-
Notifications
You must be signed in to change notification settings - Fork 59
/
stat_utilities.py
262 lines (220 loc) · 7.2 KB
/
stat_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
from scipy import stats
from numpy import median
def main():
import sys
sc = float(sys.argv[1])
#alist=[1,1,0]
#alist = [ float(sys.argv[2]), float(sys.argv[3]), float(sys.argv[4]) ]
alist = map(float, sys.argv[2:])
#print alist
m, s = calc_mean_and_sigma(alist)
if s == 0:
print "0 variation"
else:
print "(%.2f - %.2f) / %.2f = %.2f" % ( sc, m, s, (sc - m) / s)
return
def convert_p_values_to_z_scores(p_values, size=1000000):
#a = np.random.normal(size) #1000000 # 10000000
#z_scores = map(lambda x: stats.scoreatpercentile(a, 100-(100*x/2.0)), p_values)
z_scores = stats.norm.ppf(p_values)
# Converting nan z score to 0 (for those with pval = 1)
z_scores = [ 0 if np.isnan(z) else z for z in z_scores ]
return z_scores
def convert_z_scores_to_p_values(z_scores, one_sided = None):
#p_values = 1 - st.norm.cdf(z_scores)
if one_sided is None:
p_values = stats.norm.sf(np.abs(z_scores))
p_values *= 2
elif one_sided == "-":
p_values = stats.norm.sf(map(lambda x: -x, z_scores))
else: #if one_sided == "+":
p_values = stats.norm.sf(z_scores)
return p_values
def correct_pvalues_for_multiple_testing(pvalues, correction_type = "Benjamini-Hochberg"):
"""
consistent with R - print correct_pvalues_for_multiple_testing([0.0, 0.01, 0.029, 0.03, 0.031, 0.05, 0.069, 0.07, 0.071, 0.09, 0.1])
"""
from numpy import array, empty
pvalues = array(pvalues)
n = pvalues.shape[0]
new_pvalues = empty(n)
n = float(n)
if correction_type == "Bonferroni":
new_pvalues = n * pvalues
elif correction_type == "Bonferroni-Holm":
values = [ (pvalue, i) for i, pvalue in enumerate(pvalues) ]
values.sort()
for rank, vals in enumerate(values):
pvalue, i = vals
new_pvalues[i] = (n-rank) * pvalue
elif correction_type == "Benjamini-Hochberg":
values = [ (pvalue, i) for i, pvalue in enumerate(pvalues) ]
values.sort()
values.reverse()
new_values = []
for i, vals in enumerate(values):
rank = n - i
pvalue, index = vals
new_values.append((n/rank) * pvalue)
for i in xrange(0, int(n)-1):
if new_values[i] < new_values[i+1]:
new_values[i+1] = new_values[i]
for i, vals in enumerate(values):
pvalue, index = vals
new_pvalues[index] = new_values[i]
#for rank, vals in enumerate(values):
#pvalue, i = vals
#new_pvalues[i] = (n/(rank+1)) * pvalue
else:
raise ValueError("Unknown correction type: " + correction_type)
return new_pvalues
def calc_mean_and_sigma(alist):
return mean(alist), sigma(alist)
def mean(x):
return np.mean(x)
def sigma(x):
return np.std(x)
def correlation(x, y, cor_type="pearson"):
# coef, p-val
if cor_type == "pearson":
coef, pval = np.ravel(stats.pearsonr(x, y))
elif cor_type == "spearman":
coef, pval = np.ravel(stats.spearmanr(x, y))
else:
raise ValueError("Invalid correlation type!")
return coef, pval
def jaccard(x, y):
return 1.0 * len(x & y) / len(x | y)
def jaccard_max(x, y):
return 1.0 * len(x & y) / max(map(len, [x, y]))
def jaccard_signed(x_up, x_down, y_up, y_down, costs = [1, 1, 1, 1,]):
j = costs[0] * len(x_up & y_up) + costs[3] * len(x_down & y_down)
j -= costs[1] * len(x_up & y_down) + costs[2] * len(x_down & y_up)
return j / 2.0
def statistical_test(x, y, test_type="wilcoxon", alternative="two-sided"):
# test stat, p-val
if test_type == "t":
stat, pval = np.ravel(stats.ttest_ind(x, y, equal_var=False))
elif test_type == "wilcoxon": # Requires equal size
stat, pval = np.ravel(stats.wilcoxon(x, y))
elif test_type == "mannwhitney": # returns one-sided by default
stat, pval = np.ravel(stats.mannwhitneyu(x, y))
elif test_type == "ks":
stat, pval = np.ravel(stats.ks_2samp(x,y))
else:
raise ValueError("Invalid correlation type!")
