Skip to content

elianap/X-PLAIN-Demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

X-PLAIN Demo

X-PLAIN is an interactive tool that allows human-in-the-loop inspection of the decision-making process of machine learning models.

Bring Your Own Data to X-PLAIN. Pastor, Eliana, and Elena Baralis. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020.

teaser figure

Installation

# Create a virtualenv folder
mkdir -p ~/venv-environments/x-plain

# Create a new virtualenv in that folder
python3 -m venv ~/venv-environments/x-plain

# Activate the virtualenv
source ~/venv-environments/x-plain/bin/activate

# Install deps
pip install flask numpy pandas scipy snapshottest scikit-learn matplotlib seaborn 
pip install --no-binary orange3 orange3==3.15.0

Running the demo

Running the backend

FLASK_ENV=development flask run

Running the frontend

cd demo_frontend/my-app
npm install # Only needed on the first run
npm start

Visit localhost:3000 in a browser.

Contributors

Eliana Pastor, Elena Baralis and Andrea Congolato (interface design).

Citation

@inproceedings{pastor2020xplain,
author = {Pastor, Eliana and Baralis, Elena},
title = {Bring Your Own Data to X-PLAIN},
year = {2020},
isbn = {9781450367356},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3318464.3384710},
doi = {10.1145/3318464.3384710},
booktitle = {Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data},
pages = {2805–2808},
numpages = {4},
keywords = {interpretability, prediction explanation, local rules},
location = {Portland, OR, USA},
series = {SIGMOD ’20}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published