-
Notifications
You must be signed in to change notification settings - Fork 1
/
birth_ART.py
40 lines (29 loc) · 1.1 KB
/
birth_ART.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 28 13:51:33 2020
@author: emadg
"""
import numpy as np
from Log_Likelihood import Log_Likelihood
def birth_ART(XnZn,AR_bounds,LogLc,xc,zc,rhoc,alpha_c,ARgc,ARTc,T,Kernel_Grv,Kernel_Mag,dg_obs,dT_obs,bk_AR):
# AR_min = globals_par[4,0]
# AR_max = globals_par[4,1]
# arp = AR_min + np.random.rand() * (AR_max-AR_min)
if ARTc[0] == 0:
AR_min = AR_bounds[1, 0]
AR_max = AR_bounds[1, 1]
arp = AR_min + np.random.rand() * (AR_max-AR_min)
ARTp = ARTc.copy()
ARTp[0] = arp
else:
AR_min = AR_bounds[len(ARTc)+1, 0]
AR_max = AR_bounds[len(ARTc)+1, 1]
arp = AR_min + np.random.rand() * (AR_max-AR_min)
ARTp = np.append(ARTc,arp).copy() # new ar coeff will be added at the end of the array
bk_AR = 1.
LogLp = Log_Likelihood(Kernel_Grv,Kernel_Mag,dg_obs,dT_obs,xc,zc,rhoc,alpha_c,ARgc,ARTp,XnZn)[0]
MHP = bk_AR * np.exp((LogLp - LogLc)/T)
if np.random.rand()<=MHP:
LogLc = LogLp
ARTc = ARTp.copy()
return [LogLc,ARTc]