-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathanalyze.c
1124 lines (1058 loc) · 38.9 KB
/
analyze.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
** 2005 July 8
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** The ANALYZE command gather statistics about the content of tables
** and indices. These statistics are made available to the query planner
** to help it make better decisions about how to perform queries.
**
** The following system tables are or have been supported:
**
** CREATE TABLE sqlite_stat1(tbl, idx, stat);
** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
**
** Additional tables might be added in future releases of SQLite.
** The sqlite_stat2 table is not created or used unless the SQLite version
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
** The sqlite_stat2 table is superceded by sqlite_stat3, which is only
** created and used by SQLite versions 3.7.9 and later and with
** SQLITE_ENABLE_STAT3 defined. The fucntionality of sqlite_stat3
** is a superset of sqlite_stat2.
**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column. The tbl column is the name of the table to
** which the index belongs. In each such row, the stat column will be
** a string consisting of a list of integers. The first integer in this
** list is the number of rows in the index and in the table. The second
** integer is the average number of rows in the index that have the same
** value in the first column of the index. The third integer is the average
** number of rows in the index that have the same value for the first two
** columns. The N-th integer (for N>1) is the average number of rows in
** the index which have the same value for the first N-1 columns. For
** a K-column index, there will be K+1 integers in the stat column. If
** the index is unique, then the last integer will be 1.
**
** The list of integers in the stat column can optionally be followed
** by the keyword "unordered". The "unordered" keyword, if it is present,
** must be separated from the last integer by a single space. If the
** "unordered" keyword is present, then the query planner assumes that
** the index is unordered and will not use the index for a range query.
**
** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
** column contains a single integer which is the (estimated) number of
** rows in the table identified by sqlite_stat1.tbl.
**
** Format of sqlite_stat2:
**
** The sqlite_stat2 is only created and is only used if SQLite is compiled
** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
** 3.6.18 and 3.7.8. The "stat2" table contains additional information
** about the distribution of keys within an index. The index is identified by
** the "idx" column and the "tbl" column is the name of the table to which
** the index belongs. There are usually 10 rows in the sqlite_stat2
** table for each index.
**
** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
** inclusive are samples of the left-most key value in the index taken at
** evenly spaced points along the index. Let the number of samples be S
** (10 in the standard build) and let C be the number of rows in the index.
** Then the sampled rows are given by:
**
** rownumber = (i*C*2 + C)/(S*2)
**
** For i between 0 and S-1. Conceptually, the index space is divided into
** S uniform buckets and the samples are the middle row from each bucket.
**
** The format for sqlite_stat2 is recorded here for legacy reference. This
** version of SQLite does not support sqlite_stat2. It neither reads nor
** writes the sqlite_stat2 table. This version of SQLite only supports
** sqlite_stat3.
**
** Format for sqlite_stat3:
**
** The sqlite_stat3 is an enhancement to sqlite_stat2. A new name is
** used to avoid compatibility problems.
**
** The format of the sqlite_stat3 table is similar to the format of
** the sqlite_stat2 table. There are multiple entries for each index.
** The idx column names the index and the tbl column is the table of the
** index. If the idx and tbl columns are the same, then the sample is
** of the INTEGER PRIMARY KEY. The sample column is a value taken from
** the left-most column of the index. The nEq column is the approximate
** number of entires in the index whose left-most column exactly matches
** the sample. nLt is the approximate number of entires whose left-most
** column is less than the sample. The nDLt column is the approximate
** number of distinct left-most entries in the index that are less than
** the sample.
**
** Future versions of SQLite might change to store a string containing
** multiple integers values in the nDLt column of sqlite_stat3. The first
** integer will be the number of prior index entires that are distinct in
** the left-most column. The second integer will be the number of prior index
** entries that are distinct in the first two columns. The third integer
** will be the number of prior index entries that are distinct in the first
** three columns. And so forth. With that extension, the nDLt field is
** similar in function to the sqlite_stat1.stat field.
**
** There can be an arbitrary number of sqlite_stat3 entries per index.
** The ANALYZE command will typically generate sqlite_stat3 tables
** that contain between 10 and 40 samples which are distributed across
** the key space, though not uniformly, and which include samples with
** largest possible nEq values.
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"
