Skip to content

Latest commit

 

History

History
350 lines (291 loc) · 14.9 KB

table-partitioning-bucketing-sort-order-indexes.md

File metadata and controls

350 lines (291 loc) · 14.9 KB
title slug date keyword license last_update
Table partitioning, bucketing and sort ordering and indexes
/table-partitioning-bucketing-sort-order-indexes
2023-12-25
Table Partition Bucket Distribute Sort By
Copyright 2023 Datastrato Pvt Ltd. This software is licensed under the Apache License version 2.
date author
2024-02-02
Clearvive

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

Table partitioning

To create a partitioned table, you should provide the following two components to construct a valid partitioned table.

  • Partitioning strategy. It defines how Gravitino distributes table data across partitions. Currently, Gravitino supports the following partitioning strategies.

:::note The score, createTime, and city appearing in the table below refer to the field names in a table. :::

Partitioning strategy Description JSON example Java example Equivalent SQL semantics
identity Source value, unmodified. {"strategy":"identity","fieldName":["score"]} Transforms.identity("score") PARTITION BY score
hour Extract a timestamp hour, as hours from '1970-01-01 00:00:00'. {"strategy":"hour","fieldName":["createTime"]} Transforms.hour("createTime") PARTITION BY hour(createTime)
day Extract a date or timestamp day, as days from '1970-01-01'. {"strategy":"day","fieldName":["createTime"]} Transforms.day("createTime") PARTITION BY day(createTime)
month Extract a date or timestamp month, as months from '1970-01-01' {"strategy":"month","fieldName":["createTime"]} Transforms.month("createTime") PARTITION BY month(createTime)
year Extract a date or timestamp year, as years from 1970. {"strategy":"year","fieldName":["createTime"]} Transforms.year("createTime") PARTITION BY year(createTime)
bucket[N] Hash of value, mod N. {"strategy":"bucket","numBuckets":10,"fieldNames":[["score"]]} Transforms.bucket(10, "score") PARTITION BY bucket(10, score)
truncate[W] Value truncated to width W. {"strategy":"truncate","width":20,"fieldName":["score"]} Transforms.truncate(20, "score") PARTITION BY truncate(20, score)
list Partition the table by a list value. {"strategy":"list","fieldNames":[["createTime"],["city"]]} Transforms.list(new String[] {"createTime", "city"}) PARTITION BY list(createTime, city)
range Partition the table by a range value. {"strategy":"range","fieldName":["createTime"]} Transforms.range("createTime") PARTITION BY range(createTime)
function Partition the table by function expression. {"strategy":"function","funcName":"toYYYYMM","funcArgs":[{"type":"field","fieldName":["VisitDate"]}]} Transforms.apply("toYYYYMM", new Expression[]{NamedReference.field("VisitDate")}) PARTITION BY toYYYYMM(VisitDate)

:::note For function partitioning, you should provide the function name and the function arguments. The function arguments must be an expression. :::

  • Field names: It defines which fields Gravitino uses to partition the table.

  • In some cases, you require other information. For example, if the partitioning strategy is bucket, you should provide the number of buckets; if the partitioning strategy is truncate, you should provide the width of the truncate.

Once a partitioned table is created, you can manage its partitions using Gravitino.

Table bucketing

To create a bucketed table, you should use the following three components to construct a valid bucketed table.

  • Strategy. It defines how Gravitino distributes table data across partitions.
Bucket strategy Description JSON Java
hash Bucket table using hash. Gravitino distributes table data into buckets based on the hash value of the key. hash Strategy.HASH
range Bucket table using range. Gravitino distributes table data into buckets based on a specified range or interval of values. range Strategy.RANGE
even Bucket table using even. Gravitino distributes table data, ensuring an equal distribution of data. even Strategy.EVEN
  • number. It defines how many buckets you use to bucket the table.
  • funcArgs. It defines the arguments of the strategy, the argument must be an expression.
{
  "strategy": "hash",
  "number": 4,
  "funcArgs": [
    {
      "type": "field",
      "fieldName": ["score"]
    }
  ]
}
Distributions.of(Strategy.HASH, 4, NamedReference.field("score"));

Sort ordering

To define a sorted order table, you should use the following three components to construct a valid sorted order table.

  • Direction. It defines in which direction Gravitino sorts the table. The default value is ascending.
Direction Description JSON Java
ascending Sorted by a field or a function ascending. asc SortDirection.ASCENDING
descending Sorted by a field or a function descending. desc SortDirection.DESCENDING
  • Null ordering. It describes how to handle null values when ordering
Null ordering Type Description JSON Java
null_first Puts the null value in the first place. nulls_first NullOrdering.NULLS_FIRST
null_last Puts the null value in the last place. nulls_last NullOrdering.NULLS_LAST

Note: If the direction value is ascending, the default ordering value is nulls_first and if the direction value is descending, the default ordering value is nulls_last.

