generated from elinscott/psi-slides-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides.typ
920 lines (719 loc) · 27.9 KB
/
slides.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
#import "touying/lib.typ": *
#import "@preview/pinit:0.1.4": *
#import "@preview/xarrow:0.3.0": xarrow
#import "@preview/cetz:0.3.0": canvas, draw, vector, matrix
#import themes.marvel: *
#set text(font: "Myriad Pro")
#set footnote.entry(clearance: 0em, separator: [], indent: 0em)
#show footnote.entry: set text(0.8em, fill: marvel-grey)
#show: marvel-theme.with(aspect-ratio: "16-9",
config-info(title: [Band structure calculations that are accurate, efficient, accessible, and automated],
author: [Edward Linscott],
date: datetime(year: 2025, month: 1, day: 14),
event: [MARVEL Review & Retreat],
location: [Grindelwald],
references: [references.bib],
institution: [Paul Scherrer Institute],
),
config-common(
datetime-format: "[day padding:none] [month repr:long] [year]"
),
)
#let blcite(reference) = {
text(fill: white, cite(reference))
}
#let cetz-canvas = touying-reducer.with(reduce: canvas, cover: draw.hide.with(bounds: true))
#title-slide()
== This talk
A whistlestop tour of our progress on Koopmans functionals over the past year
#pause
#grid(columns: 8, column-gutter: 0.5em, align: center, row-gutter: 0.5em,
image("media/mugshots/nicola_colonna.png", height: 40%),
image("media/mugshots/marija_stojkovic.jpg", height: 40%),
image("media/mugshots/giovanni_cistaro.jpeg", height: 40%),
image("media/mugshots/yannick_schubert.jpg", height: 40%),
image("media/mugshots/junfeng_qiao.jpeg", height: 40%),
image("media/mugshots/miki_bonacci.jpg", height: 40%),
image("media/mugshots/julian_geiger.jpg", height: 40%),
image("media/mugshots/nicola_marzari.jpeg", height: 40%),
[Nicola Colonna], [Marija Stojkovic], [Giovanni Cistaro], [Yannick Schubert], [Junfeng Qiao], [Miki Bonacci], [Julian Geiger], [Nicola Marzari]
)
== Koopmans functionals in a nutshell
Spectral properties are fundamental to understanding materials:
#align(center,
grid(columns: 3, column-gutter: 1em,
canvas({
import draw: *
// grid((0,-5), (8,5), stroke: gray + .5pt)
// Valence
rect((-1, -1), (1, 1), stroke: none, fill: marvel-lightred, alpha: 0.5)
line((-1, 1), (1, 1), stroke: marvel-red, weight: 5pt)
content((1.75, 1), [$E_F$], align: left)
circle((0, 0), radius: 0.2, fill: none, stroke: (dash: "dashed", paint: marvel-red))
// Vacuum
circle((0, 4), radius: 0.2, fill: marvel-red, stroke: none)
line((-1, 3.5), (1, 3.5), stroke: (dash: "dashed", paint: marvel-red))
content((1.75, 3.5), [$E_"vac"$], align: left)
// Arrow
arc((0,0), start: -30deg, stop: 30deg, radius: 4, mark: (end: ">", fill: black))
let photon(amplitude: 1, phases: 2, scale: 8, samples: 1000, angle: 0, start-x: 0, start-y: 0, ..args) = {
line(..(for x in range(0, samples + 1) {
let x = x / samples
// A Gaussian envelope with sigma = 1/4 and mean = 1/2 and height = amplitude
let envelope = amplitude * calc.exp(-calc.pow(((x - 0.5) / (0.25)), 2))
let phase = (2 * phases * calc.pi) * x
// Rotate the output by angle
let xval = x * scale
let yval = calc.sin(phase) * envelope
let rotated-x = xval * calc.cos(angle) - yval * calc.sin(angle)
let rotated-y = xval * calc.sin(angle) + yval * calc.cos(angle)
((start-x + rotated-x, start-y + rotated-y),)
}), ..args)
let subdivs = 8
for phase in range(0, phases) {
let x = phase / phases
for div in range(1, subdivs + 1) {
let p = 2 * calc.pi * (div / subdivs)
let y = calc.sin(p) * amplitude
let x = x * scale + div / subdivs * scale / phases
}
}
}
photon(amplitude: 0.8, phases: 9, start-x: -0.25, start-y: 0.25, scale: 3, fill: none, angle: 2.5, mark: (start: ">", fill: black))
}),
image("figures/arpes.png", height: 45%),
image("figures/arpes_puppin.png", height: 45%),
))
#pause ... but how can we routinely compute them? #pause
- GW: accurate but expensive and often ill-behaved; diagrammatic #pause
- DFT: plagued by systematic errors #pause
💡Koopmans functionals: cure the systematic errors in DFT $arrow.r$ a functional that can accurately predict single-particle excitations
#pagebreak()
$
E^"KI"_bold(alpha) [rho, {rho_i}] =
E^"DFT" [rho] +
sum_i alpha_i { &
- (E^"DFT" [rho] - E^"DFT" [rho - rho_i])
\ &
+ f_i (E^"DFT" [rho - rho_i + n_i] - E^"DFT" [rho - rho_i])
}
$
#pause
- an orbital-by-orbital correction to DFT #pause
- imposes the equivalence between total energy differences and orbital eigenvalues #pause
- total energy unchanged! #pause
- screening parameters #pause
- orbital-density-dependence
== This talk
Our goal with Koopmans functionals: band structure calculations that are...
