-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
420 lines (355 loc) · 15.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import argparse
import os
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
import yaml
from sklearn.metrics import roc_auc_score
import numpy as np
import constants as const
import dataset
import fastflow
import utils
import hostlist
import torch.distributed as dist
def build_train_data_loader(args, config):
train_dataset = dataset.MVTecDataset(
root=args.data,
category=args.category,
input_size=config["input_size"],
is_train=True,
)
return torch.utils.data.DataLoader(
train_dataset,
batch_size=const.BATCH_SIZE,
shuffle=True,
num_workers=4,
drop_last=True,
)
def build_train_loader_parallel(args, config, idr_torch_size, idr_torch_rank) :
train_dataset = dataset.MVTecDataset(
root=args.data,
category=args.category,
input_size=config["input_size"],
is_train=True,
)
batch_size = const.BATCH_SIZE
batch_size_per_gpu = batch_size // idr_torch_size
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
num_replicas=idr_torch_size,
rank=idr_torch_rank)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size_per_gpu,
shuffle=False,
num_workers=4,
pin_memory=True,
sampler=train_sampler)
return train_loader
def build_test_loader_parallel(args, config, idr_torch_size, idr_torch_rank) :
test_dataset = dataset.MVTecDataset(
root=args.data,
category=args.category,
input_size=config["input_size"],
is_train=False,
)
batch_size = const.BATCH_SIZE
batch_size_per_gpu = batch_size // idr_torch_size
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset,
num_replicas=idr_torch_size,
rank=idr_torch_rank)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size_per_gpu,
shuffle=False,
num_workers=4,
pin_memory=True,
sampler=test_sampler,
drop_last=False,)
print('Test loader created')
return test_loader
def build_test_data_loader(args, config):
test_dataset = dataset.MVTecDataset(
root=args.data,
category=args.category,
input_size=config["input_size"],
is_train=False,
)
return torch.utils.data.DataLoader(
test_dataset,
batch_size=const.BATCH_SIZE,
shuffle=False,
num_workers=4,
drop_last=False,
)
def build_model(config):
model = fastflow.FastFlow(
backbone_name=config["backbone_name"],
flow_steps=config["flow_step"],
input_size=config["input_size"],
conv3x3_only=config["conv3x3_only"],
hidden_ratio=config["hidden_ratio"],
)
print(
"Model A.D. Param#: {}".format(
sum(p.numel() for p in model.parameters() if p.requires_grad)
)
)
return model
def build_optimizer(model):
return torch.optim.Adam(
model.parameters(), lr=const.LR, weight_decay=const.WEIGHT_DECAY
)
def train_one_epoch(dataloader, model, optimizer, epoch):
model.train()
loss_meter = utils.AverageMeter()
for step, data in enumerate(dataloader):
# forward
data = data.cuda()
ret = model(data)
loss = ret["loss"]
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# log
loss_meter.update(loss.item())
if (step + 1) % const.LOG_INTERVAL == 0 or (step + 1) == len(dataloader):
print(
"Epoch {} - Step {}: loss = {:.3f}({:.3f})".format(
epoch + 1, step + 1, loss_meter.val, loss_meter.avg
)
)
def eval_once(dataloader, model):
model.eval()
Predict = []
Target = []
for data, targets in dataloader:
data, targets = data.cuda(), targets.cuda()
with torch.no_grad():
ret = model(data)
outputs = ret["anomaly_map"].cpu().detach()
outputs = outputs.flatten().cpu().numpy()
targets = targets.flatten().int().cpu().numpy()
Predict.append(outputs.tolist())
Target.append(targets.tolist())
Predict = [item for sublist in Predict for item in sublist] # np.ravel(np.array(Predict, dtype=object))
Target = [item for sublist in Target for item in sublist] #np.ravel(np.array(Target, dtype=object))
auroc = roc_auc_score(Target,Predict)
print("AUROC: {}".format(auroc))
return auroc
def eval_once_outfile(dataloader, model, epoch, args):
current_anomaly_map_outfile_path = args.anomaly_map_outfile_path + '_epoch_' + str(epoch)
print('current_anomaly_map_outfile_path ', current_anomaly_map_outfile_path)
current_anomaly_scores_files = current_anomaly_map_outfile_path + '/'+ args.anomaly_scores_summary_file
