-
Notifications
You must be signed in to change notification settings - Fork 59
/
wrappers.py
906 lines (810 loc) · 37.2 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
#######################################################################
# Recipies / wrapper functions using toolbox methods for disease,
# drug and network analysis
# e.g. 10/2015
#######################################################################
import network_utilities, stat_utilities, dict_utilities, text_utilities
import TsvReader, functional_enrichment
import parse_umls, parse_msigdb
import parse_uniprot, parse_ncbi
import parse_do, parse_medic, parse_disgenet
import parse_drugbank, parse_medi, parse_hetionet
import csv, numpy, os, cPickle
import random
try:
from toolbox.external.diamond import diamond
except:
print "DIAMOnD not found and thus will not be available!"
##### Id mapping related #####
def get_mapping(file_name, from_column = None, to_column = None, delim=None, one_to_one=True):
"""
Assumes header, maps first column to the second
"""
key_to_value = TsvReader.get_from_to_mapping(file_name, from_column = from_column, to_column = to_column, delim=delim, inner_delim = None, filter_column = None, exclude_value = None, include_value = None, one_to_one=one_to_one)
return key_to_value
def convert_to_geneid(file_name, id_type, id_mapping_file):
"""
Expects a file where each line is a gene name / uniprot id
id_type: symbol | uniprot
"""
genes = [ line.strip("\n") for line in open(file_name) ]
if id_type == "symbol":
geneid_to_name, name_to_geneid = get_geneid_symbol_mapping(id_mapping_file)
elif id_type == "uniprot":
name_to_geneid = get_uniprot_to_id(id_mapping_file, uniprot_ids=genes, only_min=True, key_function=int)
else:
raise ValueError("Uknown id type: %s" % id_type)
geneids = set([ name_to_geneid[gene] for gene in genes if gene in name_to_geneid ])
genes_non = set([ gene for gene in genes if gene not in name_to_geneid ])
print "Not found genes:", genes_non
return geneids
def get_uniprot_to_id(uniprot_file, uniprot_ids=None, only_min=True, key_function=int):
"""
uniprot_file = %(data_dir)s/uniprot/idmapping.tab or idmapping.tab.symbol or idmapping.tab.mouse
Can be used to convert to geneids (key_function=int) as well as symbols (key_function=len) depending on the input file
"""
uniprot_to_gene = parse_uniprot.get_uniprot_to_geneid(uniprot_file, uniprot_ids, only_min, key_function)
return uniprot_to_gene
def get_geneid_symbol_mapping(mapping_file):
"""
id_mapping_file = %(data_dir)s/ncbi/geneid_to_symbol.txt
"""
geneid_to_name, name_to_geneid = parse_ncbi.get_geneid_symbol_mapping(mapping_file)
return geneid_to_name, name_to_geneid
def get_mesh_id_mapping(desc_file, rel_file, dump_file = None):
"""
Get all concept id - mesh id mapping (also gets entry names in addition to main header)
"""
#dump_file = CONFIG.get("umls_dir") + "/mapping.pcl"
mesh_id_to_name, concept_id_to_mesh_id, mesh_id_to_name_with_synonyms = parse_umls.get_mesh_id_mapping(desc_file, rel_file, dump_file = dump_file)
return mesh_id_to_name, concept_id_to_mesh_id, mesh_id_to_name_with_synonyms
def get_mesh_disease_ontology(desc_file, rel_file, dump_file = None):
#dump_file = CONFIG.get("umls_dir") + "/ontology.pcl"
g = parse_umls.get_mesh_disease_ontology(desc_file, rel_file, dump_file = dump_file)
return g
def get_medic_mesh_id_mapping(medic_file):
name_to_id, id_to_mesh_ids = get_medic_mesh_id_mapping(medic_file)
return name_to_id, id_to_mesh_ids
def get_mesh_disease_category_mapping(desc_file, rel_file, dump_file = None):
#dump_file = CONFIG.get("umls_dir") + "/ontology.pcl"
mesh_id_to_top_ids = parse_umls.get_mesh_id_to_disease_category(desc_file, rel_file, dump_file)
mesh_id_to_name, concept_id_to_mesh_id, mesh_id_to_name_with_synonyms = get_mesh_id_mapping(desc_file, rel_file, dump_file)
mesh_name_to_parents = {}
for child, parents in mesh_id_to_top_ids.iteritems():
name_child = mesh_id_to_name[concept_id_to_mesh_id[child]]
values = []
for parent in parents:
name_parent = mesh_id_to_name[concept_id_to_mesh_id[parent]]
values.append(name_parent.lower())
values.sort()
mesh_name_to_parents[name_child.lower()] = values
#print mesh_name_to_parents["asthma"], mesh_name_to_parents["psoriasis"]
return mesh_name_to_parents
def get_icd_to_mesh_ids(disease_ontology_file, id_type="ICD9CM"):
icd_to_mesh_ids = parse_do.get_icd_to_mesh_ids(disease_ontology_file, id_type)
return icd_to_mesh_ids
def get_do_to_mesh_ids(disease_ontology_file):
name_to_do_id, do_to_mesh_ids, mesh_id_to_type_to_ids = parse_do.get_do_mesh_id_mapping(disease_ontology_file)
return do_to_mesh_ids