/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is
** opened for writing using cursor (iStatCur+1)
**
** If the sqlite_stat1 tables does not previously exist, it is created.
** Similarly, if the sqlite_stat3 table does not exist and the library
** is compiled with SQLITE_ENABLE_STAT3 defined, it is created.
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
Parse *pParse, /* Parsing context */
int iDb, /* The database we are looking in */
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
const char *zWhere, /* Delete entries for this table or index */
const char *zWhereType /* Either "tbl" or "idx" */
){
static const struct {
const char *zName;
const char *zCols;
} aTable[] = {
{ "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT3
{ "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
#endif
};
int aRoot[] = {0, 0};
u8 aCreateTbl[] = {0, 0};
int i;
sqlite3 *db = pParse->db;
Db *pDb;
Vdbe *v = sqlite3GetVdbe(pParse);
if( v==0 ) return;
assert( sqlite3BtreeHoldsAllMutexes(db) );
assert( sqlite3VdbeDb(v)==db );
pDb = &db->aDb[iDb];
/* Create new statistic tables if they do not exist, or clear them
** if they do already exist.
*/
for(i=0; i<ArraySize(aTable); i++){
const char *zTab = aTable[i].zName;
Table *pStat;
if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
/* The sqlite_stat[12] table does not exist. Create it. Note that a
** side-effect of the CREATE TABLE statement is to leave the rootpage
** of the new table in register pParse->regRoot. This is important
** because the OpenWrite opcode below will be needing it. */
sqlite3NestedParse(pParse,
"CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
);
aRoot[i] = pParse->regRoot;
aCreateTbl[i] = OPFLAG_P2ISREG;
}else{
/* The table already exists. If zWhere is not NULL, delete all entries
** associated with the table zWhere. If zWhere is NULL, delete the
** entire contents of the table. */
aRoot[i] = pStat->tnum;
sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
if( zWhere ){
sqlite3NestedParse(pParse,
"DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
);
}else{
/* The sqlite_stat[12] table already exists. Delete all rows. */
sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
}
}
}
/* Open the sqlite_stat[13] tables for writing. */
for(i=0; i<ArraySize(aTable); i++){
sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
sqlite3VdbeChangeP5(v, aCreateTbl[i]);
}
}
/*
** Recommended number of samples for sqlite_stat3
*/
#ifndef SQLITE_STAT3_SAMPLES
# define SQLITE_STAT3_SAMPLES 24
#endif
/*
** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat3Accum Stat3Accum;
struct Stat3Accum {
tRowcnt nRow; /* Number of rows in the entire table */
tRowcnt nPSample; /* How often to do a periodic sample */
int iMin; /* Index of entry with minimum nEq and hash */
int mxSample; /* Maximum number of samples to accumulate */
int nSample; /* Current number of samples */
u32 iPrn; /* Pseudo-random number used for sampling */
struct Stat3Sample {
i64 iRowid; /* Rowid in main table of the key */
tRowcnt nEq; /* sqlite_stat3.nEq */
tRowcnt nLt; /* sqlite_stat3.nLt */
tRowcnt nDLt; /* sqlite_stat3.nDLt */
u8 isPSample; /* True if a periodic sample */
u32 iHash; /* Tiebreaker hash */
} *a; /* An array of samples */
};
#ifdef SQLITE_ENABLE_STAT3
/*
** Implementation of the stat3_init(C,S) SQL function. The two parameters
** are the number of rows in the table or index (C) and the number of samples
** to accumulate (S).
**
** This routine allocates the Stat3Accum object.
**
** The return value is the Stat3Accum object (P).
*/
static void stat3Init(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Stat3Accum *p;
tRowcnt nRow;
int mxSample;
int n;
UNUSED_PARAMETER(argc);
nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
mxSample = sqlite3_value_int(argv[1]);
n = sizeof(*p) + sizeof(p->a[0])*mxSample;
p = sqlite3MallocZero( n );
if( p==0 ){
sqlite3_result_error_nomem(context);
return;
}
p->a = (struct Stat3Sample*)&p[1];
p->nRow = nRow;
p->mxSample = mxSample;
p->nPSample = p->nRow/(mxSample/3+1) + 1;
sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}
static const FuncDef stat3InitFuncdef = {
2, /* nArg */
SQLITE_UTF8, /* iPrefEnc */
0, /* flags */
0, /* pUserData */
0, /* pNext */
stat3Init, /* xFunc */
0, /* xStep */
0, /* xFinalize */
"stat3_init", /* zName */
0, /* pHash */
0 /* pDestructor */
};
