-
Notifications
You must be signed in to change notification settings - Fork 59
/
drug_info.py
611 lines (559 loc) · 24.2 KB
/
drug_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
from toolbox import configuration, wrappers, stat_utilities
from toolbox import parse_drugbank, parse_sider_v4, parse_stitch
from toolbox import TsvReader, network_utilities
import os, cPickle, numpy, random #, time,
try:
from indigo import indigo
except:
print "Indigo not found, chemical similarity will not be available!"
def get_drug_info(parameters, parser=None):
# Get drugbank data
if parser is None:
parser = get_drugbank(parameters)
# Get drug target geneids for selected drugs (e.g., approved)
drug_to_geneids = get_drug_targets(parameters, parser)
selected_drugs = get_drugs_by_type(parameters, parser)
drug_to_geneids = dict((drug, geneids) for drug, geneids in drug_to_geneids.iteritems() if drug in selected_drugs)
return drug_to_geneids
def get_drugbank(parameters):
file_name = parameters.get("drugbank_file")
dump_file = file_name + ".pcl"
if os.path.exists(dump_file):
parser = cPickle.load(open(dump_file))
else:
parser = parse_drugbank.DrugBankXMLParser(file_name)
parser.parse()
cPickle.dump(parser, open(dump_file, 'w'))
return parser
###### Drugbank related ######
def get_drug_targets(parameters, parser=None, id_type="geneid"):
"""
id_type: uniprot | geneid | symbol
"""
if parser is None:
parser = get_drugbank(parameters)
target_types = set(parameters.get("target_type").split("|"))
drug_to_uniprots = parser.get_targets(target_types, only_paction=parameters.get_boolean("only_paction"))
#print len(drug_to_uniprots), drug_to_uniprots.items()[:5]
uniprot_ids = reduce(lambda x,y: x|y, drug_to_uniprots.values())
if id_type == "uniprot":
drug_to_targets = drug_to_uniprots
elif id_type == "geneid":
uniprot_to_id = wrappers.get_uniprot_to_id(parameters.get("uniprot_file"), uniprot_ids, only_min=True, key_function=int)
elif id_type == "symbol":
uniprot_to_id = wrappers.get_uniprot_to_id(parameters.get("uniprot_symbol_file"), uniprot_ids, only_min=True, key_function=len)
else:
raise ValueError("Unknown id type: %s" % id_type)
drug_to_targets = {}
for drug, uniprots in drug_to_uniprots.iteritems():
for uniprot in uniprots:
if uniprot in uniprot_to_id:
drug_to_targets.setdefault(drug, set()).add(uniprot_to_id[uniprot])
#print len(drug_to_targets), drug_to_targets.items()[:5]
#print drug_to_uniprots["DB00536"]
#print drug_to_targets["DB00536"]
return drug_to_targets
def get_drugbank_ids_for_drugs(drugs, parameters=None, parser=None, check_synonyms=True, use_text_matching=False):
if parser is None:
if parameters is None:
raise ValueError("One of the parser or parameters arguments are required!")
parser = get_drugbank(parameters)
name_to_drug, synonym_to_drug = parser.get_synonyms(selected_drugs=None, only_synonyms=False)
drug_to_db_id = {}
not_in_db = set()
for drug in drugs:
name = drug.lower()
if name in name_to_drug:
drug = name_to_drug[name]
drug_to_db_id[name] = drug
elif check_synonyms:
if name in synonym_to_drug:
drug = synonym_to_drug[name]
if name in drug_to_db_id:
print "Ignoring synonym for already matched id", name, drug_to_db_id[name], drug
else:
drug_to_db_id[name] = drug
if name not in drug_to_db_id:
if use_text_matching == True:
found = False
for drug, db_name in parser.drug_to_name.iteritems():
db_name = db_name.lower()
if db_name.find(name) != -1:
found = True
drug_to_db_id[db_name] = drug
print "Id found by text matching", name, drug
if not found:
not_in_db.add(name)
else:
not_in_db.add(name)
print "Not in DrugBank:", not_in_db
return drug_to_db_id
def get_drugs_by_type(parameters, parser=None):
if parser is None:
parser = get_drugbank()
drug_type = parameters.get("drug_type")
groups_to_include = set([drug_type])
groups_to_exclude = set([]) #["withdrawn"])
if drug_type == "all":