def get_homology_mapping(homologene_file, tax_id="10090", from_tax_id="9606", symbol_type="geneid"):
"""
symbol_type: geneid | symbol
"""
geneid_to_geneid, group_to_taxid_to_geneid = parse_ncbi.get_homology_mapping(homologene_file, tax_id, from_tax_id=from_tax_id, symbol_type=symbol_type)
return geneid_to_geneid
##### Network related #####
def get_network(network_file, only_lcc):
network = network_utilities.create_network_from_sif_file(network_file, use_edge_data = False, delim = None, include_unconnected=True)
#print len(network.nodes()), len(network.edges())
if only_lcc and not network_file.endswith(".lcc"):
print "Shrinking network to its LCC", len(network.nodes()), len(network.edges())
components = network_utilities.get_connected_components(network, False)
network = network_utilities.get_subgraph(network, components[0])
print "Final shape:", len(network.nodes()), len(network.edges())
#print len(network.nodes()), len(network.edges())
network_lcc_file = network_file + ".lcc"
if not os.path.exists(network_lcc_file ):
f = open(network_lcc_file, 'w')
for u,v in network.edges():
f.write("%s 1 %s\n" % (u, v))
f.close()
return network
def create_functional_network(links_file, mapping_file, cutoff = 900):
#string_dir = CONFIG.get("string_dir") + "/"
#links_file = string_dir + CONFIG.get("string_links_file")
#mapping_file = string_dir + CONFIG.get("string_mapping_file")
output_file = CONFIG.get("network_file")
parse_string.get_interactions(links_file, mapping_file, output_file, cutoff) #, include_score=True)
#network = get_network()
#print len(network.nodes()), len(network.edges())
return
def calculate_lcc_significance(network, nodes, nodes_random=None, bins=None, n_random=1000, min_bin_size=100, seed=452456):
# Degree matching problematic for small bin sizes
#if bins is None and nodes_random is None:
# bins = network_utilities.get_degree_binning(network, min_bin_size)
random.seed(seed)
if nodes_random is None:
network_nodes = list(network.nodes())
#nodes_random = get_random_nodes(nodes, network, bins = bins, n_random = n_random, min_bin_size = min_bin_size, seed = seed)
nodes_random = []
for i in xrange(n_random):
random.shuffle(network_nodes)
nodes_random.append(network_nodes[:len(nodes)])
network_sub = network.subgraph(nodes)
component_nodes = network_utilities.get_connected_components(network_sub, False)
#print component_nodes
d = len(component_nodes[0])
values = numpy.empty(len(nodes_random))
for i, nodes in enumerate(nodes_random):
network_sub = network.subgraph(nodes)
component_nodes = network_utilities.get_connected_components(network_sub, False)[0]
values[i] = len(component_nodes)
m, s = numpy.mean(values), numpy.std(values)
if s == 0:
z = 0.0
else:
z = (d - m) / s
return d, z, (m, s), values
##### Gene expression related #####
def get_expression_info(gexp_file, process=None, delim=',', quote='"', R_header=False, dump_file=None):
"""
To get gene expression info
process: a set(["log2", "z", "abs"]) or None
"""
if dump_file is not None and os.path.exists(dump_file):
gexp, gene_to_idx, cell_line_to_idx = cPickle.load(open(dump_file))
return gexp, gene_to_idx, cell_line_to_idx
#gene_to_values = {}
f = open(gexp_file)
reader = csv.reader(f, delimiter=delim, quotechar=quote)
header = reader.next()
#print len(header), header
if R_header == False:
header = header[1:]
cell_line_to_idx = dict([ (cell_line, i) for i, cell_line in enumerate(header) ])
gene_to_idx = {}
values_arr = []
for i, row in enumerate(reader):
gene = row[0]
values = map(float, row[1:])
#gene_to_values[gene] = values
gene_to_idx[gene] = i
values_arr.append(values)
f.close()
gexp = numpy.array(values_arr)
if process is not None:
if "log2" in process:
gexp = numpy.log2(gexp)
if "z" in process:
gexp = (gexp - gexp.mean(axis=1)[:, numpy.newaxis]) / gexp.std(axis=1, ddof=1)[:, numpy.newaxis]
if "abs" in process:
gexp = numpy.abs(gexp)
#if "na.rm" in process:
# idx = numpy.where(numpy.isnan(a)) # need to remove rows with NAs
#print gexp.shape, gexp_norm.shape
#print gexp[0,0], gexp_norm[0,0]
#return gene_to_values, cell_line_to_idx
if dump_file is not None:
values = gexp, gene_to_idx, cell_line_to_idx
cPickle.dump(values, open(dump_file, 'w'))
return gexp, gene_to_idx, cell_line_to_idx
def get_de_genes(file_name, cutoff_adj = 0.05, cutoff_logfc=0.585, n_top=None, id_type = "GeneID"):
"""
For parsing DE file generated using R PEPPER package
"""
fields_to_include = [id_type, "P.Value", "logFC", "adj.P.Val"]
parser = TsvReader.TsvReader(file_name, delim="\t", inner_delim=None)
header_to_idx, id_to_values = parser.read(fields_to_include, keys_to_include=None, merge_inner_values=False)
if "" in id_to_values:
del id_to_values[""]
#print len(id_to_values)
#gene = "10458"
#if gene in id_to_values:
# print id_to_values[gene]
genes = set()
genes_all = set()
genes_up, genes_down = set(), set()
values_gene = []
for gene, values in id_to_values.iteritems():
include = False
positive = False
for val in values:
pval = val[header_to_idx["adj.p.val"]] # "p.value"]]
if pval == "NA":
continue
fc = float(val[header_to_idx["logfc"]])
if float(pval) <= cutoff_adj:
if abs(fc) >= cutoff_logfc:
include = True
if fc >= 0:
positive = True
if n_top is not None:
values_gene.append((abs(fc), gene))
for word in gene.split("///"):
word = word.strip()
if word == "---":
continue
if include:
genes.add(word)
if positive:
genes_up.add(word)
else:
genes_down.add(word)
else:
genes_all.add(word)
if n_top is not None:
values_gene.sort()
genes = set([ word.strip() for fc, gene in values_gene[-n_top:] for word in gene.split("///") ])
return genes, genes_all, genes_up, genes_down
def get_z_genes(file_name, cutoff_z = 2):
"""
For parsing DE-Z file generated using R PEPPER package
"""
gexp, gene_to_idx, cell_line_to_idx = get_expression_info(file_name, process=None, delim='\t', R_header=True) #, quote='"', dump_file=None)
genes = gene_to_idx.items()
genes.sort(key=lambda x: x[1])
genes = numpy.array(zip(*genes)[0])
sample_to_genes = {}
for cell_line, idx in cell_line_to_idx.iteritems():
indices = numpy.abs(gexp[:,idx]) > cutoff_z
sample_to_genes[cell_line] = genes[indices]
#if cell_line in ["GSM734834", "GSM734833"]:
# print cell_line, len(genes[indices]), genes[indices]
return sample_to_genes
def get_sample_mapping(file_name, labels_case, labels_control=None):
f = open(file_name)
labels_case = set(labels_case)
if labels_control is not None:
labels_control = set(labels_control)
samples_case = []
samples_control = []
for line in f:
sample, label = line.strip("\n").split("\t")
label = label.strip()
if label in labels_case:
samples_case.append(sample)
else:
if labels_control is None or label in labels_control:
samples_control.append(sample)
return samples_case, samples_control
##### Disease, pathway, comorbidity, symptom info related #####
def get_pathway_info(pathway_file, prefix=None, nodes=None, max_pathway_size=None, inner_delim=None):
"""
Assumes a tab separated file containing pathway name, link, geneids
nodes to filter geneids that are not in the network
prefix: kegg | reactome | biocarta
inner_delim: None for tab separated geneids, " " for space separated geneids
"""
pathway_to_geneids, geneid_to_pathways = parse_msigdb.get_msigdb_info(pathway_file, prefix, inner_delim=inner_delim)
if nodes is not None or max_pathway_size is not None:
pathway_to_geneids_mod = {}
for pathway, geneids in pathway_to_geneids.iteritems():
if max_pathway_size is not None:
if len(geneids) > max_pathway_size:
continue
if nodes is not None:
geneids &= nodes
if len(geneids) == 0:
continue
pathway_to_geneids_mod[pathway] = geneids
pathway_to_geneids = pathway_to_geneids_mod
return pathway_to_geneids
def get_diseasome_genes(diseasome_file, nodes=None, network=None):
"""
If nodes is not None, keep only nodes in the network
If network is not None, keep only LCC
"""
disease_to_genes = {}
disease_to_category = {}
for line in open(diseasome_file):
words = line.strip("\n").split("\t")
disease = words[1].strip('"')
category = words[0]
genes = set(words[2:])
if nodes is not None:
genes &= nodes
if len(genes) == 0:
continue
if network is not None:
network_sub = network.subgraph(genes)
genes = network_utilities.get_connected_components(network_sub, False)[0]
disease_to_genes[disease] = genes
disease_to_category[disease] = category
return disease_to_genes, disease_to_category
def get_disgenet_genes(file_name):
disease_to_genes, disease_to_sources, cui_to_disease = parse_disgenet.get_disgenet_genes(file_name)
return disease_to_genes, disease_to_sources, cui_to_disease
def get_comorbidity_info(comorbidity_file, disease_ontology_file, mesh_dump, correlation_type="RR", only_significant=False):
"""
Parse HuDiNe data from AllNet3 and map ICD9 to MeSH using DO
correlation_type: phi (pearson correlation) | RR (favors rare disease pairs)
"""
icd_to_mesh_ids = get_icd_to_mesh_ids(disease_ontology_file, id_type="ICD9CM")
#print len(icd_to_mesh_ids), icd_to_mesh_ids.items()[:5]
#print [ icd_to_mesh_ids[val] for val in ("289", "502", "578", "579", "542", "543")]
mesh_id_to_name, concept_id_to_mesh_id, mesh_id_to_name_with_synonyms = get_mesh_id_mapping(None, None, dump_file = mesh_dump)
#print mesh_id_to_name.items()[:5]
f = open(comorbidity_file)
header_to_idx = dict((word, i) for i, word in enumerate(f.readline().strip().split("\t")))