print(current_anomaly_scores_files)
os.makedirs(current_anomaly_map_outfile_path, exist_ok=True)
if args.mae_encoded_vectors_path:
current_mae_encoded_vectors_path = current_anomaly_map_outfile_path + '/' + args.mae_encoded_vectors_path
os.makedirs(current_mae_encoded_vectors_path, exist_ok=True)
model.eval()
if args.dataset_name != 'lnen':
with open(current_anomaly_scores_files, 'w') as file:
file.write('Path2Image,Anomaly,Loss,MeanAnomalyScore,MaxAnomalyScore\n')
file.close()
for data, targets, imgfilename in dataloader:
data, targets = data.cuda(), targets.cuda()
with torch.no_grad():
ret = model(data)
outputs = ret["anomaly_map"].cpu().detach()
log_jac_dets = ret['log_jac_dets'].cpu().detach()
log_jac_dets_np = log_jac_dets.numpy()
# 0.5 * torch.sum(outputs**2, dim=(1, 2, 3)) - log_jac_dets
outputs_np = outputs.numpy()
log_jac_dets_np = log_jac_dets.numpy()
for i in range(len(imgfilename)):
anom = imgfilename[i].split('/')[-2]
imname = imgfilename[i].split('/')[-1]
os.makedirs(os.path.join(current_anomaly_map_outfile_path, anom), exist_ok=True)
if args.mae_encoded_vectors_path:
os.makedirs(os.path.join(current_mae_encoded_vectors_path, anom), exist_ok=True)
loss = np.mean(0.5 * np.sum(outputs_np[i]**2, axis=(0, 1, 2)) - log_jac_dets_np[i])
c_anom_map = outputs_np[i].squeeze()
mean_anom_map = c_anom_map.mean(axis=0).mean(axis=0)
max_anom_map = c_anom_map.max(axis=0).max(axis=0)
with open(current_anomaly_scores_files, 'a') as file:
file.write(f'{imgfilename[i]},{anom},{loss},{mean_anom_map},{max_anom_map}\n')
file.close()
np.save(os.path.join(current_anomaly_map_outfile_path, anom, imname[:-4]+'.npy'), c_anom_map)
outputs = outputs.flatten()
targets = targets.flatten()
else:
with open(current_anomaly_scores_files, 'a') as file:
file.write('Path2Image,Anomaly,Loss,MeanAnomalyScore,MaxAnomalyScore\n')
file.close()
for data, imgfilename in dataloader:
data = data.cuda()
with torch.no_grad():
ret = model(data)
outputs = ret["anomaly_map"].cpu().detach()
log_jac_dets = ret['log_jac_dets'].cpu().detach()
features = ret["features"][0].cpu().detach()
# 0.5 * torch.sum(outputs**2, dim=(1, 2, 3)) - log_jac_dets
log_jac_dets_np = log_jac_dets.numpy()
features_np = features.numpy()
outputs_np = outputs.numpy()
for i in range(len(imgfilename)):
sample = imgfilename[i].split('/')[-3] # -2 if Tumor Normal expected
imname = imgfilename[i].split('/')[-1]
os.makedirs(os.path.join(current_anomaly_map_outfile_path, sample), exist_ok=True)
if args.mae_encoded_vectors_path:
os.makedirs(os.path.join(current_mae_encoded_vectors_path, sample), exist_ok=True)
loss = 0.5* np.sum(outputs_np[i]**2) - log_jac_dets_np[i] #(0.5 * torch.sum(outputs[i]**2, dim=(1, 2, 3)) - log_jac_dets
c_features = features_np[i].squeeze().flatten()
c_anom_map = outputs_np[i].squeeze()
mean_anom_map = c_anom_map.mean(axis=0).mean(axis=0)
max_anom_map = c_anom_map.max(axis=0).max(axis=0)
with open(current_anomaly_scores_files, 'a') as file:
file.write(f'{imgfilename[i]},{sample},{loss},{mean_anom_map},{max_anom_map}\n')
file.close()
np.save(os.path.join(current_anomaly_map_outfile_path, sample, imname[:-4]+'.npy'), c_anom_map)
if args.mae_encoded_vectors_path:
np.save(os.path.join(current_mae_encoded_vectors_path, sample, imname[:-4]+'.npy'), c_features)
def train(args):
os.makedirs(args.checkpoint_dir, exist_ok=True)
checkpoint_dir = os.path.join(
args.checkpoint_dir, "exp%d" % len(os.listdir(args.checkpoint_dir))
)
os.makedirs(checkpoint_dir, exist_ok=True)
config = yaml.safe_load(open(args.config, "r"))
model = build_model(config)
optimizer = build_optimizer(model)
train_dataloader = build_train_data_loader(args, config)
test_dataloader = build_test_data_loader(args, config)
model.cuda()
for epoch in range(const.NUM_EPOCHS):
train_one_epoch(train_dataloader, model, optimizer, epoch)
if (epoch + 1) % const.EVAL_INTERVAL == 0:
eval_once(test_dataloader, model)
if (epoch + 1) % const.CHECKPOINT_INTERVAL == 0:
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
os.path.join(checkpoint_dir, "%d.pt" % epoch),
)
def train_parallel(args):
Best_AUC_ROC = 0
# get SLURM variables
rank = int(os.environ['SLURM_PROCID'])