/*
** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function. The
** arguments describe a single key instance. This routine makes the
** decision about whether or not to retain this key for the sqlite_stat3
** table.
**
** The return value is NULL.
*/
static void stat3Push(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
tRowcnt nEq = sqlite3_value_int64(argv[0]);
tRowcnt nLt = sqlite3_value_int64(argv[1]);
tRowcnt nDLt = sqlite3_value_int64(argv[2]);
i64 rowid = sqlite3_value_int64(argv[3]);
u8 isPSample = 0;
u8 doInsert = 0;
int iMin = p->iMin;
struct Stat3Sample *pSample;
int i;
u32 h;
UNUSED_PARAMETER(context);
UNUSED_PARAMETER(argc);
if( nEq==0 ) return;
h = p->iPrn = p->iPrn*1103515245 + 12345;
if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
doInsert = isPSample = 1;
}else if( p->nSample<p->mxSample ){
doInsert = 1;
}else{
if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
doInsert = 1;
}
}
if( !doInsert ) return;
if( p->nSample==p->mxSample ){
assert( p->nSample - iMin - 1 >= 0 );
memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
pSample = &p->a[p->nSample-1];
}else{
pSample = &p->a[p->nSample++];
}
pSample->iRowid = rowid;
pSample->nEq = nEq;
pSample->nLt = nLt;
pSample->nDLt = nDLt;
pSample->iHash = h;
pSample->isPSample = isPSample;
/* Find the new minimum */
if( p->nSample==p->mxSample ){
pSample = p->a;
i = 0;
while( pSample->isPSample ){
i++;
pSample++;
assert( i<p->nSample );
}
nEq = pSample->nEq;
h = pSample->iHash;
iMin = i;
for(i++, pSample++; i<p->nSample; i++, pSample++){
if( pSample->isPSample ) continue;
if( pSample->nEq<nEq
|| (pSample->nEq==nEq && pSample->iHash<h)
){
iMin = i;
nEq = pSample->nEq;
h = pSample->iHash;
}
}
p->iMin = iMin;
}
}
static const FuncDef stat3PushFuncdef = {
5, /* nArg */
SQLITE_UTF8, /* iPrefEnc */
0, /* flags */
0, /* pUserData */
0, /* pNext */
stat3Push, /* xFunc */
0, /* xStep */
0, /* xFinalize */
"stat3_push", /* zName */
0, /* pHash */
0 /* pDestructor */
};
/*
** Implementation of the stat3_get(P,N,...) SQL function. This routine is
** used to query the results. Content is returned for the Nth sqlite_stat3
** row where N is between 0 and S-1 and S is the number of samples. The
** value returned depends on the number of arguments.
**
** argc==2 result: rowid
** argc==3 result: nEq
** argc==4 result: nLt
** argc==5 result: nDLt
*/
static void stat3Get(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int n = sqlite3_value_int(argv[1]);
Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);
assert( p!=0 );
if( p->nSample<=n ) return;
switch( argc ){
case 2: sqlite3_result_int64(context, p->a[n].iRowid); break;
case 3: sqlite3_result_int64(context, p->a[n].nEq); break;
case 4: sqlite3_result_int64(context, p->a[n].nLt); break;
default: sqlite3_result_int64(context, p->a[n].nDLt); break;
}
}
static const FuncDef stat3GetFuncdef = {
-1, /* nArg */
SQLITE_UTF8, /* iPrefEnc */
0, /* flags */
0, /* pUserData */
0, /* pNext */
stat3Get, /* xFunc */
0, /* xStep */
0, /* xFinalize */
"stat3_get", /* zName */
0, /* pHash */
0 /* pDestructor */
};
#endif /* SQLITE_ENABLE_STAT3 */
/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
Parse *pParse, /* Parser context */
Table *pTab, /* Table whose indices are to be analyzed */
Index *pOnlyIdx, /* If not NULL, only analyze this one index */
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
int iMem /* Available memory locations begin here */
){
sqlite3 *db = pParse->db; /* Database handle */
Index *pIdx; /* An index to being analyzed */
int iIdxCur; /* Cursor open on index being analyzed */
Vdbe *v; /* The virtual machine being built up */
int i; /* Loop counter */
int topOfLoop; /* The top of the loop */
int endOfLoop; /* The end of the loop */
int jZeroRows = -1; /* Jump from here if number of rows is zero */
int iDb; /* Index of database containing pTab */
int regTabname = iMem++; /* Register containing table name */
int regIdxname = iMem++; /* Register containing index name */
int regStat1 = iMem++; /* The stat column of sqlite_stat1 */
#ifdef SQLITE_ENABLE_STAT3
int regNumEq = regStat1; /* Number of instances. Same as regStat1 */
int regNumLt = iMem++; /* Number of keys less than regSample */
int regNumDLt = iMem++; /* Number of distinct keys less than regSample */
int regSample = iMem++; /* The next sample value */
int regRowid = regSample; /* Rowid of a sample */
int regAccum = iMem++; /* Register to hold Stat3Accum object */
int regLoop = iMem++; /* Loop counter */
int regCount = iMem++; /* Number of rows in the table or index */
int regTemp1 = iMem++; /* Intermediate register */
int regTemp2 = iMem++; /* Intermediate register */
int once = 1; /* One-time initialization */
int shortJump = 0; /* Instruction address */
int iTabCur = pParse->nTab++; /* Table cursor */
#endif
int regCol = iMem++; /* Content of a column in analyzed table */
int regRec = iMem++; /* Register holding completed record */