- accurate
- efficient
- accessible
- automated
= Accuracy
== The accuracy of Koopmans functionals
... is well-established
=== Molecular systems
#grid(columns: (1fr, 1fr), column-gutter: 1em, row-gutter: 1em,
[Ionisation potentials@Colonna2019], [UV photoemission spectra@Nguyen2015],
image("figures/colonna_2019_gw100_ip.jpeg", width: 100%), image("figures/fig_nguyen_prl_spectra.png", width: 100%)
)
== The accuracy of Koopmans functionals
#slide()[
=== Bulk systems
Prototypical semiconductors and insulators@Nguyen2018
#show table.cell: it => {
if it.x == 3 or it.x == 4 {
set text(fill: marvel-red, weight: "semibold")
it
} else {
it
}
}
#grid(align: center + horizon, columns: 2, column-gutter: 1em,
image("figures/fig_nguyen_prx_bandgaps.png", height: 70%),
table(columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr), inset: 0.5em, stroke: none,
table.header([], [PBE], [G#sub[0]W#sub[0]], [KI], [KIPZ], [QSGW̃]),
table.hline(),
[$E_"gap"$], [2.54], [0.56], [0.27], [0.22], [0.18],
[IP], [1.09], [0.39], [0.19], [0.21], [0.49]
))
]
// == The accuracy of Koopmans functionals
// #slide[
// ZnO@Colonna2022
// #v(-1em)
// #align(center + horizon,
// grid(align: center + horizon, columns: 3, column-gutter: 1em,
// image("figures/ZnO_lda_cropped.png", height: 50%),
// image("figures/ZnO_hse_cropped_noaxis.png", height: 50%),
// image("figures/ZnO_ki_cropped_noaxis.png", height: 50%),
// ))
//
// #show table.cell: it => {
// if it.x == 5 {
// set text(fill: marvel-red, weight: "semibold")
// it
// } else {
// it
// }
// }
// #table(align: center, columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1.5fr), inset: 0.5em, stroke: none,
// table.header([], [LDA ], [HSE ], [GW#sub[0] ], [scGW̃ ], [KI ], [exp ]),
// table.hline(),
// [$E_"gap"$], [0.79], [2.79], [3.0], [3.2], [3.68], [3.60],
// [$angle.l epsilon_d angle.r$], [-5.1], [-6.1], [-6.4], [-6.7], [-6.9], [-7.5 to -8.81 ],
// [$Delta$], [4.15], [], [], [], [4.99], [5.3]
// )
// ]
CsPbBr#sub[3]@Marrazzo2024
#v(-2em)
#align(center + horizon,
image("figures/marrazzo_CsPbBr3_bands.svg", height: 60%)
)
#table(align: center, columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1.5fr), inset: 0.5em, stroke: none,
table.header([], [LDA ], [HSE ], [G#sub[0]W#sub[0] ], [scGW̃ ], [*KI*], [exp ]),
table.hline(),
[*with SOC*], [0.18], [0.78], [0.94], [1.53], [*1.78*], [1.85],
[without SOC], [1.40], [2.09], [2.56], [3.15], [3.12], [],
)
#slide()[
TiO#sub[2] INSERT CITATION HERE
#v(-2em)
#align(center, image("figures/rutile.png", height: 65%))
#show table.cell: it => {
if it.x == 5 {
set text(fill: marvel-red, weight: "semibold")
it
} else {
it
}
}
#v(-1em)
#table(align: center, columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr), inset: 0.5em, stroke: none,
table.header([], [PBE ], [HSE06 ], [G#sub[0]W#sub[0]\@PBE ], [scQPG#sym.tilde[W]], [KI ], [exp - ZPR]),
table.hline(),
[$E_"gap"$], [1.73], [3.39], [3.46], [5.18], [3.29], [3.34 to 3.41],
[IP], [7.22], [8.66], [7.29], [8.77], [8.00], [8.5],
[EA], [5.55], [4.99], [3.03], [3.59], [4.71], [5.0]
)
]
= Efficiency
== Taking advantage of symmetries
Text
== Electronic screening via machine learning
A key ingredient of Koopmans functional calculations are the screening parameters:
$
alpha_i = (angle.l n_i|epsilon^(-1) f_"Hxc"|n_i angle.r) / (angle.l n_i|f_"Hxc"|n_i angle.r)