local_rank = int(os.environ['SLURM_LOCALID'])
size = int(os.environ['SLURM_NTASKS'])
cpus_per_task = int(os.environ['SLURM_CPUS_PER_TASK'])
# get node list from slurm
hostnames = hostlist.expand_hostlist(os.environ['SLURM_JOB_NODELIST'])
gpu_ids = os.environ['SLURM_STEP_GPUS'].split(",")
# define MASTER_ADD & MASTER_PORT
os.environ['MASTER_ADDR'] = hostnames[0]
os.environ['MASTER_PORT'] = str(12456 + int(min(gpu_ids))); #Avoid port conflits in the node #str(12345 + gpu_ids)
dist.init_process_group(backend='nccl',
init_method='env://',
world_size=size,
rank=rank)
torch.cuda.set_device(local_rank)
# According to the tutorial
gpu = torch.device("cuda")
os.makedirs(args.checkpoint_dir, exist_ok=True)
checkpoint_dir = os.path.join(
args.checkpoint_dir, "exp%d" % len(os.listdir(args.checkpoint_dir))
)
os.makedirs(checkpoint_dir, exist_ok=True)
config = yaml.safe_load(open(args.config, "r"))
model = build_model(config)
model = model.to(gpu)
ddp_model = DDP(model, device_ids=[local_rank], output_device=local_rank)
optimizer = build_optimizer(ddp_model)
if args.dataset_name == 'lnen':
train_dataloader = build_train_loader_LNEN_parallel(args, config,size, rank)
else:
train_dataloader = build_train_loader_parallel(args, config,size, rank)
test_dataloader = build_test_loader_parallel(args, config,size, rank)
model.cuda()
for epoch in range(const.NUM_EPOCHS):
train_one_epoch(train_dataloader, ddp_model, optimizer, epoch)
if args.dataset_name != 'lnen':
if (epoch + 1) % const.EVAL_INTERVAL == 0:
auroc_per_pixel = eval_once(test_dataloader, model)
if auroc_per_pixel > Best_AUC_ROC:
Best_AUC_ROC = auroc_per_pixel
torch.save(
{
"epoch": epoch,
"model_state_dict": ddp_model.module.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
os.path.join(checkpoint_dir, "_best_model.pt" ),
)
if (epoch + 1) % const.CHECKPOINT_INTERVAL == 0:
torch.save(
{
"epoch": epoch,
"model_state_dict": ddp_model.module.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
os.path.join(checkpoint_dir, "%d.pt" % epoch),
)
def evaluate(args, epoch ):
config = yaml.safe_load(open(args.config, "r"))
current_checkpoint = args.checkpoint + '/' + str(epoch) + '.pt'
model = build_model(config)
checkpoint = torch.load(current_checkpoint)
model.load_state_dict(checkpoint["model_state_dict"])
test_dataloader = build_test_data_loader(args, config)
model.cuda()
eval_once_outfile(test_dataloader, model, epoch, args)
def parse_args():
parser = argparse.ArgumentParser(description="Train FastFlow on MVTec-AD dataset")
parser.add_argument(
"-cfg", "--config", type=str, required=True, help="path to config file"
)
parser.add_argument("--checkpoint_dir", type=str, required=True, help="path whre the checkoint will be saved")
## Dataset
parser.add_argument("--data", type=str, required=True, help="path to mvtec folder")
parser.add_argument("--dataset_name", type=str, required=False, help="Data set name")
parser.add_argument(
"-cat",
"--category",
type=str,
choices=const.MVTEC_CATEGORIES,
required=True,
help="category name in mvtec",
)
parser.add_argument("--parallel", action="store_true", help="Train parallel")
parser.add_argument("--eval", action="store_true", help="run eval only")
parser.add_argument(
"-ckpt", "--checkpoint", type=str, help="path to load checkpoint"
)
# Evaluation output path
parser.add_argument(
"-anom_map", "--anomaly_map_outfile_path", type=str, help="path to scores.txt"
)
parser.add_argument(
"-mae_vector", "--mae_encoded_vectors_path", type=str, help="MAE encoded vector folder"
)
parser.add_argument(
"--anomaly_scores_summary_file", type=str, help="Path + Generic filename to save the anomaly scores"
)
parser.add_argument( "--epochs_evaluated", required=False, nargs='+',
help="Threshold optimisation maximum number of iteration ")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if args.eval:
if args.parallel :
print('\n\n\n EVAL IN PARALLEL')
# for epoch in args.epochs_evaluated:
# evaluate(args)
else:
for epoch in args.epochs_evaluated:
evaluate(args, epoch)
else:
if args.parallel :
train_parallel(args)
else:
print('FastFlow is training ...')
train(args)