-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocessing.py
409 lines (312 loc) · 15.2 KB
/
processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!/usr/bin/env python
# processing.py -- various audio processing functions
# Copyright (C) 2008 MUSIC TECHNOLOGY GROUP (MTG)
# UNIVERSITAT POMPEU FABRA
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Authors:
# Bram de Jong <bram.dejong at domain.com where domain in gmail>
from PIL import ImageFilter, ImageChops, Image, ImageDraw, ImageColor
from functools import partial
from time import time
import math
import numpy
import os
import re
import scikits.audiolab as audiolab
import subprocess
import sys
class AudioProcessingException(Exception):
pass
class TestAudioFile(object):
"""A class that mimics audiolab.sndfile but generates noise instead of reading
a wave file. Additionally it can be told to have a "broken" header and thus crashing
in the middle of the file. Also useful for testing ultra-short files of 20 samples."""
def __init__(self, num_frames, has_broken_header=False):
self.seekpoint = 0
self.nframes = num_frames
self.samplerate = 44100
self.channels = 1
self.has_broken_header = has_broken_header
def seek(self, seekpoint):
self.seekpoint = seekpoint
def read_frames(self, frames_to_read):
if self.has_broken_header and self.seekpoint + frames_to_read > self.num_frames / 2:
raise RuntimeError()
num_frames_left = self.num_frames - self.seekpoint
will_read = num_frames_left if num_frames_left < frames_to_read else frames_to_read
self.seekpoint += will_read
return numpy.random.random(will_read)*2 - 1
def get_max_level(filename):
max_value = 0
buffer_size = 4096
audio_file = audiolab.Sndfile(filename, 'r')
n_samples_left = audio_file.nframes
while n_samples_left:
to_read = min(buffer_size, n_samples_left)
try:
samples = audio_file.read_frames(to_read)
except RuntimeError:
# this can happen with a broken header
break
# convert to mono by selecting left channel only
if audio_file.channels > 1:
samples = samples[:,0]
max_value = max(max_value, numpy.abs(samples).max())
n_samples_left -= to_read
audio_file.close()
return max_value
class AudioProcessor(object):
"""
The audio processor processes chunks of audio and calculates the spectral centroid and the peak
samples in that chunk of audio.
"""
def __init__(self, input_filename, fft_size, window_function=numpy.hanning):
max_level = get_max_level(input_filename)
self.audio_file = audiolab.Sndfile(input_filename, 'r')
self.fft_size = fft_size
self.window = window_function(self.fft_size)
self.spectrum_range = None
self.lower = 100
self.higher = 22050
self.lower_log = math.log10(self.lower)
self.higher_log = math.log10(self.higher)
self.clip = lambda val, low, high: min(high, max(low, val))
# figure out what the maximum value is for an FFT doing the FFT of a DC signal
fft = numpy.fft.rfft(numpy.ones(fft_size) * self.window)
max_fft = (numpy.abs(fft)).max()
# set the scale to normalized audio and normalized FFT
self.scale = 1.0/max_level/max_fft if max_level > 0 else 1
def read(self, start, size, resize_if_less=False):
""" read size samples starting at start, if resize_if_less is True and less than size
samples are read, resize the array to size and fill with zeros """
# number of zeros to add to start and end of the buffer
add_to_start = 0
add_to_end = 0
if start < 0:
# the first FFT window starts centered around zero
if size + start <= 0:
return numpy.zeros(size) if resize_if_less else numpy.array([])
else:
self.audio_file.seek(0)
add_to_start = -start # remember: start is negative!
to_read = size + start
if to_read > self.audio_file.nframes:
add_to_end = to_read - self.audio_file.nframes
to_read = self.audio_file.nframes
else:
self.audio_file.seek(start)
to_read = size
if start + to_read >= self.audio_file.nframes:
to_read = self.audio_file.nframes - start
add_to_end = size - to_read
try:
samples = self.audio_file.read_frames(to_read)
except RuntimeError:
# this can happen for wave files with broken headers...
return numpy.zeros(size) if resize_if_less else numpy.zeros(2)
# convert to mono by selecting left channel only
if self.audio_file.channels > 1:
samples = samples[:,0]
if resize_if_less and (add_to_start > 0 or add_to_end > 0):
if add_to_start > 0:
samples = numpy.concatenate((numpy.zeros(add_to_start), samples), axis=1)
if add_to_end > 0:
samples = numpy.resize(samples, size)
samples[size - add_to_end:] = 0
return samples
def spectral_centroid(self, seek_point, spec_range=110.0):
""" starting at seek_point read fft_size samples, and calculate the spectral centroid """
samples = self.read(seek_point - self.fft_size/2, self.fft_size, True)
samples *= self.window
fft = numpy.fft.rfft(samples)
spectrum = self.scale * numpy.abs(fft) # normalized abs(FFT) between 0 and 1
length = numpy.float64(spectrum.shape[0])
spectrum[:2] = 0 # DC offset should not be included
energy = spectrum.sum()
if energy < 1e-60:
spectral_centroid = -1 # Silence
else:
# calculate the spectral centroid
if self.spectrum_range == None: #Always is?
self.spectrum_range = numpy.arange(length)
# Compute the spectral centroid in hertz
spectral_centroid = (spectrum * self.spectrum_range).sum() / (energy * (length - 1)) * self.audio_file.samplerate * 0.5
# Clip centroid to desired frequency range, apply log so it's
# proportional to human perception of frequency, and then scale
# desired frequency range from 0 to 1
spectral_centroid = (math.log10(self.clip(spectral_centroid, self.lower, self.higher)) - self.lower_log) / (self.higher_log - self.lower_log)
return (spectral_centroid)
def peaks(self, start_seek, end_seek):
""" read all samples between start_seek and end_seek, then find the minimum and maximum peak
in that range. Returns that pair in the order they were found. So if min was found first,
it returns (min, max) else the other way around. """
# larger blocksizes are faster but take more mem...
# Aha, Watson, a clue, a tradeof!
block_size = 4096
max_index = -1
max_value = -1
min_index = -1
min_value = 1
if end_seek > self.audio_file.nframes:
end_seek = self.audio_file.nframes
if block_size > end_seek - start_seek:
block_size = end_seek - start_seek
for i in range(start_seek, end_seek, block_size):
samples = self.read(i, block_size)
local_max_index = numpy.argmax(samples)
local_max_value = samples[local_max_index]
if local_max_value > max_value:
max_value = local_max_value
max_index = local_max_index
local_min_index = numpy.argmin(samples)
local_min_value = samples[local_min_index]
if local_min_value < min_value:
min_value = local_min_value
min_index = local_min_index
return (min_value, max_value) if min_index < max_index else (max_value, min_value)
def interpolate_colors(colors, flat=False, num_colors=256):
""" given a list of colors, create a larger list of colors linearly interpolating
the first one. If flatten is True a list of numbers will be returned. If
False, a list of (r,g,b) tuples. num_colors is the number of colors wanted
in the final list """
palette = []
for i in range(num_colors):
index = (i * (len(colors) - 1))/(num_colors - 1.0) # same as numpy.linspace(0,len(colors)-1,num_colors)
index_int = int(index)
alpha = index - float(index_int)
if alpha > 0:
r = (1.0 - alpha) * colors[index_int][0] + alpha * colors[index_int + 1][0]
g = (1.0 - alpha) * colors[index_int][1] + alpha * colors[index_int + 1][1]
b = (1.0 - alpha) * colors[index_int][2] + alpha * colors[index_int + 1][2]
else:
r = (1.0 - alpha) * colors[index_int][0]
g = (1.0 - alpha) * colors[index_int][1]
b = (1.0 - alpha) * colors[index_int][2]
if flat:
palette.extend((int(r), int(g), int(b)))
else:
palette.append((int(r), int(g), int(b)))
return palette
def desaturate(rgb, amount):
"""
desaturate colors by amount
amount == 0, no change
amount == 1, grey
"""
luminosity = sum(rgb) / 3.0
desat = lambda color: color - amount * (color - luminosity)
return tuple(map(int, map(desat, rgb)))
class WaveformImage(object):
"""
Given peaks and spectral centroids from the AudioProcessor, this class will construct
a wavefile image which can be saved as PNG.