$
#pause
- a local measure of the degree by which electronic interactions are screened #pause
- one screening parameter per (non-equivalent) orbital #pause
- must be computed #emph[ab initio] via $Delta$SCF@Nguyen2018@DeGennaro2022a or DFPT@Colonna2018@Colonna2022 #pause
- corresponds to the vast majority of the computational cost of Koopmans functional calculation
#slide[
The ML framework
#align(
center,
grid(
columns: 5,
align: horizon,
gutter: 1em,
image("figures/orbital.emp.00191_cropped.png", height: 30%),
xarrow("power spectrum decomposition"),
$vec(delim: "[", x_0, x_1, x_2, dots.v)$,
xarrow("ridge regression"),
$alpha_i$,
),
)
$
c^i_(n l m, k) & = integral dif bold(r) g_(n l) (r) Y_(l m)(theta,phi) n^i (
bold(r) - bold(R)^i
)
$
$
p^i_(n_1 n_2 l,k_1 k_2) = pi sqrt(8 / (2l+1)) sum_m c_(n_1 l m,k_1)^(i *) c_(n_2 l m,k_2)^i
$
#blcite(<Schubert2024>)
]
#pagebreak()
The use-case
#grid(columns: 8, column-gutter: 0.3em, row-gutter: 0.3em,
image("figures/CsSnI3_disordered.png", width: 100%),
image("figures/CsSnI3_disordered.png", width: 100%),
image("figures/CsSnI3_disordered.png", width: 100%),
image("figures/CsSnI3_disordered.png", width: 100%),
image("figures/CsSnI3_disordered.png", width: 100%),
image("figures/CsSnI3_disordered.png", width: 100%),
image("figures/CsSnI3_disordered.png", width: 100%),
grid.cell(align: center + horizon, [...]),
grid.cell(inset: 0.4em, align: center, fill: marvel-red, colspan: 3, text(fill: white, "train", size: 1em, weight: "bold")),
grid.cell(inset: 0.4em, align: center, fill: marvel-lightred, colspan: 5, text("predict", size: 1em, weight: "bold")),
)
N.B. not a general model
#slide[
#grid(
columns: (1fr, 1fr),
align: center + horizon,
gutter: 1em,
image(
"figures/convergence_analysis_Eg_only.svg",
height: 60%,
),
image("figures/speedup.svg", height: 60%),
[*accurate* to within $cal("O")$(10 meV) _cf._ typical band gap accuracy of $cal("O")$(100 meV)],
[*speedup* of $cal("O")$(10) to $cal("O")$(100)],
)
REPLACE WITH UPDATED FIGURES
#blcite(<Schubert2024>)
]
= Accessibility
== Barriers to accessibility
- non-standard functionals
- (some) bespoke code
- complicated workflows
#focus-slide()[
#align(center, image(width: 80%, "media/logos/koopmans_white_on_transparent.svg"))
]
== `koopmans`
#matrix-slide()[
#image("figures/website_cropped.png")
][
An ongoing effort to make Koopmans functional calculations straightforward for non-experts@Linscott2023
- easy installation
- automated workflows
- minimal input required of the user
- minimal knowledge required of the user
For more details: `koopmans-functionals.org`
]
= Automation
== AiiDA integration
#matrix-slide(align: top + left)[
#image("media/logos/koopmans_grey_on_transparent.svg", height: 2em)
- local execution only #pause
- serial step execution #pause
- direct access to input/output files #pause
- simpler installation #pause
][
#image("media/logos/aiida.svg", height: 2em)
- remote execution #pause
- parallel step execution #pause
- outputs stored in a database #pause
- installation more involved #pause
We could really benefit from a lot of the features of `AiiDA` _e.g._ the calculation of screening parameters is embarrassingly parallelizable
]
#image("media/logos/koopmans_grey_on_transparent_aiida.svg", width: 100%)
== Speed-up
== What did all this work enable?
