-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
346 lines (299 loc) · 16.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# ------------------------------------------------------------------------
# Conditional DETR
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
import datasets.samplers as samplers
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_model
import os
import wandb
import warnings
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--wandb', action='store_true', help="turn on wandb for logging")
# repeat label
parser.add_argument('--repeat_label', type=int, default=None, help="repeat positive labels for n times")
parser.add_argument('--repeat_ratio', type=float, default=None,
help="resample positive labels to make pos:all=ratio, e.g. 0.25")
parser.add_argument('--two_stage_match', action='store_true', help="two stage matching for the repeated label")
# nms
parser.add_argument('--nms', action='store_true', help="use nms for postprocessing")
parser.add_argument('--nms_thresh', type=float, default=0.7, help="IoU threshold for nms")
parser.add_argument('--pre_nms', type=int, default=2000, help="number of top score pred before nms")
# customized model
parser.add_argument('--pool_res', type=int, default=4, help="roi size (pooler_resolution)")
parser.add_argument('--no_box_refine', action='store_false', dest='box_refine',
help="remove bbox refinement (as did in Cascaded RCNN)")
parser.add_argument('--no_ms_roi', action='store_false', dest='ms_roi',
help="update memory and pos by roi align on single-scale feature (32x down-sampled)")
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=40, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--num_feature_levels', default=3, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=300, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
# * down-sample dataset
parser.add_argument('--sample_rate', default=None, type=float, help="sample rate for downsampled dataset")
parser.add_argument('--sample_repeat', action='store_true',
help="repeat the dataset 1/sample_rate times, to maintain the computational cost")
# * other dataset params
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--model', type=str, default=None, required=True)
parser.add_argument('--output_dir', default=None,
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
return parser
def get_dataset_name(args):
"""name for down-sampled dataset: [dataset_file]down[ratio]rep"""
if args.sample_rate is not None:
assert 'down' in args.dataset_file, "sample_rate only works with down-sampled dataset!"
dataset_name = args.dataset_file if args.sample_rate is None else args.dataset_file + str(args.sample_rate)
dataset_name = dataset_name + 'rep' if args.sample_repeat else dataset_name
return dataset_name
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
if args.ms_roi is False:
assert args.num_feature_levels == 1
print(args)
device = torch.device(args.device)
# make seed random
if args.seed is None:
args.seed = random.randint(1, 10000)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
dataset_name = get_dataset_name(args)
run_name = '_'.join([
dataset_name, args.model, 'bs{}x{}'.format(args.world_size, args.batch_size),
'seed{}'.format(args.seed),
])
if args.output_dir is None:
args.output_dir = os.path.join('work_dirs', run_name)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# log with wandb
if utils.get_rank() == 0:
if args.wandb:
wandb.init(config=args, project="DE-CondDETR")
wandb.run.name = run_name
else:
warnings.warn("wandb is turned off")
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir)
results = coco_evaluator.coco_eval['bbox'].stats
print('{}, {}, {}, {}, {}, {}'.format(results[0], results[1], results[2], results[3], results[4], results[5]))
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
print(run_name)
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 10 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir
)
results = coco_evaluator.coco_eval['bbox'].stats
if utils.get_rank() == 0 and args.wandb:
info = {
'Average Precision(AP) @ [IoU = 0.50:0.95 | area = all | maxDets = 100]': results[0],
'Average Precision(AP) @ [IoU = 0.50 | area = all | maxDets = 100]': results[1],
'Average Precision(AP) @ [IoU = 0.75 | area = all | maxDets = 100]': results[2],
'Average Precision(AP) @ [IoU = 0.50:0.95 | area = small | maxDets = 100]': results[3],
'Average Precision(AP) @ [IoU = 0.50:0.95 | area = medium | maxDets = 100]': results[4],
'Average Precision(AP) @ [IoU = 0.50:0.95 | area = large | maxDets = 100]': results[5],
'Average Recall(AR) @ [IoU = 0.50:0.95 | area = all | maxDets = 1]': results[6],
'Average Recall(AR) @ [IoU = 0.50:0.95 | area = all | maxDets = 10]': results[7],
'Average Recall(AR) @ [IoU = 0.50:0.95 | area = all | maxDets = 100]': results[8],
'Average Recall(AR) @ [IoU = 0.50:0.95 | area = small | maxDets = 100]': results[9],
'Average Recall(AR) @ [IoU = 0.50:0.95 | area = medium | maxDets = 100]': results[10],
'Average Recall(AR) @ [IoU = 0.50:0.95 | area = large | maxDets = 100]': results[11],
}
wandb.log(info, step=epoch+1)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Conditional DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)