From 454b353dfa47b04c565e2b850077514c4a64eb95 Mon Sep 17 00:00:00 2001 From: James Gowdy Date: Wed, 12 Aug 2020 12:36:24 +0100 Subject: [PATCH] [ML] Removing full lodash library imports (#74742) (#74832) * [ML] Removing full lodash library imports * more has * fixing missing filter * removing _ * removing unused file * removing first use * removing comment --- x-pack/plugins/ml/common/util/job_utils.ts | 18 +++-- .../annotations_table/annotations_table.js | 14 ++-- .../anomalies_table/anomalies_table.js | 4 +- .../anomalies_table_columns.js | 4 +- .../anomalies_table/anomaly_details.js | 15 ++-- .../anomalies_table/influencers_cell.js | 4 +- .../components/anomalies_table/links_menu.js | 12 +-- .../explorer_chart_config_builder.js | 4 +- .../explorer_chart_distribution.js | 14 ++-- .../explorer_chart_single_metric.js | 14 ++-- .../explorer_charts_container_service.js | 59 +++++++------- .../explorer_charts_container_service.test.js | 10 +-- .../explorer/explorer_swimlane.tsx | 20 ++--- .../application/services/forecast_service.js | 34 ++++---- .../application/services/job_service.js | 48 ++++++----- .../application/services/mapping_service.js | 6 +- .../results_service/result_service_rx.ts | 35 ++++---- .../results_service/results_service.js | 81 ++++++++++--------- .../forecasting_modal/forecasting_modal.js | 8 +- .../timeseries_chart/timeseries_chart.js | 42 +++++----- .../timeseries_search_service.ts | 27 ++++--- .../timeseriesexplorer_utils.js | 34 ++++---- .../application/util/chart_config_builder.js | 11 +-- .../ml/public/application/util/inherits.js | 36 --------- .../public/application/util/time_buckets.js | 18 +++-- .../ml/server/lib/telemetry/telemetry.ts | 4 +- .../models/annotation_service/annotation.ts | 9 ++- .../bucket_span_estimator.js | 25 +++--- .../polled_data_checker.js | 4 +- .../models/data_visualizer/data_visualizer.ts | 77 +++++++++--------- .../validate_cardinality.test.ts | 14 ++-- .../validate_time_range.test.ts | 4 +- .../build_anomaly_table_items.js | 13 +-- .../models/results_service/results_service.ts | 14 ++-- 34 files changed, 365 insertions(+), 371 deletions(-) delete mode 100644 x-pack/plugins/ml/public/application/util/inherits.js diff --git a/x-pack/plugins/ml/common/util/job_utils.ts b/x-pack/plugins/ml/common/util/job_utils.ts index bb0e351ebfec8..8e6933ed5924f 100644 --- a/x-pack/plugins/ml/common/util/job_utils.ts +++ b/x-pack/plugins/ml/common/util/job_utils.ts @@ -4,7 +4,11 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import isEmpty from 'lodash/isEmpty'; +import isEqual from 'lodash/isEqual'; +import each from 'lodash/each'; +import pick from 'lodash/pick'; + import semver from 'semver'; import moment, { Duration } from 'moment'; // @ts-ignore @@ -307,7 +311,7 @@ export function getSafeAggregationName(fieldName: string, index: number): string export function uniqWithIsEqual(arr: T): T { return arr.reduce((dedupedArray, value) => { - if (dedupedArray.filter((compareValue: any) => _.isEqual(compareValue, value)).length === 0) { + if (dedupedArray.filter((compareValue: any) => isEqual(compareValue, value)).length === 0) { dedupedArray.push(value); } return dedupedArray; @@ -328,7 +332,7 @@ export function basicJobValidation( if (job) { // Job details - if (_.isEmpty(job.job_id)) { + if (isEmpty(job.job_id)) { messages.push({ id: 'job_id_empty' }); valid = false; } else if (isJobIdValid(job.job_id) === false) { @@ -350,7 +354,7 @@ export function basicJobValidation( // Analysis Configuration if (job.analysis_config.categorization_filters) { let v = true; - _.each(job.analysis_config.categorization_filters, (d) => { + each(job.analysis_config.categorization_filters, (d) => { try { new RegExp(d); } catch (e) { @@ -382,8 +386,8 @@ export function basicJobValidation( valid = false; } else { let v = true; - _.each(job.analysis_config.detectors, (d) => { - if (_.isEmpty(d.function)) { + each(job.analysis_config.detectors, (d) => { + if (isEmpty(d.function)) { v = false; } }); @@ -400,7 +404,7 @@ export function basicJobValidation( // create an array of objects with a subset of the attributes // where we want to make sure they are not be the same across detectors const compareSubSet = job.analysis_config.detectors.map((d) => - _.pick(d, [ + pick(d, [ 'function', 'field_name', 'by_field_name', diff --git a/x-pack/plugins/ml/public/application/components/annotations/annotations_table/annotations_table.js b/x-pack/plugins/ml/public/application/components/annotations/annotations_table/annotations_table.js