Tensorflow Object Detection API reads data using the TFRecord file format. Two
sample scripts (create_pascal_tf_record.py
and create_pet_tf_record.py
) are
provided to convert from the PASCAL VOC dataset and Oxford-IIIT Pet dataset to
TFRecords.
The raw 2012 PASCAL VOC data set can be downloaded
here.
Extract the tar file and run the create_pascal_tf_record
script:
# From tensorflow/models/object_detection
tar -xvf VOCtrainval_11-May-2012.tar
./create_pascal_tf_record --data_dir=VOCdevkit \
--year=VOC2012 --set=train --output_path=pascal_train.record
./create_pascal_tf_record --data_dir=/home/user/VOCdevkit \
--year=VOC2012 --set=val --output_path=pascal_val.record
You should end up with two TFRecord files named pascal_train.record and pascal_val.record in the tensorflow/models/object_detection directory.
The label map for the PASCAL VOC data set can be found at data/pascal_label_map.pbtxt.
The Oxford-IIIT Pet data set can be downloaded from
their website. Extract the tar
file and run the create_pet_tf_record
script to generate TFRecords.
# From tensorflow/models/object_detection
tar -xvf annotations.tar.gz
tar -xvf images.tar.gz
./create_pet_tf_record --data_dir=`pwd` --output_dir=`pwd`
You should end up with two TFRecord files named pet_train.record and pet_val.record in the tensorflow/models/object_detection directory.
The label map for the Pet dataset can be found at data/pet_label_map.pbtxt.