UI still the same:
`$ koopmans tio2.json` #pause $arrow.r$ `$ koopmans --engine=aiida tio2.json`
but much faster and with remote excution
#align(center,
image("figures/speed-up.svg", width: 90%)
)
== What did this require?
- `aiida-blitz` for simplified `AiiDA` setup
- `?` for dumping contents of `AiiDA` database to a local file structure
- substantial refactoring of the `koopmans` code base
- abstraction of various operations (e.g. reading/writing files)
- conversion of steps to pure functions, _etc._)
- removing all reliance on shared directories
WORK OUT WHAT ARE THE PROPER NAMES FOR THESE AiiDA TOOLS
== Automated Wannierization
#slide(repeat: 4, self => [
#let (uncover, only, alternatives) = utils.methods(self)
#pause Koopmans functionals use Wannier functions heavily either...
- to initialize the a guess for the orbitals that minimize the ODD functional
- in place of the minimizing orbitals entirely
#pause However, Wannierization #alternatives(start: 3)[is a very manual process...][*was* a very manual process!]
])
== Automated Wannierization
#grid(
columns: (2fr, 2fr, 3fr),
align: center + horizon,
gutter: 1em,
image("figures/proj_disentanglement_fig1a.png", height: 60%),
image("figures/new_projs.png", height: 60%),
image("figures/target_manifolds_fig1b.png", height: 60%),
text("projectability-based disentanglement") + cite(<Qiao2023>),
text("use PAOs found in pseudopotentials"),
text("parallel transport to separate manifolds") + cite(<Qiao2023a>),
)
= Summary
== Summary
#grid(
columns: (2fr, 2fr),
gutter: 1em,
image("figures/black_box_filled_square.png", width: 100%),
text[
Koopmans functionals are...
- *accurate*, with band structures comparable to state-of-the-art GW
- now also for systems with strong SOC #pause
- more *efficient* thanks to
- a new DFPT implementation that takes advantage of symmetries
- a new machine learning framework for predicting screening parameters #pause
- more *accessible* thanks to ongoing work on the `koopmans` package #pause
- more *automated* thanks to
- a new integration with `AiiDA`...#pause
with an `AiiDAlab` app on the horizon!
- automated Wannierization
],
)
#focus-slide()[Thank you!]
== References
#show bibliography: set text(0.6em)
#bibliography("references.bib", style: "nature-footnote.csl", title: none)
#show: appendix
#focus-slide()[#align(center, text(size: 2em, [spare slides]))]
= Detailed Theory
== Total energy differences vs. eigenvalues
We all know that DFT underestimates the band gap. But why?
The exact Green's function has poles that correspond to total energy differences
$
ε_i = cases(E(N) - E_i (N-1) & "if" i in "occ", E_i (N+1) - E(N) & "if" i in "emp")
$
but DFT does #emph[not]
#focus-slide()[Core idea: impose this condition to DFT to improve its description of spectral properties]
#matrix-slide()[
Formally, every orbital $i$ should have an eigenenergy
$
epsilon_i^"Koopmans" = ⟨
phi_i mid(|)hat(H)mid(|)phi_i
⟩ = frac(dif E, dif f_i)
$
that is
- independent of $f_i$
- equal to $Delta E$ of explicit electron addition/removal
][
#image(width: 100%, "figures/fig_en_curve_gradients_zoom.svg")
]
#matrix-slide(columns: (1fr, 1fr))[
$
E^"KI" &[rho, {rho_i}] =
E^"DFT" [rho]
\ & +
sum_i {
- underbrace((E^"DFT" [rho] - E[rho^(f_i arrow.r 0)]), "remove non-linear dependence")
\ &
+ underbrace(f_i (E^"DFT" [rho^(f_i arrow.r 1)] - E^"DFT" [rho^(f_i arrow.r 0)]), "restore linear dependence")
}
$
Bakes the total energy differences $E^"DFT" [rho^(f_i arrow.r 1)] - E^"DFT" [rho^(f_i arrow.r 0)]$ into the functional
][
#image(width: 100%, "figures/fig_en_curve_gradients_zoom.svg")
]
==
// $E[rho^(f_i arrow.r f)]$ is the energy of the $N - f_i + f$-electron problem with orbital $i$'s occupation changed from $f_i$ to $f$ -- cannot directly evaluate
//
// Instead use a frozen-orbital picture:
//
// $
// rho^(f_i arrow.r f)(bold(r)) approx rho(bold(r)) + (f - f_i) |phi^N_i (bold(r))|^2
// $
//
// very easy to evaluate -- but not at all accurate! Correct this _post hoc_ via a screening parameter i.e.