int regTemp = iMem++; /* Temporary use register */
int regNewRowid = iMem++; /* Rowid for the inserted record */
v = sqlite3GetVdbe(pParse);
if( v==0 || NEVER(pTab==0) ){
return;
}
if( pTab->tnum==0 ){
/* Do not gather statistics on views or virtual tables */
return;
}
if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){
/* Do not gather statistics on system tables */
return;
}
assert( sqlite3BtreeHoldsAllMutexes(db) );
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert( iDb>=0 );
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
#ifndef SQLITE_OMIT_AUTHORIZATION
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
db->aDb[iDb].zName ) ){
return;
}
#endif
/* Establish a read-lock on the table at the shared-cache level. */
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
iIdxCur = pParse->nTab++;
sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int nCol;
KeyInfo *pKey;
int addrIfNot = 0; /* address of OP_IfNot */
int *aChngAddr; /* Array of jump instruction addresses */
if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
nCol = pIdx->nColumn;
aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
if( aChngAddr==0 ) continue;
pKey = sqlite3IndexKeyinfo(pParse, pIdx);
if( iMem+1+(nCol*2)>pParse->nMem ){
pParse->nMem = iMem+1+(nCol*2);
}
/* Open a cursor to the index to be analyzed. */
assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
(char *)pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIdx->zName));
/* Populate the register containing the index name. */
sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
#ifdef SQLITE_ENABLE_STAT3
if( once ){
once = 0;
sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
}
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);
sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
(char*)&stat3InitFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 2);
#endif /* SQLITE_ENABLE_STAT3 */
/* The block of memory cells initialized here is used as follows.
**
** iMem:
** The total number of rows in the table.
**
** iMem+1 .. iMem+nCol:
** Number of distinct entries in index considering the
** left-most N columns only, where N is between 1 and nCol,
** inclusive.
**
** iMem+nCol+1 .. Mem+2*nCol:
** Previous value of indexed columns, from left to right.
**
** Cells iMem through iMem+nCol are initialized to 0. The others are
** initialized to contain an SQL NULL.
*/
for(i=0; i<=nCol; i++){
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
}
for(i=0; i<nCol; i++){
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
}
/* Start the analysis loop. This loop runs through all the entries in
** the index b-tree. */
endOfLoop = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
topOfLoop = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); /* Increment row counter */
for(i=0; i<nCol; i++){
CollSeq *pColl;
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
if( i==0 ){
/* Always record the very first row */
addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
}
assert( pIdx->azColl!=0 );
assert( pIdx->azColl[i]!=0 );
pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
(char*)pColl, P4_COLLSEQ);
sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
VdbeComment((v, "jump if column %d changed", i));
#ifdef SQLITE_ENABLE_STAT3
if( i==0 ){
sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
VdbeComment((v, "incr repeat count"));
}
#endif
}
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
for(i=0; i<nCol; i++){
sqlite3VdbeJumpHere(v, aChngAddr[i]); /* Set jump dest for the OP_Ne */
if( i==0 ){
sqlite3VdbeJumpHere(v, addrIfNot); /* Jump dest for OP_IfNot */
#ifdef SQLITE_ENABLE_STAT3
sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
(char*)&stat3PushFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 5);
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
#endif
}
sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
}
sqlite3DbFree(db, aChngAddr);
/* Always jump here after updating the iMem+1...iMem+1+nCol counters */
sqlite3VdbeResolveLabel(v, endOfLoop);
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
#ifdef SQLITE_ENABLE_STAT3
sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
(char*)&stat3PushFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 5);
sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
shortJump =
sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
(char*)&stat3GetFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 2);
sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
(char*)&stat3GetFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 3);
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
(char*)&stat3GetFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 4);
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
(char*)&stat3GetFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 5);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
sqlite3VdbeJumpHere(v, shortJump+2);
#endif
/* Store the results in sqlite_stat1.