disease_to_disease_comorbidity = {}
for line in f:
words = line.strip().split("\t")
icd1, icd2 = words[:2]
if only_significant and significance == "0":
continue
if icd1 not in icd_to_mesh_ids or icd2 not in icd_to_mesh_ids:
#print "Not in DO mapping:", icd1, icd2
continue
val = float(words[header_to_idx[correlation_type]]) # idx:5
for mesh1 in icd_to_mesh_ids[icd1]:
if mesh1 not in mesh_id_to_name:
#print "Not in name mapping:", mesh1
continue
disease1 = mesh_id_to_name[mesh1].lower()
for mesh2 in icd_to_mesh_ids[icd2]:
if mesh2 not in mesh_id_to_name:
#print "Not in name mapping:", mesh2
continue
disease2 = mesh_id_to_name[mesh2].lower()
disease1_mod, disease2_mod = sorted((disease1, disease2))
d = disease_to_disease_comorbidity.setdefault(disease1, {})
if disease2 in d:
if d[disease2] > val: # skip if the existing comorbidity value is higher
continue
d[disease2] = val
d = disease_to_disease_comorbidity.setdefault(disease2, {})
d[disease1] = val
#print icd1, mesh1, disease1, icd2, mesh2, disease2, val
#print len(disease_to_disease_comorbidity), disease_to_disease_comorbidity.values()[0].items()[:5]
return disease_to_disease_comorbidity
# Parse HuDiNe data from potentially buggy comorbidity_new.tsv
#comorbidity_file = CONFIG.get("comorbidity_file")
f = open(comorbidity_file)
header_to_idx = dict((word, i) for i, word in enumerate(f.readline().strip().split("\t")))
disease_to_disease_comorbidity = {}
for line in f:
words = line.strip().split("\t")
disease1, disease2 = words[:2]
significance = words[header_to_idx["sign_"+correlation_type]]
if only_significant and significance == "0":
continue
val = float(words[header_to_idx[correlation_type]])
disease_to_disease_comorbidity.setdefault(disease1, {})[disease2] = (val, significance)
disease_to_disease_comorbidity.setdefault(disease2, {})[disease1] = (val, significance)
f.close()
return disease_to_disease_comorbidity
def get_symptom_info(symptom_file, tfidf_cutoff=None):
"""
Parse Zhou et al supplementary s4. A cutoff of 3.5 is likely to filter spurious associations.
"""
disease_to_symptoms = {}
symptom_to_diseases = {}
disease_to_symptom_to_score = {}
#symptom_file = CONFIG.get("symptom_file")
f = open(symptom_file)
f.readline()
for line in f:
words = line.strip("\n").split("\t")
symptom, disease, n, score = words
symptom = symptom.lower()
disease = disease.lower()
if tfidf_cutoff is not None and not float(score) >= tfidf_cutoff:
continue
disease_to_symptoms.setdefault(disease, set()).add(symptom)
symptom_to_diseases.setdefault(symptom, set()).add(disease)
d = disease_to_symptom_to_score.setdefault(disease, {})
d[symptom] = float(score)
return disease_to_symptoms, symptom_to_diseases, disease_to_symptom_to_score
##### Drug related info #####
def get_drugbank(drugbank_file):
dump_file = drugbank_file + ".pcl"
if os.path.exists(dump_file):
parser = cPickle.load(open(dump_file))
else:
parser = parse_drugbank.DrugBankXMLParser(drugbank_file)
parser.parse()
cPickle.dump(parser, open(dump_file, 'w'))
return parser
def get_medi_indications(medi_file, drugbank_file, mesh_dump, disease_ontology_file, only_hps=True):
dump_file = medi_file + ".pcl"
if os.path.exists(dump_file):
drug_to_diseases = cPickle.load(open(dump_file))
return drug_to_diseases
parser = get_drugbank(drugbank_file)
name_to_drug, synonym_to_drug = parser.get_synonyms(selected_drugs=None, only_synonyms=False)
name_to_icd_and_confidences = parse_medi.get_medi_mapping(medi_file)
mesh_id_to_name, concept_id_to_mesh_id, mesh_id_to_name_with_synonyms = get_mesh_id_mapping(None, None, dump_file = mesh_dump)
icd_to_mesh_ids = get_icd_to_mesh_ids(disease_ontology_file, id_type="ICD9CM")
drug_to_indications = parse_medi.get_drug_disease_mapping(name_to_icd_and_confidences, name_to_drug, synonym_to_drug, icd_to_mesh_ids, mesh_id_to_name, dump_file = None)
drug_to_diseases = {}
for drug, values in drug_to_indications.iteritems():
for phenotype, dui, val in values:
if only_hps and val <= 0.5:
continue
drug_to_diseases.setdefault(drug, set()).add(phenotype)
# Drug name to disease name textual mapping
#name_to_indication_and_confidences = parse_medi.get_medi_mapping(medi_file, textual_indication=True)
#drug_to_diseases = {}
#for name, values in name_to_indication_and_confidences.iteritems():
# for indication, confidence in values:
# if only_hps and confidence <= 0.5:
# continue
# drug_to_diseases.setdefault(name, set()).add(indication.lower())
# Get disease to name mapping
#phenotype_to_mesh_id = dict((name, mesh_id) for mesh_id, name in mesh_id_to_name.iteritems())
#disease_to_drugs = parse_medi.get_disease_specific_drugs(drug_to_diseases, phenotype_to_mesh_id)