//
// $
// E[rho^(f_i arrow.r f)] approx alpha_i E[rho + (f - f_i) |phi^N_i (bold(r))|^2]
// $
#align(center + horizon,
grid(align: center + horizon, columns: 3, column-gutter: 2cm, row-gutter: 1cm,
canvas({
import draw: *
content((1.25, 1.5), [$rho$])
circle((0, 0), radius: 1, fill: marvel-red, stroke: none)
circle((2.5, 0), radius: 1, fill: marvel-red, stroke: none)
}),
canvas({
import draw: *
content((9, 1.5), [$rho^(f_1 arrow.r 0)$])
arc((10.75, 0), start: 0deg, stop: 360deg, radius: (1.5, 1), fill: marvel-red, stroke: none)
circle((8, 0), radius: 1, fill: none, stroke: (thickness: 2pt, paint: marvel-red))
circle((8, 0), radius: 1, fill: none, stroke: (dash: "dashed", thickness: 2pt, paint: white))
// content((8, -1.5), [$f_1 = 0$])
}),
canvas({
import draw: *
content((17.25, 1.5), [$rho - |psi^N_1(r)|^2$])
circle((16, 0), radius: 1, fill: none, stroke: (dash: "dashed", thickness: 2pt, paint: marvel-red))
circle((18.5, 0), radius: 1, fill: marvel-red, stroke: none)
}),
[$N$-electron solution],
[what we'd like to evaluate],
[what we can quickly evaluate]
))
==
$
E^"KI"_bold(alpha) [rho, {rho_i}] = &
E^"DFT" [rho]
\ & +
sum_i {
- (E^"DFT" [rho] - E^"DFT"[rho^(f_i arrow.r 0)])
+ f_i (E^"DFT" [rho^(f_i arrow.r 1)] - E^"DFT" [rho^(f_i arrow.r 0)])
}
\ approx &
E^"DFT" [rho]
\ & +
sum_i alpha_i {
- (E^"DFT" [rho] - E^"DFT"[rho - rho_i])
+ f_i (E^"DFT" [rho - rho_i + n_i] - E^"DFT" [rho - rho_i])
}
$
==
$ H^"KI"_(i j) = angle.l phi_j|hat(h)^"DFT" + alpha_i hat(v)_i^"KI"|phi_i angle.r $
For _e.g._ occupied orbitals $ hat(v)^"KI"_i = - E_"Hxc" [rho - n_i] + E_"Hxc" [rho] - integral v_"Hxc" (bold(r)', [rho]) n_i d bold(r)' $
== Screening
Construct $alpha_i$ from explicit $Delta$SCF calculations@Nguyen2018@DeGennaro2022a
$
alpha_i = alpha_i^0 (Delta E_i - lambda_(i i)(0)) / (lambda_(i i)(alpha^0) - lambda_(i i)(0)) "where" lambda_(i i)(alpha) = angle.l phi_i|hat(h)^"DFT" + alpha hat(v)_i^"KI"|phi_i angle.r $
Recast via linear response@Colonna2018:
$
alpha_i = (angle.l n_i mid(|) epsilon^(-1) f_"Hxc" mid(|) n_i angle.r) / (angle.l n_i mid(|) f_"Hxc" mid(|) n_i angle.r)
$
which can be efficiently computed via DFPT@Colonna2022 #pause ... but is still the bulk of the computational cost (can use machine-learning)
== Calculating screening parameters via SCF
#matrix-slide(columns: (1fr, 1fr))[
#align(center + horizon,
{only("1")[#image("figures/alpha_calc/fig_alpha_calc_step_0.png", height: 100%)]
only("2")[#image("figures/alpha_calc/fig_alpha_calc_step_1.png", height: 100%)]
only("3")[#image("figures/alpha_calc/fig_alpha_calc_step_2.png", height: 100%)]
only("4-5")[#image("figures/alpha_calc/fig_alpha_calc_step_3.png", height: 100%)]
only("6-7")[#image("figures/alpha_calc/fig_alpha_calc_step_4.png", height: 100%)]
}
)
][
#only("7")[$ alpha_i = alpha_i^0 (Delta E_i - lambda_(i i)(0)) / (lambda_(i i)(alpha^0) - lambda_(i i)(0)) $
$ lambda_(i i)(alpha) = angle.l phi_i|hat(h)^"DFT" + alpha hat(v)_i^"KI"|phi_i angle.r $]
]
#slide[
#align(center + horizon,
image("figures/fig_pwl.png", height: 100%)