#return stat, pval
# To convert p-value to one-way, it is inconsistent with R though
if test_type == "wilcoxon":
stat2 = median(x) - median(y)
if stat2 >= 0:
if alternative == "greater":
pval = pval / 2
elif alternative == "less":
pval = 1 - pval / 2
else:
if alternative == "greater":
pval = 1 - pval / 2
elif alternative == "less":
pval = pval / 2
elif test_type == "mannwhitney":
stat2 = median(x) - median(y)
if alternative == "two-sided":
pval = (2 * pval)
elif alternative == "less":
if stat2 >= 0:
pval = 1 - pval
elif alternative == "greater":
if stat2 < 0:
pval = 1 - pval
elif alternative != "two-sided":
raise ValueError("Not implemented!")
return stat, pval
def hypergeometric_test(picked_good, picked_all, all_all, all_good):
k = len(picked_good)
N = len(all_all)
M = len(all_good)
n = len(picked_all)
val = sum(stats.hypergeom.pmf(range(k, n+1), N, M, n)) # was min(n, M) instead of n
# in stats doc M is N, n is M, N is n
#M = len(all_all)
#n = len(all_good)
#N = len(picked_all)
#val = sum(stats.hypergeom.pmf(range(k,min(N,n)+1), M, n, N))
return val
def hypergeometric_test_numeric(k, n, N, M):
val = sum(stats.hypergeom.pmf(range(k, min(n, M)+1), N, M, n))
return val
def density_estimation(occurences, possible_values):
kde = stats.gaussian_kde(map(float, occurences))
p = kde(possible_values)
return p / sum(p)
def fisher_exact(tp, fp, fn, tn, alternative="two-sided"):
"""
alternative: two-sided | greater | less
"""
oddsratio, pvalue = stats.fisher_exact([[tp, fp], [fn, tn]], alternative)
return oddsratio, pvalue
def rank(a):
return stats.rankdata(a)
def combine_pvalues(pvalues):
stat, pval = stats.combine_pvalues(pvalues, method='fisher', weights=None)
return pval
def ksrepo_score(golds, candidates):
"""
Given a ranked/prioritized candidates list (gene/pathway set),
finds the ks running sum score based on the
ranks of the matches of candidates on golds
Python implementation of ks_simple on https://github.com/adam-sam-brown/ksRepo/blob/master/R/ksRepo.R
"""
candidates = np.array(candidates)
idx = np.in1d(candidates, golds)
if np.sum(idx) == 0: # No match
return np.nan
ranks = np.arange(1.0, len(candidates)+1)
V = ranks[idx]
t = len(V)
j = np.arange(1.0, t+1)
n = len(golds)
#print V, n, len(candidates)
a = np.max(j/t - V/n)
b = np.max(V/n - (j-1)/t)
if a > b:
ks = a
else:
ks = -b
return ks
def ks_score(golds, candidates, N=None):
"""
Given a ranked golds set (genes / pathways),
calculates KS score as proposed by Mootha et al.
for the candidate list
(~max difference between cumulative distributions
of the sample and expected random walk)
"""
candidates = set(candidates)
score = 0
max_score = None
if N is None:
n = len(golds)
else:
n = N
g = float(len(candidates))
val_in = np.sqrt((n-g)/g)
val_out = -np.sqrt(g/(n-g))
if n <= g:
raise ValueError("Gold set is smaller than candidate set")
for gold in golds:
if gold in candidates:
score += val_in
else:
score += val_out
if max_score is None:
max_score = score
else:
if abs(score) > abs(max_score):
max_score = score
return max_score
if __name__ == "__main__":
main()