selected_drugs = set(parser.drug_to_name.keys())
return selected_drugs
elif drug_type == "all_but_withdrawn":
groups_to_include = set(["approved", "experimental", "investigational", "nutraceutical", "illicit"]) # , "withdrawn"
groups_to_exclude = set(["withdrawn"])
elif drug_type == "withdrawn":
groups_to_exclude = set([])
selected_drugs = parser.get_drugs_by_group(groups_to_include = groups_to_include, groups_to_exclude = groups_to_exclude)
return selected_drugs
def get_drug_smiles_by_target(parameters, parser=None):
if parser is None:
parser = get_drugbank(parameters)
drug_to_geneids = get_drug_targets(parameters, parser)
smiles_to_geneids = {}
geneid_to_smile_strings = {}
for drug, smiles in parser.drug_to_smiles.iteritems():
if drug in drug_to_geneids:
geneids = drug_to_geneids[drug]
for geneid in geneids:
for words in (smiles.split("\n"), smiles.split("<br"), smiles.split(";"), smiles.split()):
if len(words) > 1:
print "Potential multiple smiles", smiles
elif len(smiles) == 0:
print "Empty smiles", smiles
smiles_to_geneids.setdefault(smiles, set()).add(geneid)
geneid_to_smile_strings.setdefault(geneid, set()).add(smiles)
return smiles_to_geneids, geneid_to_smile_strings
def get_drug_drug_interactions(parameters, drug_names, out_file=None):
parser = drug_info.get_drugbank(parameters)
drug_to_db_id = drug_info.get_drugbank_ids_for_drugs(drug_names, parameters=None, parser=parser, check_synonyms=True, use_text_matching=False)
db_id_to_interactions = parser.drug_to_interactions
#print len(db_id_to_interactions), db_id_to_interactions.items()[:3]
print len(drug_names), len(drug_to_db_id)
drugs_new = []
for drug in drug_names:
if drug not in drug_to_db_id:
continue
db_id = drug_to_db_id[drug]
if db_id not in db_id_to_interactions:
continue
drugs_new.append(drug)
drugs_new.sort()
if out_file is not None:
f = open(out_file, 'w')
f.write("Drug\t%s\n" % "\t".join(drugs_new))
for drug in drugs_new:
values = ["0"] * len(drugs_new)
for i, drug2 in enumerate(drugs_new):
if drug != drug2:
if drug_to_db_id[drug2] in db_id_to_interactions[drug_to_db_id[drug]]:
values[i] = "1"
f.write("%s\t%s\n" % (drug, "\t".join(values)))
f.close()
return drug_to_db_id, db_id_to_interactions
###### Drug similarity related ######
def get_smiles_similarity(smiles1, smiles2, fp_type = "sim", metric = "tanimoto"):
"""
fp_type: sim | sub
metric: tanimoto | tversky
"""
if len(smiles1) == 0 or len(smiles2) == 0:
return None
ind = indigo.Indigo()
m = ind.loadMolecule(smiles1)
m.aromatize()
fp = m.fingerprint(fp_type)
m2 = ind.loadMolecule(smiles2)
m2.aromatize() # Aromatize molecules in case they are not in aromatic form
fp2 = m2.fingerprint(fp_type) # Calculate similarity between "similarity" fingerprints
d = ind.similarity(fp, fp2, metric)
return d
def get_target_similarity(targets1, targets2, target_to_occurrences=None):
"""
Weighted jaccard, if target_to_occurrences (diseases / side effects) is not None
"""
if len(targets1) == 0 or len(targets2) == 0:
return None
targets_common = targets1 & targets2
if target_to_occurrences is None:
#d = len(targets_common) / float(max(len(targets1), len(targets2))) # ~worse
d = len(targets_common) / float(len(targets1|targets2))
else:
d = 0.0
for t in targets_common:
d += 1.0/len(target_to_occurrences[t])
d /= len(targets1|targets2) # max(len(targets1), len(targets2))
return d
def get_target_ppi_similarity(targets1, targets2, network):
if len(targets1) == 0 or len(targets2) == 0:
return None
vals = []
for target1 in targets1:
for target2 in targets2:
d = network_utilities.get_shortest_path_length_between(network, target1, target2)
vals.append(d)
d = numpy.exp(-numpy.mean(vals))
return d
def get_drug_similarity(drug_to_values, method="target", network=None, dump_file=None):
"""
values = targets or smiles
"""
if dump_file is not None and os.path.exists(dump_file):
drug_to_drug_similarity = cPickle.load(open(dump_file))