cPickle.dump(drug_to_diseases, open(dump_file, 'w'))
return drug_to_diseases
def get_hetionet_indications(hetionet_file, mesh_dump, disease_ontology_file):
dump_file = hetionet_file + ".pcl"
if os.path.exists(dump_file):
drug_to_diseases = cPickle.load(open(dump_file))
return drug_to_diseases
drug_to_do_ids = parse_hetionet.get_hetionet_mapping(hetionet_file, metaedge="CtD")
do_to_mesh_ids = get_do_to_mesh_ids(disease_ontology_file)
mesh_id_to_name, concept_id_to_mesh_id, mesh_id_to_name_with_synonyms = get_mesh_id_mapping(None, None, dump_file = mesh_dump)
drug_to_indications = parse_hetionet.get_drug_disease_mapping(drug_to_do_ids, do_to_mesh_ids, mesh_id_to_name, dump_file = None)
drug_to_diseases = {}
for drug, values in drug_to_indications.iteritems():
for phenotype, dui, val in values:
drug_to_diseases.setdefault(drug, set()).add(phenotype)
cPickle.dump(drug_to_diseases, open(dump_file, 'w'))
return drug_to_diseases
##### Statistics related #####
def overlap_significance(geneids1, geneids2, nodes, method="hyper"):
"""
method: hyper(geometric) | fishers (two-sided version of hypergeometric) | jaccard | jaccard_max | overlap
"""
n1, n2 = len(geneids1), len(geneids2)
n = len(geneids1 & geneids2)
N = len(nodes)
if method == "hyper":
val = stat_utilities.hypergeometric_test_numeric(n, n1, N, n2)
elif method == "fishers":
oddsratio, val = stat_utilities.fisher_exact(n, n1 - n, n2 -n, N - n1 - n2 + n, alternative="two-sided")
elif method == "jaccard":
val = stat_utilities.jaccard(geneids1, geneids2)
elif method == "jaccard_max":
val = stat_utilities.jaccard_max(geneids1, geneids2)
elif method == "overlap":
val = n
else:
raise ValueError("Uknown method: %s" % method)
return n, n1, n2, val
##### Proximity related #####
def calculate_proximity(network, nodes_from, nodes_to, nodes_from_random=None, nodes_to_random=None, bins=None, n_random=1000, min_bin_size=100, seed=452456, lengths=None, distance="closest"):
"""
Calculate proximity from nodes_from to nodes_to
If degree binning or random nodes are not given, they are generated
lengths: precalculated shortest path length dictionary
"""
nodes_network = set(network.nodes())
nodes_from = set(nodes_from) & nodes_network
nodes_to = set(nodes_to) & nodes_network
if len(nodes_from) == 0 or len(nodes_to) == 0:
return None # At least one of the node group not in network
if distance != "closest":
lengths = network_utilities.get_shortest_path_lengths(network, "temp_n%d_e%d.sif.pcl" % (len(nodes_network), network.number_of_edges()))
d = network_utilities.get_separation(network, lengths, nodes_from, nodes_to, distance, parameters = {})
else:
d = calculate_closest_distance(network, nodes_from, nodes_to, lengths)
if bins is None and (nodes_from_random is None or nodes_to_random is None):
bins = network_utilities.get_degree_binning(network, min_bin_size, lengths) # if lengths is given, it will only use those nodes
if nodes_from_random is None:
nodes_from_random = get_random_nodes(nodes_from, network, bins = bins, n_random = n_random, min_bin_size = min_bin_size, seed = seed)
if nodes_to_random is None:
nodes_to_random = get_random_nodes(nodes_to, network, bins = bins, n_random = n_random, min_bin_size = min_bin_size, seed = seed)
random_values_list = zip(nodes_from_random, nodes_to_random)
values = numpy.empty(len(nodes_from_random)) #n_random
for i, values_random in enumerate(random_values_list):
nodes_from, nodes_to = values_random
if distance != "closest":
values[i] = network_utilities.get_separation(network, lengths, nodes_from, nodes_to, distance, parameters = {})
else:
values[i] = calculate_closest_distance(network, nodes_from, nodes_to, lengths)
#pval = float(sum(values <= d)) / len(values) # needs high number of n_random
m, s = numpy.mean(values), numpy.std(values)
if s == 0:
z = 0.0
else:
z = (d - m) / s
return d, z, (m, s) #(z, pval)
def calculate_proximity_multiple(network, from_file=None, to_file=None, n_random=1000, min_bin_size=100, seed=452456, lengths=None, out_file="output.txt"):
"""
Run proximity on each entries of from and to files in a pairwise manner
output is saved in out_file (e.g., output.txt)
"""
nodes = set(network.nodes())
drug_to_targets, drug_to_category = get_diseasome_genes(from_file, nodes = nodes)
#drug_to_targets = dict((drug, nodes & targets) for drug, targets in drug_to_targets.iteritems())
disease_to_genes, disease_to_category = get_diseasome_genes(to_file, nodes = nodes)
# Calculate proximity values
print len(drug_to_targets), len(disease_to_genes)
# Get degree binning
bins = network_utilities.get_degree_binning(network, min_bin_size)
f = open(out_file, 'w')