"""
def __init__(self, image_width, image_height, palette=1):
if image_height % 2 == 0:
raise AudioProcessingException, "Height should be an odd number: images look much better this way"
if palette == 1:
background_color = (0,0,0)
colors = [
(50,0,200),
(0,220,80),
(255,224,0),
(255,70,0),
]
elif palette == 2:
background_color = (0,0,0)
colors = [self.color_from_value(value/29.0) for value in range(0,30)]
elif palette == 3:
background_color = (213, 217, 221)
colors = map( partial(desaturate, amount=0.7), [
(50,0,200),
(0,220,80),
(255,224,0),
])
elif palette == 4:
background_color = (213, 217, 221)
colors = map( partial(desaturate, amount=0.8), [self.color_from_value(value/29.0) for value in range(0,30)])
self.image = Image.new("RGB", (image_width, image_height), background_color)
self.image_width = image_width
self.image_height = image_height
self.draw = ImageDraw.Draw(self.image)
self.previous_x, self.previous_y = None, None
self.color_lookup = interpolate_colors(colors)
self.pix = self.image.load()
def color_from_value(self, value):
""" given a value between 0 and 1, return an (r,g,b) tuple """
return ImageColor.getrgb("hsl(%d,%d%%,%d%%)" % (int( (1.0 - value) * 360 ), 80, 50))
def draw_peaks(self, x, peaks, spectral_centroid):
""" draw 2 peaks at x using the spectral_centroid for color """
y1 = self.image_height * 0.5 - peaks[0] * (self.image_height - 4) * 0.5
y2 = self.image_height * 0.5 - peaks[1] * (self.image_height - 4) * 0.5
if spectral_centroid == -1:
# Dark gray for silence
line_color = (50, 50, 50)
else:
line_color = self.color_lookup[int(spectral_centroid*255.0)]
if self.previous_y != None:
self.draw.line([self.previous_x, self.previous_y, x, y1, x, y2], line_color)
else:
self.draw.line([x, y1, x, y2], line_color)
self.previous_x, self.previous_y = x, y2
self.draw_anti_aliased_pixels(x, y1, y2, line_color)
def draw_anti_aliased_pixels(self, x, y1, y2, color):
""" vertical anti-aliasing at y1 and y2 """
y_max = max(y1, y2)
y_max_int = int(y_max)
alpha = y_max - y_max_int
if alpha > 0.0 and alpha < 1.0 and y_max_int + 1 < self.image_height:
current_pix = self.pix[x, y_max_int + 1]
r = int((1-alpha)*current_pix[0] + alpha*color[0])
g = int((1-alpha)*current_pix[1] + alpha*color[1])
b = int((1-alpha)*current_pix[2] + alpha*color[2])
self.pix[x, y_max_int + 1] = (r,g,b)
y_min = min(y1, y2)
y_min_int = int(y_min)
alpha = 1.0 - (y_min - y_min_int)
if alpha > 0.0 and alpha < 1.0 and y_min_int - 1 >= 0:
current_pix = self.pix[x, y_min_int - 1]
r = int((1-alpha)*current_pix[0] + alpha*color[0])
g = int((1-alpha)*current_pix[1] + alpha*color[1])
b = int((1-alpha)*current_pix[2] + alpha*color[2])
self.pix[x, y_min_int - 1] = (r,g,b)
def save(self, filename):
# draw a zero "zero" line
a = 25
for x in range(self.image_width):
self.pix[x, self.image_height/2] = tuple(map(lambda p: p+a, self.pix[x, self.image_height/2]))
self.image.save(filename, format = 'png')
def create_wave_images(input_filename, output_filename_w, output_filename_s, image_width, image_height, fft_size, progress_callback=None):
"""
Utility function for creating both wavefile and spectrum images from an audio input file.
"""
start_time = time()
processor = AudioProcessor(input_filename, fft_size, numpy.hanning)
samples_per_pixel = processor.audio_file.nframes / float(image_width)
waveform = WaveformImage(image_width, image_height)
for x in range(image_width):
if time() - start_time > 30: # Kludge to crash if it takes longer than 10 seconds
raise Exception("Took too long")
if progress_callback and x % (image_width/10) == 0:
progress_callback((x*100)/image_width)
seek_point = int(x * samples_per_pixel)
next_seek_point = int((x + 1) * samples_per_pixel)
spectral_centroid = processor.spectral_centroid(seek_point)
peaks = processor.peaks(seek_point, next_seek_point)
waveform.draw_peaks(x, peaks, spectral_centroid)
if progress_callback:
progress_callback(100)
waveform.save(output_filename_w)