return drug_to_drug_similarity
if network is None and method == "target-ppi":
raise ValueError("Network is required for target-ppi")
drug_to_drug_similarity = {}
drugs = drug_to_values.keys()
for i, drug1 in enumerate(drugs):
for j, drug2 in enumerate(drugs):
if i >= j:
continue
#comb = tuple(sorted([drug1, drug2]))
val1 = drug_to_values[drug1]
val2 = drug_to_values[drug2]
d = None
if method == "target":
d = get_target_similarity(val1, val2)
elif method == "target-ppi":
d = get_target_ppi_similarity(val1, val2, network)
elif method == "chemical":
d = get_smiles_similarity(val1, val2)
else:
raise ValueError("Uknown method: %s" % method)
drug_to_drug_similarity.setdefault(drug1, {})[drug2] = d
drug_to_drug_similarity.setdefault(drug2, {})[drug1] = d
if dump_file is not None:
cPickle.dump(drug_to_drug_similarity, open(dump_file,'w'))
return drug_to_drug_similarity
###### Chemical similarity based target prediction (~SEA) related ######
def get_chemical_similarity_based_target_predictions(parameters, smiles_list, cutoff=0.9, method="fishers"):
"""
method: any_smiles / at_least_one_above (inherit targets of any matching smiles w.r.t. cutoff) | majority_above (inherit the target majority of whose smiles is above cutoff) | all_above (inherit the target all of whose smiles are above cutoff)
"""
parser = get_drugbank(parameters)
smiles_to_geneids, geneid_to_smiles_strings = get_drug_smiles_by_target(parameters, parser)
#print len(geneid_to_smiles_strings), geneid_to_smiles_strings.items()[:5]
all_smiles = reduce(lambda x,y: x|y, geneid_to_smiles_strings.values())
smiles_to_smiles_similarity = {}
for smiles1 in smiles_list:
smiles_to_smiles_similarity[smiles1] = {}
for smiles2 in all_smiles:
try:
d = get_smiles_similarity(smiles1, smiles2, fp_type="sim", metric="tanimoto")
except:
#print smiles1, smiles2 # chirality not possible
continue
smiles_to_smiles_similarity[smiles1][smiles2] = d
smiles_to_geneids_predicted = {}
if method == "fishers":
smiles_to_query_smiles = {}
for smiles in all_smiles:
for smiles_query, smiles_to_value in smiles_to_smiles_similarity.iteritems():
try:
d = smiles_to_value[smiles]
except:
continue
if d >= cutoff:
smiles_to_query_smiles.setdefault(smiles, set()).add(smiles_query)
print "Drugs with matching smiles:", len(smiles_to_query_smiles)
smiles_to_geneids_predicted = get_side_effect_targets_fishers(smiles_to_geneids, smiles_to_query_smiles, cutoff=float(parameters.get("fdr_cutoff")), correct_pvalues=True)
elif method == "any_smiles" or method == "at_least_one_above":
for smiles in smiles_list:
for smiles2, d in smiles_to_smiles_similarity[smiles].iteritems():
if d >= cutoff:
print smiles2, d
geneids = smiles_to_geneids_predicted.setdefault(smiles, set())
geneids |= smiles_to_geneids[smiles2]
elif method in ("majority_above", "all_above"):
for smiles in smiles_list:
for geneid, smiles_strings in geneid_to_smiles_strings.iteritems():
values = []
for smiles2 in smiles_strings:
try:
#print smiles2 # chirality not possible
d = smiles_to_smiles_similarity[smiles][smiles2]
values.append(d >= cutoff)
except:
continue
if len(values) == 0:
continue
if method == "majority_above":
if sum(values) / float(len(values)) > 0.5: #any(values):
smiles_to_geneids_predicted.setdefault(smiles, set()).add(geneid)
elif method == "all_above":
if all(values):
smiles_to_geneids_predicted.setdefault(smiles, set()).add(geneid)
# If smiles is among known smiles, add known targets
if smiles in smiles_to_geneids:
smiles_to_geneids_predicted[smiles] |= smiles_to_geneids[smiles]
else:
raise ValueError("Unknown method: %s!" % method)
return smiles_to_geneids_predicted
###### Side effect targets related ######
def get_side_effect_targets(parameters, source = "sider"):
if source.startswith("sider"):
dump_file = parameters.get("sider_dir") + "/side_effect_to_targets.pcl"