)
]
== Issues with extended systems
#align(center + horizon,
image("figures/fig_nguyen_scaling.png", width: 60%)
)
#pause
One cell: $E(N + delta N) - E(N)$ #pause; all cells: $Delta E = 1 / (delta N) (E(N + delta N) - E(N)) = (d E)/ (d N) = - epsilon_(H O)$@Nguyen2018
== Issues with extended systems
#align(center + horizon,
image("figures/fig_nguyen_scaling.png", width: 60%)
)
Two options: #pause _1._ use a more advanced functional#pause, or _2._ stay in the "safe" region
== Orbital-density dependence
The potential is orbital-dependent!
$ v^"KI"_(i in"occ") = - E_"Hxc" [rho - n_i] + E_"Hxc" [rho] - integral v_"Hxc" (bold(r)', [rho]) n_i d bold(r)' $
#pause
#align(center,
grid(columns: 2,
image("figures/fig_nguyen_variational_orbital.png", width: 90%),
image("figures/fig_nguyen_canonical_orbital.png", width: 90%),
[two variational orbitals],
[a canonical orbital],
)
)
#slide[
Because we have an ODD...
- #pause minimisation gives rise to localised orbitals, so we can use MLWFs@Marzari2012
- we know $hat(H)|phi_i angle.r$ but we don't know $hat(H)$ #pause
- we have a natural generalisation of DFT in the direction of spectral functional theory@Ferretti2014
]
= Exhaustive Results
== Molecular systems
Ionisation potentials@Colonna2019
#align(center + horizon,
image("figures/colonna_2019_gw100_ip.jpeg", width: 100%)
)
UV photoemission spectra@Nguyen2015
#align(center + horizon,
image("figures/fig_nguyen_prl_spectra.png", width: 100%)
)
== Extended systems
#slide[
Prototypical semiconductors and insulators@Nguyen2018
#show table.cell: it => {
if it.x == 3 or it.x == 4 {
set text(fill: marvel-red, weight: "semibold")
it
} else {
it
}
}
#grid(align: center + horizon, columns: 2, column-gutter: 1em,
image("figures/fig_nguyen_prx_bandgaps.png", height: 80%),
table(columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr), inset: 0.5em, stroke: none,
table.header([], [PBE], [G#sub[0]W#sub[0]], [KI], [KIPZ], [QSGW̃]),
table.hline(),
[$E_"gap"$], [2.54], [0.56], [0.27], [0.22], [0.18],
[IP], [1.09], [0.39], [0.19], [0.21], [0.49]
))
]
#slide[
ZnO@Colonna2022
#v(-1em)
#align(center + horizon,
grid(align: center + horizon, columns: 3, column-gutter: 1em,
image("figures/ZnO_lda_cropped.png", height: 80%),
image("figures/ZnO_hse_cropped_noaxis.png", height: 80%),
image("figures/ZnO_ki_cropped_noaxis.png", height: 80%),
))
]
#slide[
ZnO@Colonna2022
#table(columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1.5fr), inset: 0.5em, stroke: none,
table.header([], [LDA ], [HSE ], [GW#sub[0] ], [scGW̃ ], [KI ], [exp ]),
table.hline(),
[$E_"gap"$], [0.79], [2.79], [3.0], [3.2], [3.68], [3.60],
[$angle.l epsilon_d angle.r$], [-5.1], [-6.1], [-6.4], [-6.7], [-6.9], [-7.5 to -8.81 ],
[$Delta$], [4.15], [], [], [], [4.99], [5.3]
)
]
Spin-orbit coupling@Marrazzo2024
#align(center + horizon,
image("figures/marrazzo_CsPbBr3_bands.svg", height: 80%)
)
== Model systems
Hooke's atom@Schubert2023
#align(center + horizon,
image("figures/schubert_vxc.jpeg", height: 85%)
)
= Caveats
