self.agent.instruction = task - for i in range(self.max_iterations): - print("STEP", i, flush=True) - done = await self.step() - if done: - print("FINISHED", flush=True) - break - except Exception as e: - print("Error in loop", e, flush=True) - pass - - - async def step(self) -> bool: - log_events = self.command_manager.get_background_events() - for event in log_events: - await self.run_callbacks(event) - - try: - action_event = self.agent.step(self.command_manager) - except Exception as e: - action_event = Event('error', {'error': str(e)}) - if action_event is None: - action_event = Event('error', {'error': "Agent did not return an event"}) - - await self.handle_action(action_event) - return action_event.action == 'finish' - - async def handle_action(self, event: Event): - print("=== HANDLING EVENT ===", flush=True) - await self.run_callbacks(event) - print("--- EVENT OUTPUT ---", flush=True) - output_event = event.run(self) - await self.run_callbacks(output_event) - - async def run_callbacks(self, event): - if event is None: - return - for callback in self.callbacks: - idx = self.callbacks.index(callback) - try: - callback(event) - except Exception as e: - print("Callback error:" + str(idx), e, flush=True) - pass - await asyncio.sleep(0.001) # Give back control for a tick, so we can await in callbacks diff --git a/opendevin/controller/__init__.py b/opendevin/controller/__init__.py new file mode 100644 index 000000000000..f8a06c9b9a5e --- /dev/null +++ b/opendevin/controller/__init__.py @@ -0,0 +1,91 @@ +import asyncio +from typing import List, Callable, Tuple + +from opendevin.state import State +from opendevin.agent import Agent +from opendevin.action import ( + Action, + NullAction, + FileReadAction, + FileWriteAction, + AgentFinishAction, +) +from opendevin.observation import ( + Observation, + NullObservation +) + + +from .command_manager import CommandManager + + +class AgentController: + def __init__( + self, + agent: Agent, + workdir: str, + max_iterations: int = 100, + callbacks: List[Callable] = [], + ): + self.agent = agent + self.max_iterations = max_iterations + self.workdir = workdir + self.command_manager = CommandManager(workdir) + self.callbacks = callbacks + self.state_updated_info: List[Tuple[Action, Observation]] = [] + + def get_current_state(self) -> State: + # update observations & actions + state = State( + background_commands_obs=self.command_manager.get_background_obs(), + updated_info=self.state_updated_info, + ) + self.state_updated_info = [] + return state + + def add_observation(self, observation: Observation): + self.state_updated_info.append((NullAction(), observation)) + + async def start_loop(self, task_instruction: str): + try: + self.agent.instruction = task_instruction + for i in range(self.max_iterations): + print("STEP", i, flush=True) + + state: State = self.get_current_state() + action: Action = self.agent.step(state) + + print("ACTION", action, flush=True) + for _callback_fn in self.callbacks: + _callback_fn(action) + + if isinstance(action, AgentFinishAction): + print("FINISHED", flush=True) + break + if isinstance(action, (FileReadAction, FileWriteAction)): + action_cls = action.__class__ + _kwargs = action.__dict__ + _kwargs["base_path"] = self.workdir + action = action_cls(**_kwargs) + print(action, flush=True) + print("---", flush=True) + + + if action.executable: + observation: Observation = action.run(self) + else: + print("ACTION NOT EXECUTABLE", flush=True) + observation = NullObservation("") + print("OBSERVATION", observation, flush=True) + self.state_updated_info.append((action, observation)) + + print(observation, flush=True) + for _callback_fn in self.callbacks: + _callback_fn(observation) + + print("==============", flush=True) + + await asyncio.sleep(0.001) + except Exception as e: + print("Error in loop", e, flush=True) + pass diff --git a/opendevin/controller/command_manager.py b/opendevin/controller/command_manager.py new file mode 100644 index 000000000000..51a8cd0de91a --- /dev/null +++ b/opendevin/controller/command_manager.py @@ -0,0 +1,66 @@ +from typing import List + +from opendevin.observation import CmdOutputObservation +from opendevin.sandbox.sandbox import DockerInteractive + + +class BackgroundCommand: + def __init__(self, id: int, command: str, dir: str): + self.command = command + self.id = id + self.shell = DockerInteractive(id=str(id), workspace_dir=dir) + self.shell.execute_in_background(command) + + def get_logs(self) -> str: + # TODO: get an exit code if process is exited + return self.shell.read_logs() + + +class CommandManager: + def __init__(self, dir): + self.cur_id = 0 + self.directory = dir + self.background_commands = {} + self.shell = DockerInteractive(id="default", workspace_dir=dir) + + def run_command(self, command: str, background=False) -> CmdOutputObservation: + if background: + return self._run_background(command) + else: + return self._run_immediately(command) + + def _run_immediately(self, command: str) -> CmdOutputObservation: + exit_code, output = self.shell.execute(command) + return CmdOutputObservation( + content=output, + command_id=self.cur_id, + command=command, + exit_code=exit_code + ) + + def _run_background(self, command: str) -> CmdOutputObservation: + bg_cmd = BackgroundCommand(self.cur_id, command, self.directory) + self.cur_id += 1 + self.background_commands[bg_cmd.id] = bg_cmd + return CmdOutputObservation( + content=f"Background command started. To stop it, send a `kill` action with id {bg_cmd.id}", + command_id=bg_cmd.id, + command=command, + exit_code=0 + ) + + def kill_command(self, id: int): + # TODO: get log events before killing + self.background_commands[id].shell.close() + del self.background_commands[id] + + def get_background_obs(self) -> List[CmdOutputObservation]: + obs = [] + for _id, cmd in self.background_commands.items(): + output = cmd.get_logs() + obs.append( + CmdOutputObservation( + content=output, command_id=_id, command=cmd.command + ) + ) + return obs diff --git a/opendevin/lib/actions/__init__.py b/opendevin/lib/actions/__init__.py deleted file mode 100644 index 34f5ce61a75c..000000000000 --- a/opendevin/lib/actions/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .browse import browse -from .write import write -from .read import read - -__all__ = ['run', 'kill', 'browse', 'write', 'read'] diff --git a/opendevin/lib/actions/browse.py b/opendevin/lib/actions/browse.py deleted file mode 100644 index 033fe0fbb32b..000000000000 --- a/opendevin/lib/actions/browse.py +++ /dev/null @@ -1,6 +0,0 @@ -import requests - -def browse(url): - response = requests.get(url) - return response.text - diff --git a/opendevin/lib/actions/read.py b/opendevin/lib/actions/read.py deleted file mode 100644 index 09137533673a..000000000000 --- a/opendevin/lib/actions/read.py +++ /dev/null @@ -1,7 +0,0 @@ -from .util import resolve_path - -def read(base_path, file_path): - file_path = resolve_path(base_path, file_path) - with open(file_path, 'r') as file: - return file.read() - diff --git a/opendevin/lib/actions/util.py b/opendevin/lib/actions/util.py deleted file mode 100644 index c8c10852f674..000000000000 --- a/opendevin/lib/actions/util.py +++ /dev/null @@ -1,10 +0,0 @@ -import os - -# This is the path where the workspace is mounted in the container -# The LLM sometimes returns paths with this prefix, so we need to remove it -PATH_PREFIX = "/workspace/" - -def resolve_path(base_path, file_path): - if file_path.startswith(PATH_PREFIX): - file_path = file_path[len(PATH_PREFIX):] - return os.path.join(base_path, file_path) diff --git a/opendevin/lib/actions/write.py b/opendevin/lib/actions/write.py deleted file mode 100644 index a8c879872de6..000000000000 --- a/opendevin/lib/actions/write.py +++ /dev/null @@ -1,8 +0,0 @@ -from .util import resolve_path - -def write(base_path, file_path, contents): - file_path = resolve_path(base_path, file_path) - with open(file_path, 'w') as file: - file.write(contents) - return "" - diff --git a/opendevin/lib/command_manager.py b/opendevin/lib/command_manager.py deleted file mode 100644 index b3273369f10c..000000000000 --- a/opendevin/lib/command_manager.py +++ /dev/null @@ -1,56 +0,0 @@ -from typing import List - -from opendevin.lib.event import Event -from opendevin.sandbox.sandbox import DockerInteractive - -class BackgroundCommand: - def __init__(self, id: int, command: str, dir: str): - self.command = command - self.id = id - self.shell = DockerInteractive(id=str(id), workspace_dir=dir) - self.shell.execute_in_background(command) - - def get_logs(self): - # TODO: get an exit code if process is exited - return self.shell.read_logs() - -class CommandManager: - def __init__(self, dir): - self.cur_id = 0 - self.directory = dir - self.background_commands = {} - self.shell = DockerInteractive(id="default", workspace_dir=dir) - - def run_command(self, command: str, background=False) -> str: - if background: - return self.run_background(command) - else: - return self.run_immediately(command) - - def run_immediately(self, command: str) -> str: - exit_code, output = self.shell.execute(command) - if exit_code != 0: - raise ValueError('Command failed with exit code ' + str(exit_code) + ': ' + output) - return output - - def run_background(self, command: str) -> str: - bg_cmd = BackgroundCommand(self.cur_id, command, self.directory) - self.cur_id += 1 - self.background_commands[bg_cmd.id] = bg_cmd - return "Background command started. To stop it, send a `kill` action with id " + str(bg_cmd.id) - - def kill_command(self, id: int): - # TODO: get log events before killing - self.background_commands[id].shell.close() - del self.background_commands[id] - - def get_background_events(self) -> List[Event]: - events = [] - for id, cmd in self.background_commands.items(): - output = cmd.get_logs() - events.append(Event('output', { - 'output': output, - 'id': id, - 'command': cmd.command, - })) - return events diff --git a/opendevin/lib/event.py b/opendevin/lib/event.py deleted file mode 100644 index bf938c5b72a3..000000000000 --- a/opendevin/lib/event.py +++ /dev/null @@ -1,93 +0,0 @@ -import opendevin.lib.actions as actions - -ACTION_TYPES = ['initialize', 'start', 'summarize', 'run', 'kill', 'browse', 'read', 'write', 'recall', 'think', 'output', 'error', 'finish'] -RUNNABLE_ACTIONS = ['run', 'kill', 'browse', 'read', 'write', 'recall'] - -class Event: - def __init__(self, action, args, message=None): - if action not in ACTION_TYPES: - raise ValueError('Invalid action type: ' + action) - self.action = action - self.args = args - self.message = message - - def __str__(self): - return self.action + " " + str(self.args) - - def str_truncated(self, max_len=1000): - s = str(self) - if len(s) > max_len: - s = s[:max_len] + '...' - return s - - def to_dict(self): - return { - 'action': self.action, - 'args': self.args - } - - def get_message(self) -> str: - if self.message is not None: - return self.message - if self.action == 'run': - return 'Running command: ' + self.args['command'] - elif self.action == 'kill': - return 'Killing command: ' + self.args['id'] - elif self.action == 'browse': - return 'Browsing: ' + self.args['url'] - elif self.action == 'read': - return 'Reading file: ' + self.args['path'] - elif self.action == 'write': - return 'Writing to file: ' + self.args['path'] - elif self.action == 'recall': - return 'Recalling memory: ' + self.args['query'] - elif self.action == 'think': - return self.args['thought'] - elif self.action == 'output': - return "Got output." - elif self.action == 'error': - return "Got an error: " + self.args['output'] - elif self.action == 'finish': - return "Finished!" - else: - return "" - - def is_runnable(self): - return self.action in RUNNABLE_ACTIONS - - def run(self, agent_controller): - if not self.is_runnable(): - return None - action = 'output' - try: - output = self._run_and_get_output(agent_controller) - except Exception as e: - output = 'Error: ' + str(e) - action = 'error' - out_event = Event(action, {'output': output}) - return out_event - - def _run_and_get_output(self, agent_controller) -> str: - if self.action == 'run': - cmd = self.args['command'] - background = False - if 'background' in self.args and self.args['background']: - background = True - return agent_controller.command_manager.run_command(cmd, background) - if self.action == 'kill': - id = self.args['id'] - return agent_controller.command_manager.kill_command(id) - elif self.action == 'browse': - url = self.args['url'] - return actions.browse(url) - elif self.action == 'read': - path = self.args['path'] - return actions.read(agent_controller.command_manager.directory, path) - elif self.action == 'write': - path = self.args['path'] - contents = self.args['contents'] - return actions.write(agent_controller.command_manager.directory, path, contents) - elif self.action == 'recall': - return agent_controller.agent.search_memory(self.args['query']) - else: - raise ValueError('Invalid action type') diff --git a/opendevin/main.py b/opendevin/main.py index 9fce18d69687..dfca536400c5 100644 --- a/opendevin/main.py +++ b/opendevin/main.py @@ -1,25 +1,54 @@ -from typing import Type import asyncio import argparse +from typing import Type + import agenthub # noqa F401 (we import this to get the agents registered) from opendevin.agent import Agent from opendevin.controller import AgentController if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run an agent with a specific task") - parser.add_argument("-d", "--directory", required=True, type=str, help="The working directory for the agent") - parser.add_argument("-t", "--task", required=True, type=str, help="The task for the agent to perform") - parser.add_argument("-c", "--agent-cls", default="LangchainsAgent", type=str, help="The agent class to use") - parser.add_argument("-m", "--model-name", default="gpt-4-0125-preview", type=str, help="The (litellm) model name to use") + parser.add_argument( + "-d", + "--directory", + required=True, + type=str, + help="The working directory for the agent", + ) + parser.add_argument( + "-t", + "--task", + required=True, + type=str, + help="The