if source != "sider":
dump_file += "." + source
elif source == "offsides":
dump_file = parameters.get("offsides_dir") + "/side_effect_to_targets.pcl"
else:
raise ValueError("Uknown source: %s" % source)
if os.path.exists(dump_file):
side_effect_to_targets = cPickle.load(open(dump_file))
return side_effect_to_targets
# Get drugs and their targets
drug_to_geneids = get_drug_info(parameters)
# Get side effect info
if source.startswith("sider"):
drug_to_side_effects = get_drug_side_effects(parameters, source)
elif source == "offsides":
drug_to_side_effects = get_offsides(parameters)
#print len(drug_to_side_effects), drug_to_side_effects.items()[:5]
# Side effect protein target sets w.r.t. FDR <=0.2
side_effect_to_targets = get_side_effect_targets_fishers(drug_to_geneids, drug_to_side_effects, cutoff=float(parameters.get("fdr_cutoff")), correct_pvalues=True)
cPickle.dump(side_effect_to_targets, open(dump_file,'w'))
return side_effect_to_targets
def get_drug_side_effect_subset(parameters, drug_to_side_effects):
n_fold = int(parameters.get("n_fold"))
random.seed(int(parameters.get("random_seed")))
pairs = [ (drug, side_effect) for drug, side_effects in drug_to_side_effects.iteritems() for side_effect in side_effects ]
random.shuffle(pairs)
values = []
n = len(pairs) / n_fold
#n = len(pairs) / 10 # to check 1-fold of a possible 10-fold
for i in xrange(n_fold):
#for i, j in [(0, 9*n), (9*n, len(pairs))]:
drug_to_side_effects_sub = {}
for drug, side_effect in pairs[i*n:(i+1)*n]:
#for drug, side_effect in pairs[i:j]:
drug_to_side_effects_sub.setdefault(drug, set()).add(side_effect)
values.append(drug_to_side_effects_sub)
return values
def get_side_effect_target_symbols(parameters, source = "sider", output_file=None):
# Get gene id - name mapping
geneid_to_name, name_to_geneid = wrappers.get_geneid_symbol_mapping(parameters.get("id_mapping_file"))
# Get side effect targets
side_effect_to_targets = get_side_effect_targets(parameters, source)
# Create side effect target mapping file
if output_file is not None:
f = open(file_name, 'w')
side_effect_to_genes = {}
for side_effect, targets in side_effect_to_targets.iteritems():
values = []
for target in targets:
if target in geneid_to_name:
values.extend(list(geneid_to_name[target]))
values.sort()
side_effect_to_genes[side_effect] = set(values)
#print side_effect, len(targets), len(values)
#values = targets
if output_file is not None:
f.write("\t%s\t%s\n" % (side_effect, "\t".join(values)))
if output_file is not None:
f.close()
return side_effect_to_genes
def get_side_effect_targets_fishers(drug_to_geneids, drug_to_side_effects, cutoff=0.2, correct_pvalues=True): # min_n_drug=5,
"""
cutoff: p-value or fdr cutoff (0.2)
correct_pvalues: apply multiple hypothesis testing (True)
(obselete) min_n_drug: Consider only side effects that are associated with at least n drugs (5)
"""
# Get side effect to drugs
drugs_all = set()
side_effect_to_drugs = {}
for drug, side_effects in drug_to_side_effects.iteritems():
if drug not in drug_to_geneids:
continue
for side_effect in side_effects:
side_effect_to_drugs.setdefault(side_effect, set()).add(drug)
drugs_all.add(drug)
#print len(side_effect_to_drugs), side_effect_to_drugs.items()[:5]
# Get target to drugs
target_to_drugs = {}
for drug, geneids in drug_to_geneids.iteritems():
if drug not in drug_to_side_effects:
continue
for geneid in geneids:
target_to_drugs.setdefault(geneid, set()).add(drug)
if drug not in drugs_all:
print "Side effect info but no target info:", drug
#print len(target_to_drugs), target_to_drugs.items()[:5]
# Get side effect to targets
side_effect_to_targets = {}
n_less_than_five = 0
for side_effect, drugs_se in side_effect_to_drugs.iteritems():
#if len(drugs_se) < min_n_drug:
# n_less_than_five += 1
# continue
values = []
for target, drugs_target in target_to_drugs.iteritems():
tp = len(drugs_se & drugs_target)