**
** The result is a single row of the sqlite_stat1 table. The first
** two columns are the names of the table and index. The third column
** is a string composed of a list of integer statistics about the
** index. The first integer in the list is the total number of entries
** in the index. There is one additional integer in the list for each
** column of the table. This additional integer is a guess of how many
** rows of the table the index will select. If D is the count of distinct
** values and K is the total number of rows, then the integer is computed
** as:
**
** I = (K+D-1)/D
**
** If K==0 then no entry is made into the sqlite_stat1 table.
** If K>0 then it is always the case the D>0 so division by zero
** is never possible.
*/
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
if( jZeroRows<0 ){
jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
}
for(i=0; i<nCol; i++){
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
}
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
}
/* If the table has no indices, create a single sqlite_stat1 entry
** containing NULL as the index name and the row count as the content.
*/
if( pTab->pIndex==0 ){
sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
VdbeComment((v, "%s", pTab->zName));
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
}else{
sqlite3VdbeJumpHere(v, jZeroRows);
jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
}
sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
if( pParse->nMem<regRec ) pParse->nMem = regRec;
sqlite3VdbeJumpHere(v, jZeroRows);
}
/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
Vdbe *v = sqlite3GetVdbe(pParse);
if( v ){
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
}
}
/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){
sqlite3 *db = pParse->db;
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
HashElem *k;
int iStatCur;
int iMem;
sqlite3BeginWriteOperation(pParse, 0, iDb);
iStatCur = pParse->nTab;
pParse->nTab += 3;
openStatTable(pParse, iDb, iStatCur, 0, 0);
iMem = pParse->nMem+1;
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
Table *pTab = (Table*)sqliteHashData(k);
analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
}
loadAnalysis(pParse, iDb);
}
/*
** Generate code that will do an analysis of a single table in
** a database. If pOnlyIdx is not NULL then it is a single index
** in pTab that should be analyzed.
*/
static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
int iDb;
int iStatCur;
assert( pTab!=0 );
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
sqlite3BeginWriteOperation(pParse, 0, iDb);
iStatCur = pParse->nTab;
pParse->nTab += 3;
if( pOnlyIdx ){
openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
}else{
openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
}
analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
loadAnalysis(pParse, iDb);
}
/*
** Generate code for the ANALYZE command. The parser calls this routine
** when it recognizes an ANALYZE command.
**
** ANALYZE -- 1
** ANALYZE <database> -- 2
** ANALYZE ?<database>.?<tablename> -- 3
**
** Form 1 causes all indices in all attached databases to be analyzed.
** Form 2 analyzes all indices the single database named.
** Form 3 analyzes all indices associated with the named table.
*/
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
sqlite3 *db = pParse->db;
int iDb;
int i;
char *z, *zDb;
Table *pTab;
Index *pIdx;
Token *pTableName;
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
return;
}
assert( pName2!=0 || pName1==0 );
if( pName1==0 ){
/* Form 1: Analyze everything */
for(i=0; i<db->nDb; i++){
if( i==1 ) continue; /* Do not analyze the TEMP database */
analyzeDatabase(pParse, i);
}
}else if( pName2->n==0 ){
/* Form 2: Analyze the database or table named */
iDb = sqlite3FindDb(db, pName1);
if( iDb>=0 ){
analyzeDatabase(pParse, iDb);
}else{
z = sqlite3NameFromToken(db, pName1);
if( z ){
if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
analyzeTable(pParse, pIdx->pTable, pIdx);
}else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
analyzeTable(pParse, pTab, 0);
}
sqlite3DbFree(db, z);
}
}
}else{
/* Form 3: Analyze the fully qualified table name */
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
if( iDb>=0 ){
zDb = db->aDb[iDb].zName;
z = sqlite3NameFromToken(db, pTableName);
if( z ){
if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
analyzeTable(pParse, pIdx->pTable, pIdx);
}else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
analyzeTable(pParse, pTab, 0);
}
sqlite3DbFree(db, z);
}
}
}
}
/*
** Used to pass information from the analyzer reader through to the
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
struct analysisInfo {
sqlite3 *db;
const char *zDatabase;
};
/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.