f.write("source\ttarget\tn.source\tn.target\td\tz\n")
for drug, nodes_from in drug_to_targets.iteritems():
values = []
for disease, nodes_to in disease_to_genes.iteritems():
print drug, disease
d, z, (m, s) = calculate_proximity(network, nodes_from, nodes_to, nodes_from_random=None, nodes_to_random=None, bins=bins, n_random=n_random, min_bin_size=min_bin_size, seed=seed, lengths=lengths)
values.append((drug, disease, z, len(nodes_from), len(nodes_to), d, m, s))
#f.write("%s\t%s\t%f\t%f\t%f\t%f\n" % (drug, disease, z, d, m, s))
values.sort(key=lambda x: x[2])
for drug, disease, z, k, l, d, m, s in values:
#f.write("%s\t%s\t%f\t%d\t%d\t%f\t%f\t%f\n" % (drug, disease, z, k, l, d, m, s))
f.write("%s\t%s\t%d\t%d\t%f\t%f\n" % (drug, disease, k, l, d, z))
f.close()
return
def calculate_closest_distance(network, nodes_from, nodes_to, lengths=None):
values_outer = []
if lengths is None:
for node_from in nodes_from:
values = []
for node_to in nodes_to:
val = network_utilities.get_shortest_path_length_between(network, node_from, node_to)
values.append(val)
d = min(values)
#print d,
values_outer.append(d)
else:
for node_from in nodes_from:
values = []
vals = lengths[node_from]
for node_to in nodes_to:
val = vals[node_to]
values.append(val)
d = min(values)
values_outer.append(d)
d = numpy.mean(values_outer)
#print d
return d
def get_random_nodes(nodes, network, bins=None, n_random=1000, min_bin_size=100, degree_aware=True, seed=None):
if bins is None:
# Get degree bins of the network
bins = network_utilities.get_degree_binning(network, min_bin_size)
nodes_random = network_utilities.pick_random_nodes_matching_selected(network, bins, nodes, n_random, degree_aware, seed=seed)
return nodes_random
### Separation related
def calculate_separation_proximity(network, nodes_from, nodes_to, nodes_from_random=None, nodes_to_random=None, bins=None, n_random=1000, min_bin_size=100, seed=452456, lengths=None):
"""
Calculate proximity from nodes_from to nodes_to
If degree binning or random nodes are not given, they are generated
lengths: precalculated shortest path length dictionary
"""
nodes_network = set(network.nodes())
if len(set(nodes_from) & nodes_network) == 0 or len(set(nodes_to) & nodes_network) == 0:
return None # At least one of the node group not in network
d = get_separation(network, nodes_from, nodes_to, lengths)
if bins is None and (nodes_from_random is None or nodes_to_random is None):
bins = network_utilities.get_degree_binning(network, min_bin_size, lengths) # if lengths is given, it will only use those nodes
if nodes_from_random is None:
nodes_from_random = get_random_nodes(nodes_from, network, bins = bins, n_random = n_random, min_bin_size = min_bin_size, seed = seed)
if nodes_to_random is None:
nodes_to_random = get_random_nodes(nodes_to, network, bins = bins, n_random = n_random, min_bin_size = min_bin_size, seed = seed)
random_values_list = zip(nodes_from_random, nodes_to_random)
values = numpy.empty(len(nodes_from_random)) #n_random
for i, values_random in enumerate(random_values_list):
nodes_from, nodes_to = values_random
values[i] = get_separation(network, nodes_from, nodes_to, lengths)
m, s = numpy.mean(values), numpy.std(values)
if s == 0:
z = 0.0
else:
z = (d - m) / s
return d, z, (m, s) #(z, pval)
def get_separation(network, nodes_from, nodes_to, lengths=None):
dAA = numpy.mean(get_separation_within_set(network, nodes_from, lengths))
dBB = numpy.mean(get_separation_within_set(network, nodes_to, lengths))
dAB = numpy.mean(get_separation_between_sets(network, nodes_from, nodes_to, lengths))
d = dAB - (dAA + dBB) / 2.0
return d
def get_separation_between_sets(network, nodes_from, nodes_to, lengths=None):
"""
Calculate dAB in separation metric proposed by Menche et al. 2015
"""
values = []
target_to_values = {}
source_to_values = {}
for source_id in nodes_from:
for target_id in nodes_to:
if lengths is not None:
d = lengths[source_id][target_id]
else:
d = network_utilities.get_shortest_path_length_between(network, source_id, target_id)
source_to_values.setdefault(source_id, []).append(d)
target_to_values.setdefault(target_id, []).append(d)
# Distances to closest node in nodes_to (B) from nodes_from (A)
for source_id in nodes_from:
inner_values = source_to_values[source_id]
values.append(numpy.min(inner_values))
# Distances to closest node in nodes_from (A) from nodes_to (B)
for target_id in nodes_to:
inner_values = target_to_values[target_id]
values.append(numpy.min(inner_values))
return values
def get_separation_within_set(network, nodes_from, lengths=None):
"""
Calculate dAA or dBB in separation metric proposed by Menche et al. 2015
"""
if len(nodes_from) == 1:
return [ 0 ]
values = []
# Distance to closest node within the set (A or B)
for source_id in nodes_from:
inner_values = []
for target_id in nodes_from:
if source_id == target_id:
continue
if lengths is not None:
d = lengths[source_id][target_id]
else:
d = network_utilities.get_shortest_path_length_between(network, source_id, target_id)
inner_values.append(d)
values.append(numpy.min(inner_values))
return values
### GUILD related ###
def create_node_file(node_to_score, nodes, node_file, background_score = 0.01):
"""
Simplified method for creating guild node score files
"""
f = open(node_file, 'w')
for node in nodes:
if node in node_to_score:
score = node_to_score[node]
else:
score = background_score
f.write("%s %f\n" % (node, score))
f.close()
return
def run_guild(phenotype, node_to_score, network_nodes, network_file, output_dir, executable_path = None, background_score = 0.01, qname=None, method='s'):
# Create node file
node_file = "%s%s.node" % (output_dir, phenotype)
create_node_file(node_to_score, network_nodes, node_file, background_score)
output_file = "%s%s.n%s" % (output_dir, phenotype, method)
# Get and run the GUILD command
#print strftime("%H:%M:%S - %d %b %Y") #, score_command
if method == 's':
n_repetition = 3
n_iteration = 2
score_command = ' -s s -n "%s" -e "%s" -o "%s" -r %d -i %d' % (node_file, network_file, output_file, n_repetition, n_iteration)
elif method == 'd':
score_command = ' -s d -n "%s" -e "%s" -o "%s"' % (node_file, network_file, output_file)
elif method == 'r':
n_iteration = 50
score_command = ' -s r -n "%s" -e "%s" -o "%s" -i %d' % (node_file, network_file, output_file, n_iteration)
elif method == 'p':
score_command = ' "%s" "%s" "%s" 1' % (node_file, network_file, output_file)
elif method == 'w':
score_command = ' "%s" "%s" "%s"' % (node_file, network_file, output_file)
else:
raise NotImplementedError("method %s" % method)
if qname is None:
if executable_path is None:
if method in ["s", "r", "d"]:
executable_path = "guild" # assuming accessible guild executable
else:
executable_path = "netwalk.sh" # assuming R and netwalk.sh is accessible
score_command = executable_path + score_command
print score_command
os.system(score_command)
else:
#os.system("qsub -cwd -o out -e err -q %s -N %s -b y %s" % (qname, scoring_type, score_command))
#print "qsub -cwd -o out -e err -q %s -N guild_%s -b y %s" % (qname, drug, score_command)
print "%s" % (score_command.replace('"', ''))
return score_command
def guildify_multiple(network_file, to_file, output_dir, from_file=None, out_file="guild.txt", method="s", executable_path=None):
"""
to_file: seeds
If from_file is not None, returns a dictionary containing average z scores of targets to source, otherwise returns empty dictionary
method: d | s | r | w | p
(netshort | netscore | page rank | random walk | propagation)
"""
if from_file is not None and os.path.exists(out_file):
target_to_source_score = dict(line.strip("\n").split() for line in open(out_file).readlines())
return target_to_source_score
target_to_source_score = {}
network = get_network(network_file, only_lcc = True) # using LCC
if network_file.endswith(".lcc"):
network_lcc_file = network_file
else:
network_lcc_file = network_file + ".lcc"
nodes = set(network.nodes())
disease_to_genes, disease_to_category = get_diseasome_genes(to_file, nodes = nodes)
if not os.path.exists(output_dir):
print "Creating output directory", output_dir
os.makedirs(output_dir)
# Generate background file (for P-value calculation)
if not os.path.exists(output_dir + "/background.node"):
node_to_degree = dict(network.degree())
n = max(map(len, disease_to_genes.values()))
values = node_to_degree.items()
values.sort(key=lambda x: -x[1])
#k = 1.0 * max(node_to_degree.values())
values = set(zip(*values[:n])[0])
f = open(output_dir + "/background.node", 'w')
for node, degree in node_to_degree.iteritems():
#score = degree/k
if node in values: score = 1
else: score = 0.01
f.write("%s %f\n" % (node, score))
f.close()
if from_file is not None:
drug_to_targets, drug_to_category = get_diseasome_genes(from_file, nodes = nodes)
f = open(out_file, 'w')
f.write("source\ttarget\tscore\n")
for target, geneids in disease_to_genes.iteritems():
#print target, len(geneids)
target_mod = text_utilities.convert_to_R_string(target)
target_to_score = dict((gene, 1.0) for gene in geneids)
node_file = output_dir + "%s.n%s" % (target_mod, method)
if os.path.exists(node_file):
print "Skipping existing:", node_file
continue
run_guild(target_mod, target_to_score, nodes, network_lcc_file, output_dir, executable_path, background_score = 0.01, qname = "print", method = method) #!