fp = len(drugs_target) - tp
fn = len(drugs_se) - tp
tn = len(drugs_all) - (tp + fp + fn)
oddsratio, pvalue = stat_utilities.fisher_exact(tp, fp, fn, tn, alternative="greater")
#if target == "19" and side_effect == "nausea":
# print side_effect, oddsratio, pvalue
if correct_pvalues:
values.append((pvalue, target))
else:
if pvalue <= cutoff:
side_effect_to_targets.setdefault(side_effect, set()).add(target)
if correct_pvalues:
pvalues_new = stat_utilities.correct_pvalues_for_multiple_testing(zip(*values)[0])
for i, pvalue in enumerate(pvalues_new):
if pvalue <= cutoff:
side_effect_to_targets.setdefault(side_effect, set()).add(values[i][1])
#print len(side_effect_to_drugs), n_less_than_five, len(side_effect_to_targets)
return side_effect_to_targets
###### Sider related ######
def get_sider(parameters):
indication_file = parameters.get("sider_dir") + "/meddra_all_label_indications.tsv.gz"
side_effect_file = parameters.get("sider_dir") + "/meddra_all_label_se.tsv.gz"
dump_file = parameters.get("sider_dir") + "/sider.pcl"
pubchem_to_indications, pubchem_to_side_effects = parse_sider_v4.get_sider_info(indication_file, side_effect_file, dump_file)
return pubchem_to_indications, pubchem_to_side_effects
def get_drug_side_effects(parameters, source=None):
dump_file = parameters.get("sider_dir") + "/drug_side_effects.pcl"
if os.path.exists(dump_file):
drugbank_id_to_side_effects = cPickle.load(open(dump_file))
if source is not None:
if source == "sider1":
drugbank_id_to_side_effects = get_drug_side_effect_subset(parameters, drugbank_id_to_side_effects)[0]
elif source == "sider2":
drugbank_id_to_side_effects = get_drug_side_effect_subset(parameters, drugbank_id_to_side_effects)[1]
return drugbank_id_to_side_effects
# Get sider info
pubchem_to_indications, pubchem_to_side_effects = get_sider(parameters)
#print "SIDER"
#print len(pubchem_to_indications), pubchem_to_indications.items()[:5]
#print len(pubchem_to_side_effects), pubchem_to_side_effects.items()[:5]
# Get stitch drugbank mapping
pubchem_to_drugbank_ids, pubchem_to_target_to_score = get_stitch(parameters)
#print "STITCH"
#print len(pubchem_to_drugbank_ids), pubchem_to_drugbank_ids.items()[:5]
#print len(pubchem_to_target_to_score), pubchem_to_target_to_score.items()[:5]
# Get drugbank pubchem mapping
parser = get_drugbank(parameters)
pubchem_to_drugbank_ids_db = {}
for drug_to_values in (parser.drug_to_pubchem, parser.drug_to_pubchem_substance):
for drugbank_id, pubchem in drug_to_values.iteritems():
pubchem_to_drugbank_ids_db.setdefault(pubchem, set()).add(drugbank_id)
#print "DB"
#print len(pubchem_to_drugbank_ids_db), pubchem_to_drugbank_ids_db.items()[:5]
drugbank_id_to_side_effects = {}
for pubchem, side_effects in pubchem_to_side_effects.iteritems():
if pubchem not in pubchem_to_side_effects:
continue
db_ids1 = set()
db_ids2 = set()
if pubchem in pubchem_to_drugbank_ids:
db_ids1 = pubchem_to_drugbank_ids[pubchem]
#drugbank_ids |= db_ids1
if pubchem in pubchem_to_drugbank_ids_db:
db_ids2 = pubchem_to_drugbank_ids_db[pubchem]
#drugbank_ids |= db_ids2
drugbank_ids = db_ids2
if len(db_ids2) == 0: # No mapping in drugbank
if len(db_ids1) == 1: # accept pubchem mapping
drugbank_ids = db_ids1
else: # ignore (the right pubchem will come from the one from drugbank)
continue
for drugbank_id in drugbank_ids:
for side_effect in pubchem_to_side_effects[pubchem]:
drugbank_id_to_side_effects.setdefault(drugbank_id, set()).add(side_effect)
#if len(db_ids1 & db_ids2) == 0:
# print pubchem, len(db_ids1 & db_ids2), len(db_ids1 | db_ids2), db_ids1, db_ids2
cPickle.dump(drugbank_id_to_side_effects, open(dump_file,'w'))
return drugbank_id_to_side_effects
##### STITCH related #####
def get_stitch(parameters):
base_dir = parameters.get("stitch_dir") + "/"
chemicals_file = base_dir + "chemicals.inchikeys.v4.0.1.tsv.gz"
alias_file = base_dir + "chemical.aliases.v4.0.tsv.gz"