task for the agent to perform", + ) + parser.add_argument( + "-c", + "--agent-cls", + default="LangchainsAgent", + type=str, + help="The agent class to use", + ) + parser.add_argument( + "-m", + "--model-name", + default="gpt-4-0125-preview", + type=str, + help="The (litellm) model name to use", + ) + parser.add_argument( + "-i", + "--max-iterations", + default=10, + type=int, + help="The maximum number of iterations to run the agent", + ) args = parser.parse_args() print(f"Running agent {args.agent_cls} (model: {args.model_name}, directory: {args.directory}) with task: \"{args.task}\"") AgentCls: Type[Agent] = Agent.get_cls(args.agent_cls) - agent = AgentCls( - workspace_dir=args.directory, - model_name=args.model_name - ) - controller = AgentController(agent, args.directory) + agent = AgentCls(model_name=args.model_name) + controller = AgentController(agent, workdir=args.directory, max_iterations=args.max_iterations) asyncio.run(controller.start_loop(args.task)) diff --git a/opendevin/observation.py b/opendevin/observation.py new file mode 100644 index 000000000000..03909070810a --- /dev/null +++ b/opendevin/observation.py @@ -0,0 +1,115 @@ +import copy +from typing import List +from dataclasses import dataclass + + +@dataclass +class Observation: + """ + This data class represents an observation of the environment. + """ + + content: str + + def __str__(self) -> str: + return self.content + + def to_dict(self) -> dict: + """Converts the observation to a dictionary.""" + extras = copy.deepcopy(self.__dict__) + extras.pop("content", None) + return { + "observation": self.__class__.__name__, + "content": self.content, + "extras": extras, + "message": self.message, + } + + @property + def message(self) -> str: + """Returns a message describing the observation.""" + return "The agent made an observation." + + +@dataclass +class CmdOutputObservation(Observation): + """ + This data class represents the output of a command. + """ + + command_id: int + command: str + exit_code: int = 0 + + @property + def error(self) -> bool: + return self.exit_code != 0 + + @property + def message(self) -> str: + return f'The agent observed command "{self.command}" executed with exit code {self.exit_code}.' + + +@dataclass +class BrowserOutputObservation(Observation): + """ + This data class represents the output of a browser. + """ + + url: str + + @property + def message(self) -> str: + return "The agent observed the browser output at URL." + + +@dataclass +class UserMessageObservation(Observation): + """ + This data class represents a message sent by the user. + """ + + role: str = "user" + + @property + def message(self) -> str: + return "The agent received a message from the user." + + +@dataclass +class AgentMessageObservation(Observation): + """ + This data class represents a message sent by the agent. + """ + + role: str = "assistant" + + @property + def message(self) -> str: + return "The agent received a message from itself." + + +@dataclass +class AgentRecallObservation(Observation): + """ + This data class represents a list of memories recalled by the agent. + """ + + memories: List[str] + role: str = "assistant" + + @property + def message(self) -> str: + return "The agent recalled memories." + + +@dataclass +class NullObservation(Observation): + """ + This data class represents a null observation. + This is used when the produced action is NOT executable. + """ + + @property + def message(self) -> str: + return "" diff --git a/opendevin/sandbox/sandbox.py b/opendevin/sandbox/sandbox.py index 97d5fdf86ff9..2b49bea19535 100644 --- a/opendevin/sandbox/sandbox.py +++ b/opendevin/sandbox/sandbox.py @@ -48,7 +48,13 @@ def __init__( self.container_name = f"sandbox-{self.instance_id}" self.restart_docker_container() - self.execute('useradd --shell /bin/bash -u {uid} -o -c \"\" -m devin && su devin') + uid = os.getuid() + exit_code, logs = self.container.exec_run([ + '/bin/bash', '-c', + f'useradd --shell /bin/bash -u {uid} -o -c \"\" -m devin' + ], + workdir="/workspace" + ) # regester container cleanup function atexit.register(self.cleanup) @@ -70,12 +76,13 @@ def read_logs(self) -> str: return logs def execute(self, cmd: str) -> Tuple[int, str]: - exit_code, logs = self.container.exec_run(['/bin/bash', '-c', cmd], workdir="/workspace") + # TODO: each execute is not stateful! We need to keep track of the current working directory + exit_code, logs = self.container.exec_run(['su', 'devin', '-c', cmd], workdir="/workspace") return exit_code, logs.decode('utf-8') def execute_in_background(self, cmd: str) -> None: self.log_time = time.time() - result = self.container.exec_run(['/bin/bash', '-c', cmd], socket=True, workdir="/workspace") + result = self.container.exec_run(['su', 'devin', '-c', cmd], socket=True, workdir="/workspace") self.log_generator = result.output # socket.SocketIO self.log_generator._sock.setblocking(0) diff --git a/opendevin/server/session.py b/opendevin/server/session.py index 5d67ccfc4038..dc6675dbc9dd 100644 --- a/opendevin/server/session.py +++ b/opendevin/server/session.py @@ -1,14 +1,42 @@ import os import asyncio -from typing import Optional +from typing import Optional, Dict, Type from fastapi import WebSocketDisconnect from opendevin.agent import Agent from opendevin.controller import AgentController -from opendevin.lib.event import Event -DEFAULT_WORKSPACE_DIR = os.getenv("WORKSPACE_DIR", os.getcwd()) +from opendevin.action import ( + Action, + CmdRunAction, + CmdKillAction, + BrowseURLAction, + FileReadAction, + FileWriteAction, + AgentRecallAction, + AgentThinkAction, + AgentFinishAction, +) +from opendevin.observation import ( + Observation, + UserMessageObservation +) + +# NOTE: this is a temporary solution - but hopefully we can use Action/Observation throughout the codebase +ACTION_TYPE_TO_CLASS: Dict[str, Type[Action]] = { + "run": CmdRunAction, + "kill": CmdKillAction, + "browse": BrowseURLAction, + "read": FileReadAction, + "write": FileWriteAction, + "recall": AgentRecallAction, + "think": AgentThinkAction, + "finish": AgentFinishAction, +} + + +DEFAULT_WORKSPACE_DIR = os.getenv("WORKSPACE_DIR", os.path.join(os.getcwd(), "workspace")) def parse_event(data): if "action" not in data: @@ -20,7 +48,11 @@ def parse_event(data): message = None if "message" in data: message = data["message"] - return Event(action, args, message) + return { + "action": action, + "args": args, + "message": message, + } class Session: def __init__(self, websocket): @@ -57,15 +89,21 @@ async def start_listening(self): if event is None: await self.send_error("Invalid event") continue - if event.action == "initialize": + if event["action"] == "initialize": await self.create_controller(event) - elif event.action == "start": + elif event["action"] == "start": await self.start_task(event) else: if self.controller is None: await self.send_error("No agent started. Please wait a second...") + + elif event["action"] == "chat": + self.controller.add_observation(UserMessageObservation(event["message"])) else: - await self.controller.add_user_event(event) + # TODO: we only need to implement user message for now + # since even Devin does not support having the user taking other + # actions (e.g., edit files) while the agent is running + raise NotImplementedError except WebSocketDisconnect as e: self.websocket = None @@ -83,30 +121,28 @@ async def create_controller(self, start_event=None): model = "gpt-4-0125-preview" if start_event and "model" in start_event.args: model = start_event.args["model"] - + + if not os.path.exists(directory): + print(f"Workspace directory {directory} does not exist. Creating it...") + os.makedirs(directory) + directory = os.path.relpath(directory, os.getcwd()) + AgentCls = Agent.get_cls(agent_cls) - self.agent = AgentCls( - workspace_dir=directory, - model_name=model, - ) + self.agent = AgentCls(model_name=model) self.controller = AgentController(self.agent, directory, callbacks=[self.on_agent_event]) await self.send({"action": "initialize", "message": "Control loop started."}) async def start_task(self, start_event): - if "task" not in start_event.args: + if "task" not in start_event["args"]: await self.send_error("No task specified") return await self.send_message("Starting new task...") - task = start_event.args["task"] + task = start_event["args"]["task"] if self.controller is None: await self.send_error("No agent started. Please wait a second...") return self.agent_task = asyncio.create_task(self.controller.start_loop(task), name="agent loop") - def on_agent_event(self, event): - evt = { - "action": event.action, - "message": event.get_message(), - "args": event.args, - } - asyncio.create_task(self.send(evt), name="send event in callback") + def on_agent_event(self, event: Observation | Action): + event_dict = event.to_dict() + asyncio.create_task(self.send(event_dict), name="send event in callback") diff --git a/opendevin/state.py b/opendevin/state.py new file mode 100644 index 000000000000..d7a6b41ba793 --- /dev/null +++ b/opendevin/state.py @@ -0,0 +1,16 @@ +from dataclasses import dataclass +from typing import List, Tuple + +from opendevin.action import ( + Action, +) +from opendevin.observation import ( + Observation, + CmdOutputObservation, +) + + +@dataclass +class State: + background_commands_obs: List[CmdOutputObservation] + updated_info: List[Tuple[Action, Observation]]