  • sortTerm. It shows which field or function Gravitino uses to sort the table, must be an expression.
 {
  "direction": "asc",
  "nullOrder": "NULLS_LAST",
  "sortTerm":  {
    "type": "field",
    "fieldName": ["score"]
  }
}
SortOrders.of(NamedReference.field("score"), SortDirection.ASCENDING, NullOrdering.NULLS_LAST);

:::tip Not all catalogs may support those features. Please refer to the related document for more details. :::

The following is an example of creating a partitioned, bucketed table, and sorted order table:

curl -X POST -H "Accept: application/vnd.gravitino.v1+json" \
-H "Content-Type: application/json" -d '{
  "name": "table",
  "columns": [
    {
      "name": "id",
      "type": "integer",
      "nullable": true,
      "comment": "Id of the user"
    },
    {
      "name": "name",
      "type": "varchar(2000)",
      "nullable": true,
      "comment": "Name of the user"
    },
    {
      "name": "age",
      "type": "short",
      "nullable": true,
      "comment": "Age of the user"
    },
    {
      "name": "score",
      "type": "double",
      "nullable": true,
      "comment": "Score of the user"
    }
  ],
  "comment": "Create a new Table",
  "properties": {
    "format": "ORC"
  },
  "partitioning": [
    {
      "strategy": "identity",
      "fieldName": ["score"]
    }
  ],
  "distribution": {
    "strategy": "hash",
    "number": 4,
    "funcArgs": [
      {
        "type": "field",
        "fieldName": ["score"]
      }
    ]
  },
  "sortOrders": [
    {
      "direction": "asc",
      "nullOrder": "NULLS_LAST",
      "sortTerm":  {
        "type": "field",
        "fieldName": ["name"]
      }
    }
  ]
}' http://localhost:8090/api/metalakes/metalake/catalogs/catalog/schemas/schema/tables
tableCatalog.createTable(
    NameIdentifier.of("metalake", "hive_catalog", "schema", "table"),
    new Column[] {
      Column.of("id", Types.IntegerType.get(), "Id of the user", true, false, null),
      Column.of("name", Types.VarCharType.of(2000), "Name of the user", true, false, null),
      Column.of("age", Types.ShortType.get(), "Age of the user", true, false, null),
      Column.of("score", Types.DoubleType.get(), "Score of the user", false, false, null)
    },
    "Create a new Table",
    tablePropertiesMap,
    new Transform[] {
    // Partition by id
      Transforms.identity("score")
    },
    // CLUSTERED BY id
    Distributions.of(Strategy.HASH, 4, NamedReference.field("id")),
    // SORTED BY name asc
    new SortOrder[] {
      SortOrders.of(
        NamedReference.field("age"), SortDirection.ASCENDING, NullOrdering.NULLS_LAST),
    });

Indexes

To define an indexed table, you should utilize the following three components to construct a valid indexed table.

  • IndexType. Represents the type of index, such as primary key or unique key.
IndexType Description JSON Java
PRIMARY_KEY The PRIMARY KEY is a column or set of columns that uniquely identifies each row in a table. It enforces uniqueness and ensures that no two rows have the same values in the specified columns. Additionally, the PRIMARY KEY constraint automatically creates a unique index on the specified columns. PRIMARY_KEY IndexType.PRIMARY_KEY
UNIQUE_KEY The UNIQUE KEY constraint ensures that all values in a specified column or set of columns are unique across the entire table. Unlike the PRIMARY KEY constraint, a table can have multiple UNIQUE KEY constraints, allowing for unique values in multiple columns or sets of columns. UNIQUE_KEY IndexType.UNIQUE_KEY
  • Name. It defines the name of the index.

  • FieldNames. It defines which table fields Gravitino uses to index the table.

 {
  "indexType": "PRIMARY_KEY",
  "name": "PRIMARY",
  "fieldNames": [["col_1"],["col_2"]]
}
Indexes.of(IndexType.PRIMARY_KEY, "PRIMARY", new String[][]{{"col_1"}, {"col_2"}});

The following is an example of creating a index table:

curl -X POST -H "Accept: application/vnd.gravitino.v1+json" \
-H "Content-Type: application/json" -d '{
  "name": "table",
  "columns": [
    {
      "name": "id",
      "type": "integer",
      "nullable": true,
      "comment": "Id of the user"
    },
    {
      "name": "name",
      "type": "varchar(2000)",
      "nullable": true,
      "comment": "Name of the user"
    },
    {
      "name": "age",
      "type": "short",
      "nullable": true,
      "comment": "Age of the user"
    },
    {
      "name": "score",
      "type": "double",
      "nullable": true,
      "comment": "Score of the user"
    }
  ],
  "comment": "Create a new Table",
  "indexes": [
    {
      "indexType": "PRIMARY_KEY",
      "name": "PRIMARY",
      "fieldNames": [["id"]]
    },
    {
      "indexType": "UNIQUE_KEY",
      "name": "name_age_score_uk",
      "fieldNames": [["name"],["age"],["score]]
    }
  ]
}' http://localhost:8090/api/metalakes/metalake/catalogs/catalog/schemas/schema/tables
tableCatalog.createTable(
    NameIdentifier.of("metalake", "hive_catalog", "schema", "table"),
    new Column[] {
      Column.of("id", Types.IntegerType.get(), "Id of the user", false, true, null),
      Column.of("name", Types.VarCharType.of(1000), "Name of the user", true, false, null),
      Column.of("age", Types.ShortType.get(), "Age of the user", true, false, null),
      Column.of("score", Types.DoubleType.get(), "Score of the user", true, false, null)
    },
    "Create a new Table",
    tablePropertiesMap,
    Transforms.EMPTY_TRANSFORM,
    Distributions.NONE,
    new SortOrder[0],
    new Index[] {
      Indexes.of(IndexType.PRIMARY_KEY, "PRIMARY", new String[][]{{"id"}}),
      Indexes.of(IndexType.UNIQUE_KEY, "name_age_score_uk", new String[][]{{"name"}, {"age"}, {"score"}})
    });