**
** argv[0] = name of the table
** argv[1] = name of the index (might be NULL)
** argv[2] = results of analysis - on integer for each column
**
** Entries for which argv[1]==NULL simply record the number of rows in
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
analysisInfo *pInfo = (analysisInfo*)pData;
Index *pIndex;
Table *pTable;
int i, c, n;
tRowcnt v;
const char *z;
assert( argc==3 );
UNUSED_PARAMETER2(NotUsed, argc);
if( argv==0 || argv[0]==0 || argv[2]==0 ){
return 0;
}
pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
if( pTable==0 ){
return 0;
}
if( argv[1] ){
pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
}else{
pIndex = 0;
}
n = pIndex ? pIndex->nColumn : 0;
z = argv[2];
for(i=0; *z && i<=n; i++){
v = 0;
while( (c=z[0])>='0' && c<='9' ){
v = v*10 + c - '0';
z++;
}
if( i==0 ) pTable->nRowEst = v;
if( pIndex==0 ) break;
pIndex->aiRowEst[i] = v;
if( *z==' ' ) z++;
if( strcmp(z, "unordered")==0 ){
pIndex->bUnordered = 1;
break;
}
}
return 0;
}
/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT3
if( pIdx->aSample ){
int j;
for(j=0; j<pIdx->nSample; j++){
IndexSample *p = &pIdx->aSample[j];
if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
sqlite3DbFree(db, p->u.z);
}
}
sqlite3DbFree(db, pIdx->aSample);
}
if( db && db->pnBytesFreed==0 ){
pIdx->nSample = 0;
pIdx->aSample = 0;
}
#else
UNUSED_PARAMETER(db);
UNUSED_PARAMETER(pIdx);
#endif
}
#ifdef SQLITE_ENABLE_STAT3
/*
** Load content from the sqlite_stat3 table into the Index.aSample[]
** arrays of all indices.
*/
static int loadStat3(sqlite3 *db, const char *zDb){
int rc; /* Result codes from subroutines */
sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
char *zSql; /* Text of the SQL statement */
Index *pPrevIdx = 0; /* Previous index in the loop */
int idx = 0; /* slot in pIdx->aSample[] for next sample */
int eType; /* Datatype of a sample */
IndexSample *pSample; /* A slot in pIdx->aSample[] */
assert( db->lookaside.bEnabled==0 );
if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
return SQLITE_OK;
}
zSql = sqlite3MPrintf(db,
"SELECT idx,count(*) FROM %Q.sqlite_stat3"
" GROUP BY idx", zDb);
if( !zSql ){
return SQLITE_NOMEM;
}
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
sqlite3DbFree(db, zSql);
if( rc ) return rc;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
char *zIndex; /* Index name */
Index *pIdx; /* Pointer to the index object */
int nSample; /* Number of samples */
zIndex = (char *)sqlite3_column_text(pStmt, 0);
if( zIndex==0 ) continue;
nSample = sqlite3_column_int(pStmt, 1);
pIdx = sqlite3FindIndex(db, zIndex, zDb);
if( pIdx==0 ) continue;
assert( pIdx->nSample==0 );
pIdx->nSample = nSample;
pIdx->aSample = sqlite3DbMallocZero(db, nSample*sizeof(IndexSample));
pIdx->avgEq = pIdx->aiRowEst[1];
if( pIdx->aSample==0 ){
db->mallocFailed = 1;
sqlite3_finalize(pStmt);
return SQLITE_NOMEM;
}
}
rc = sqlite3_finalize(pStmt);
if( rc ) return rc;
zSql = sqlite3MPrintf(db,
"SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
if( !zSql ){
return SQLITE_NOMEM;
}
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
sqlite3DbFree(db, zSql);
if( rc ) return rc;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
char *zIndex; /* Index name */
Index *pIdx; /* Pointer to the index object */
int i; /* Loop counter */
tRowcnt sumEq; /* Sum of the nEq values */
zIndex = (char *)sqlite3_column_text(pStmt, 0);
if( zIndex==0 ) continue;
pIdx = sqlite3FindIndex(db, zIndex, zDb);
if( pIdx==0 ) continue;
if( pIdx==pPrevIdx ){
idx++;
}else{
pPrevIdx = pIdx;
idx = 0;
}
assert( idx<pIdx->nSample );
pSample = &pIdx->aSample[idx];
pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);