== Limitations
- only valid for systems with $E_"gap"$ > 0 #pause
- empty state localisation in the bulk limit #pause
- can break crystal point group symmetry
== Resonance with other efforts
- Wannier transition state method of Anisimov and Kozhevnikov@Anisimov2005
- Optimally-tuned range-separated hybrid functionals of Kronik, Pasquarello, and others@Kronik2012@Wing2021
- Ensemble DFT of Kraisler and Kronik@Kraisler2013
- Koopmans-Wannier method of Wang and co-workers@Ma2016
- Dielectric-dependent hybrid functionals of Galli and co-workers@Skone2016a
- Scaling corrections of Yang and co-workers@Li2018
= Electronic screening via machine learning
== Electronic screening via machine learning
A key ingredient of Koopmans functional calculations are the screening parameters:
$
alpha_i = (angle.l n_i|epsilon^(-1) f_"Hxc"|n_i angle.r) / (angle.l n_i|f_"Hxc"|n_i angle.r)
$
#pause
- a local measure of the degree by which electronic interactions are screened #pause
- one screening parameter per (non-equivalent) orbital #pause
- must be computed #emph[ab initio] via $Delta$SCF@Nguyen2018@DeGennaro2022a or DFPT@Colonna2018@Colonna2022 #pause
- corresponds to the vast majority of the computational cost of Koopmans functional calculation
== The machine-learning framework
#slide[
#align(
center,
grid(
columns: 5,
align: horizon,
gutter: 1em,
image("figures/orbital.emp.00191_cropped.png", height: 30%),
xarrow("power spectrum decomposition"),
$vec(delim: "[", x_0, x_1, x_2, dots.v)$,
xarrow("ridge regression"),
$alpha_i$,
),
)
$
c^i_(n l m, k) & = integral dif bold(r) g_(n l) (r) Y_(l m)(theta,phi) n^i (
bold(r) - bold(R)^i
)
$
$
p^i_(n_1 n_2 l,k_1 k_2) = pi sqrt(8 / (2l+1)) sum_m c_(n_1 l m,k_1)^(i *) c_(n_2 l m,k_2)^i
$
#blcite(<Schubert2024>)
]
== Two test systems
#slide[
#align(
center,
grid(
columns: 2,
align: horizon + center,
gutter: 1em,
image("figures/water.png", height: 70%),
image("figures/CsSnI3_disordered.png", height: 70%),
"water", "CsSnI" + sub("3"),
),
)
#blcite(<Schubert2024>)
]
== Results: screening parameters
#slide[
#grid(
columns: (1fr, 1fr),
align: horizon + center,
gutter: 1em,
image(
"figures/water_cls_calc_vs_pred_and_hist_bottom_panel_alphas.svg",
height: 70%,
),
image(
"figures/CsSnI3_calc_vs_pred_and_hist_bottom_panel_alphas.svg",
height: 70%,
),
"water", "CsSnI" + sub("3"),
)
#blcite(<Schubert2024>)
]
== Results: balancing accuracy and speedup
#slide[
#grid(
columns: (1fr, 1fr),
align: center + horizon,
gutter: 1em,
image(
"figures/convergence_analysis_Eg_only.svg",
height: 60%,
),
image("figures/speedup.svg", height: 60%),
"accurate to within " + $cal("O")$ + "(10 meV) " + emph("cf.") + " typical band gap accuracy of " + $cal("O")$ + "(100 meV)",
"speedup of " + $cal("O")$ + "(10) to " + $cal("O")$ + "(100)",
)
#blcite(<Schubert2024>)
]
= Going beyond single-particle excitations
== Preliminary results
The idea: solve the BSE, skipping GW and instead using Koopmans eigenvalues@Lautenschlager1987@Sottile2003
#align(center + horizon,