node_to_score = dict(line.strip("\n").split() for line in open(node_file).readlines())
if from_file is not None:
values = map(float, numpy.array(node_to_score.values()))
m = numpy.mean(values)
s = numpy.std(values)
for source, geneids in drug_to_targets.iteritems():
score = -numpy.mean([(float(node_to_score[gene]) - m) / s for gene in geneids])
f.write("%s\t%s\t%f\n" % (source, target, score))
d = target_to_source_score.setdefault(target, {})
d[source] = score
if from_file is not None:
f.close()
return target_to_source_score
def get_scores(score_file):
"""
Parses scores from a scoring file created by GUILD (node <whitespace> score), returns a dictionary where the values are floats.
"""
nodes, dummy, node_to_score, dummy = network_utilities.get_nodes_and_edges_from_sif_file(file_name = score_file, store_edge_type = False, delim=None, data_to_float=True)
return node_to_score
### DIAMOnD related ###
def get_diamond_genes(network_file, seeds, file_name, only_lcc=True):
network = get_network(network_file, only_lcc=only_lcc)
nodes = set(network.nodes())
seeds = set(seeds) & nodes
#print len(seeds)
n_iteration = 500
if not os.path.exists(file_name):
diamond.DIAMOnD(network, seeds, n_iteration, alpha = 1, outfile = file_name)
f = open(file_name)
f.readline()
genes = []
for line in f:
rank, geneid = line.strip("\n").split()
genes.append(geneid)
f.close()
if not os.path.exists(file_name + ".coverage"):
f_out = open(file_name + ".coverage", 'w')
n = float(len(seeds))
component = network.subgraph(seeds)
#component = max(networkx.connected_components(component), key=len)
components = max(network_utilities.get_connected_components(network, False), key=len)
f_out.write("%s %f\n" % ("0", len(component & seeds)/n))
for i, gene in enumerate(genes):
rank = i + 1
component = network.subgraph(genes[:rank] + list(seeds))
#component = max(networkx.connected_components(component), key=len)
components = max(network_utilities.get_connected_components(network, False), key=len)
f_out.write("%s %f\n" % (rank, len(component & seeds)/n))
f_out.close()
return genes, nodes
### Functional enrichment related ###
def check_functional_enrichment(id_list, background_id_weights = None, id_type = "genesymbol", species = "Homo sapiens", mode="unordered", evidences = None, out_file_name = None, tex_format = False):
"""
id_type = "geneid" # "uniprotacession" # "genesymbol"
evidences = ['EXP', 'IDA', 'IEP', 'IGI', 'IMP', 'ISA', 'ISM', 'ISO', 'ISS', 'IGC'] # 'IPI'
evidences = None corresponds to ['EXP', 'IC', 'IDA', 'IEA', 'IEP', 'IGC', 'IGI', 'IMP', 'IPI', 'ISA', 'ISM', 'ISO', 'ISS', 'NAS', 'RCA', 'TAS']
for custom associations: association = [["GO:0006509", "351"], ["GO:0048167", "348", "5663", "5664", "23621"], ["GO:0097458", "1005", "1006", "1007"], ["GO:0048487", "1", "2", "351"], ["GO:0048488", map(str, range(1000,2000))]]
for backgroud id weights, such as occurrence frequency: (gene, weight)
"""
if out_file_name is not None:
f_output = open(out_file_name, 'w').write
else:
from sys import stdout
f_output = stdout.write
return functional_enrichment.check_functional_enrichment(id_list, background_id_weights, id_type, f_output, species = species, mode = mode, tex_format = tex_format, support = evidences, associations = None)