inchikey_file = base_dir + "chemicals.inchikeys.v4.0.1.tsv.gz"
links_file = base_dir + "9606.protein_chemical.links.detailed.v4.0.tsv.gz"
gene_mapping_file = parameters.get("string_dir") + "/entrez_gene_id.vs.string.v10.28042015.tsv"
dump_file = base_dir + "stitch.pcl"
cid_to_drugbank_ids, cid_to_target_to_score = parse_stitch.get_stitch_info(chemicals_file, alias_file, inchikey_file, links_file, gene_mapping_file, dump_file, species_prefix = "9606")
return cid_to_drugbank_ids, cid_to_target_to_score
##### Other side effect resoureces (OFFSIDES / NUGENT) related #####
def get_offsides(parameters):
# Get offsides data
parser = TsvReader.TsvReader(parameters.get("offsides_file"), delim="\t", inner_delim = None, quotation='"')
header_to_idx, cid_to_values = parser.read(fields_to_include = ["stitch_id", "event", "pvalue", "bg_correction", "sider", "future_aers", "medeffect"], keys_to_include = None, merge_inner_values = False)
#print len(cid_to_values) #, cid_to_values.items()[:3]
# Get stitch drugbank mapping
pubchem_to_drugbank_ids, pubchem_to_target_to_score = get_stitch(parameters)
# Get drugbank side effect mapping
drug_to_side_effects = {}
not_in_db = set()
side_effects = set()
for cid, values in cid_to_values.iteritems():
side_effects |= set(map(lambda x: x.lower(), zip(*values)[0]))
n_side_effects = len(side_effects)
#print "Number of side effects:", n_side_effects
for cid, values in cid_to_values.iteritems():
cid = cid[3:]
if cid.startswith("1"):
cid = "%s" % (abs(int(cid)) - 100000000)
else:
cid = "%s" % abs(int(cid))
if cid not in pubchem_to_drugbank_ids:
not_in_db.add(cid)
continue
drugs = pubchem_to_drugbank_ids[cid]
for side_effect, pval, bg_correction, sider, future_aers, medeffect in values:
#print side_effect, pval, bg_correction
# Convert all lower / upper case starting side effect words to Sider format
#side_effect = " ".join(map(lambda x: x[0].lower() + x[1:], side_effect.split(" ")))
side_effect = side_effect.lower()
side_effect = side_effect[0].upper() + side_effect[1:]
#if n_side_effects*float(pval) <= 0.2: # and float(bg_correction) <= 0.001:
#if future_aers == "1":
if medeffect == "1": # and sider != "1":
for drug in drugs:
drug_to_side_effects.setdefault(drug, set()).add(side_effect)
#print len(drug_to_side_effects), drug_to_side_effects.items()[:3]
#print "Drugs not in drugbank mapping:", len(not_in_db) #, not_in_db
return drug_to_side_effects
def get_nugent(parameters):
# Get nugent data
f = open(parameters.get("nugent_file"))
f.readline()
name_to_side_effect_counts = {}
for line in f:
tweet_id, drugs, side_effects = line.strip("\n").split("\t")
if side_effects == "":
continue
for drug in drugs.split("|"):
d = name_to_side_effect_counts.setdefault(drug, {})
#d |= set(map(lambda x: x[0].upper() + x[1:], side_effects.split("|")))
for side_effect in side_effects.split("|"):
side_effect = side_effect[0].upper() + side_effect[1:]
e = d.setdefault(side_effect, 0)
d[side_effect] = e + 1
# Get drugbank side effect mapping
parser = get_drugbank(parameters)
name_to_drug, synonym_to_drug = parser.get_synonyms(selected_drugs=None, only_synonyms=False)
drug_to_side_effects = {}
not_in_db = set()
for name, side_effect_to_count in name_to_side_effect_counts.iteritems():
# Get drugbank name mapping
if name in name_to_drug:
drug = name_to_drug[name]
elif name in synonym_to_drug:
drug = synonym_to_drug[name]
else:
not_in_db.add(name)
continue
count_total = 0.0
for side_effect, count in side_effect_to_count.iteritems():
count_total += count
for side_effect, count in side_effect_to_count.iteritems():
#if count / count_total > 0.5:
if count >= 5:
drug_to_side_effects.setdefault(drug, set()).add(side_effect)
print len(drug_to_side_effects), drug_to_side_effects.items()[:3]
print "Drugs not in drugbank mapping:", len(not_in_db) #, not_in_db
return drug_to_side_effects