grid(columns: 2, image("figures/si_ki_vs_gw.png", height: 70%),
image("figures/si_literature_spectra.png", height: 70%))
)
N.B. using DFT response
= Miscellaneous
== The general workflows
#image("figures/supercell_workflow.png", width: 100%)
#image("figures/primitive_workflow.png", width: 65.5%)
== Connections with approximate self-energies@Ferretti2014@Colonna2019
Orbital-density functional theory:
$ (h + alpha_i v^(K I)_i)|psi_i angle.r = lambda_i|psi_i angle.r $ $v_i^(K I)(bold(r))$ is real, local, and state-dependent #pause
cf. Green's function theory:
$ (h + Sigma_i)|psi_i angle.r = z_i|psi_i angle.r $ $Sigma_i (bold(r), bold(r)')$ is complex, non-local, and state-dependent
#slide[
Hartree-Fock self-energy in localized representation
$Sigma_x (bold(r), bold(r)') = - sum_(k sigma)^("occ") psi_(k sigma)(bold(r)) & f_H (bold(r), bold(r'))psi^*_(k sigma)(bold(r)') \
& arrow.r.double.long angle.l phi_(i sigma)|Sigma_x|phi_(j sigma') angle.r approx - angle.l phi_(i sigma)|v_H [n_(i sigma)]|phi_(i sigma)angle.r delta_(i j)delta_(sigma sigma')$
Unscreened KIPZ#sym.at Hartree ($v_"xc" arrow.r 0$; $f_"Hxc" arrow.r f_H$; $epsilon^(-1) arrow.r 1$)
$angle.l phi_(i sigma)|v^"KIPZ"_(j sigma',"xc")|phi_(j sigma') angle.r
approx {(1/2 - f_(i sigma)) angle.l n_(i sigma)|f_H|n_(i sigma) angle.r - E_H [n_(i sigma)]}
approx - angle.l phi_(i sigma)|v_H [n_(i sigma)]|phi_(i sigma)angle.r delta_(i j)delta_(sigma sigma')$
]
#slide[
Screened exchange plus Coulomb hole (COHSEX)
$ Sigma^"SEX"_"xc" (bold(s), bold(s)') = - sum_(k sigma)^"occ" psi_(k sigma)(bold(r)) psi_(k sigma)^*(bold(r)) W(bold(r), bold(r)') $
$ Sigma^"COH"_"xc" (bold(s), bold(s)') = 1/2 delta(bold(s), bold(s)'){W(bold(r), bold(r)') - f_H (bold(r), bold(r)')} $
$ arrow.r.double.long angle.l phi_(i sigma)|Sigma^"COHSEX"_"xc"|phi_(j sigma')angle.r approx {(1/2 - f_(i sigma)) angle.l n_(i sigma)|W|n_(i sigma)angle.r - E_H [n_(i sigma)]}delta_(i j) delta_(sigma sigma')$
KIPZ#sym.at Hartree with RPA screening ($v_"xc" arrow.r 0$; $f_"Hxc" arrow.r f_H$; $epsilon^(-1) arrow.r "RPA"$)
$ angle.l phi_(i sigma)|v^"KIPZ"_(j sigma',"xc")|phi_(j sigma')angle.r approx{(1/2 - f_(i sigma)) angle.l n_(i sigma)|W|n_(i sigma)angle.r - E_H [n_(i sigma)]}delta_(i j) delta_(sigma sigma')$
]
#slide[
Static GWΓ#sub[xc] --- local (DFT-based) vertex corrections@Hybertsen1987@DelSole1994
$ Sigma^(G W Gamma_"xc")_"xc"(1, 2) = i G(1, 2) W_(t-e) (1, 2) $
$ W_(t-e) = (1 - f_"Hxc" chi_0)^(-1) f_H $
$ arrow.r.double.long angle.l phi_(i sigma)|Sigma^(G W Gamma_"xc")_"xc"|phi_(j sigma')angle.r approx{(1/2 - f_(i sigma)) angle.l n_(i sigma)|W_(t-e)|n_(i sigma)angle.r - E_H [n_(i sigma)]}delta_(i j) delta_(sigma sigma')$
KIPZ#sym.at DFT ($v_"xc" arrow.r$ DFT; $f_"Hxc" arrow.r$ DFT; $epsilon^(-1) arrow.r$ DFT)
$ angle.l phi_(i sigma)|v^"KIPZ"_(j sigma',"xc")|phi_(j sigma')angle.r approx{angle.l phi_(i sigma)|v^"DFT"_(sigma,"xc")|phi_(i sigma)angle.r + (1/2 - f_(i sigma)) angle.l n_(i sigma)|epsilon^(-1)_(t-e) f_"Hxc"|n_(i sigma)angle.r - E_H [n_(i sigma)]}delta_(i j) delta_(sigma sigma')$
]