index 69f7635a66032..c6ca4fb821984 100644 --- a/x-pack/plugins/ml/public/application/components/annotations/annotations_table/annotations_table.js +++ b/x-pack/plugins/ml/public/application/components/annotations/annotations_table/annotations_table.js @@ -9,7 +9,9 @@ * This version supports both fetching the annotations by itself (used in the jobs list) and * getting the annotations via props (used in Anomaly Explorer and Single Series Viewer). */ -import _ from 'lodash'; + +import uniq from 'lodash/uniq'; + import PropTypes from 'prop-types'; import rison from 'rison-node'; import React, { Component, Fragment } from 'react'; @@ -255,18 +257,18 @@ export class AnnotationsTable extends Component { // if the annotation is at the series level // then pass the partitioning field(s) and detector index to the Single Metric Viewer - if (_.has(annotation, 'detector_index')) { + if (annotation.detector_index !== undefined) { mlTimeSeriesExplorer.detectorIndex = annotation.detector_index; } - if (_.has(annotation, 'partition_field_value')) { + if (annotation.partition_field_value !== undefined) { entityCondition[annotation.partition_field_name] = annotation.partition_field_value; } - if (_.has(annotation, 'over_field_value')) { + if (annotation.over_field_value !== undefined) { entityCondition[annotation.over_field_name] = annotation.over_field_value; } - if (_.has(annotation, 'by_field_value')) { + if (annotation.by_field_value !== undefined) { // Note that analyses with by and over fields, will have a top-level by_field_name, // but the by_field_value(s) will be in the nested causes array. entityCondition[annotation.by_field_name] = annotation.by_field_value; @@ -421,7 +423,7 @@ export class AnnotationsTable extends Component { }, ]; - const jobIds = _.uniq(annotations.map((a) => a.job_id)); + const jobIds = uniq(annotations.map((a) => a.job_id)); if (jobIds.length > 1) { columns.unshift({ field: 'job_id', diff --git a/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table.js b/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table.js index 2a890f75fecd8..378ee82805173 100644 --- a/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table.js +++ b/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table.js @@ -9,7 +9,7 @@ */ import PropTypes from 'prop-types'; -import _ from 'lodash'; +import get from 'lodash/get'; import React, { Component } from 'react'; @@ -70,7 +70,7 @@ class AnomaliesTable extends Component { } else { const examples = item.entityName === 'mlcategory' - ? _.get(this.props.tableData, ['examplesByJobId', item.jobId, item.entityValue]) + ? get(this.props.tableData, ['examplesByJobId', item.jobId, item.entityValue]) : undefined; let definition = undefined; diff --git a/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table_columns.js b/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table_columns.js index af7c6c8e289f3..57f3a08713ffe 100644 --- a/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table_columns.js +++ b/x-pack/plugins/ml/public/application/components/anomalies_table/anomalies_table_columns.js @@ -7,7 +7,7 @@ import { EuiButtonIcon, EuiLink, EuiScreenReaderOnly } from '@elastic/eui'; import React from 'react'; -import _ from 'lodash'; +import get from 'lodash/get'; import { i18n } from '@kbn/i18n'; import { FormattedMessage } from '@kbn/i18n/react'; @@ -251,7 +251,7 @@ export function getColumns( sortable: false, truncateText: true, render: (item) => { - const examples = _.get(examplesByJobId, [item.jobId, item.entityValue], []); + const examples = get(examplesByJobId, [item.jobId, item.entityValue], []); return ( { - const simplified = _.pick(cause, 'typical', 'actual', 'probability'); + const simplified = pick(cause, 'typical', 'actual', 'probability'); // Get the 'entity field name/value' to display in the cause - // For by and over, use by_field_name/value (over_field_name/value are in the top level fields) // For just an 'over' field - the over_field_name/value appear in both top level and cause. - simplified.entityName = _.has(cause, 'by_field_name') - ? cause.by_field_name - : cause.over_field_name; - simplified.entityValue = _.has(cause, 'by_field_value') - ? cause.by_field_value - : cause.over_field_value; + simplified.entityName = cause.by_field_name ? cause.by_field_name : cause.over_field_name; + simplified.entityValue = cause.by_field_value ? cause.by_field_value : cause.over_field_value; return simplified; }); } @@ -471,7 +468,7 @@ export class AnomalyDetails extends Component { renderDetails() { const detailItems = getDetailsItems(this.props.anomaly, this.props.examples, this.props.filter); - const isInterimResult = _.get(this.props.anomaly, 'source.is_interim', false); + const isInterimResult = get(this.props.anomaly, 'source.is_interim', false); return ( diff --git a/x-pack/plugins/ml/public/application/components/anomalies_table/influencers_cell.js b/x-pack/plugins/ml/public/application/components/anomalies_table/influencers_cell.js index 2e42606c048d7..abdb0961351ab 100644 --- a/x-pack/plugins/ml/public/application/components/anomalies_table/influencers_cell.js +++ b/x-pack/plugins/ml/public/application/components/anomalies_table/influencers_cell.js @@ -4,7 +4,7 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import each from 'lodash/each'; import PropTypes from 'prop-types'; import React, { Component } from 'react'; @@ -148,7 +148,7 @@ export class InfluencersCell extends Component { const influencers = []; recordInfluencers.forEach((influencer) => { - _.each(influencer, (influencerFieldValue, influencerFieldName) => { + each(influencer, (influencerFieldValue, influencerFieldName) => { influencers.push({ influencerFieldName, influencerFieldValue, diff --git a/x-pack/plugins/ml/public/application/components/anomalies_table/links_menu.js b/x-pack/plugins/ml/public/application/components/anomalies_table/links_menu.js index f603264896cd3..0e4d736a01e47 100644 --- a/x-pack/plugins/ml/public/application/components/anomalies_table/links_menu.js +++ b/x-pack/plugins/ml/public/application/components/anomalies_table/links_menu.js @@ -4,7 +4,7 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import cloneDeep from 'lodash/cloneDeep'; import moment from 'moment'; import rison from 'rison-node'; import PropTypes from 'prop-types'; @@ -58,7 +58,7 @@ class LinksMenuUI extends Component { // If url_value contains $earliest$ and $latest$ tokens, add in times to the source record. // Create a copy of the record as we are adding properties into it. - const record = _.cloneDeep(anomaly.source); + const record = cloneDeep(anomaly.source); const timestamp = record.timestamp; const configuredUrlValue = customUrl.url_value; const timeRangeInterval = parseInterval(customUrl.time_range); @@ -99,7 +99,7 @@ class LinksMenuUI extends Component { if ( (configuredUrlValue.includes('$mlcategoryterms$') || configuredUrlValue.includes('$mlcategoryregex$')) && - _.has(record, 'mlcategory') + record.mlcategory !== undefined ) { const jobId = record.job_id; @@ -156,15 +156,15 @@ class LinksMenuUI extends Component { // Extract the by, over and partition fields for the record. const entityCondition = {}; - if (_.has(record, 'partition_field_value')) { + if (record.partition_field_value !== undefined) { entityCondition[record.partition_field_name] = record.partition_field_value; } - if (_.has(record, 'over_field_value')) { + if (record.over_field_value !== undefined) { entityCondition[record.over_field_name] = record.over_field_value; } - if (_.has(record, 'by_field_value')) { + if (record.by_field_value !== undefined) { // Note that analyses with by and over fields, will have a top-level by_field_name, // but the by_field_value(s) will be in the nested causes array. // TODO - drilldown from cause in expanded row only? diff --git a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_config_builder.js b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_config_builder.js index b5e9daad7d1c1..b75784c95c520 100644 --- a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_config_builder.js +++ b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_config_builder.js @@ -9,8 +9,6 @@ * the raw data in the Explorer dashboard. */ -import _ from 'lodash'; - import { parseInterval } from '../../../../common/util/parse_interval'; import { getEntityFieldList } from '../../../../common/util/anomaly_utils'; import { buildConfigFromDetector } from '../../util/chart_config_builder'; @@ -30,7 +28,7 @@ export function buildConfig(record) { config.detectorLabel = record.function; if ( - _.has(mlJobService.detectorsByJob, record.job_id) && + mlJobService.detectorsByJob[record.job_id] !== undefined && detectorIndex < mlJobService.detectorsByJob[record.job_id].length ) { config.detectorLabel = diff --git a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_distribution.js b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_distribution.js index 7a18914957ba9..00aca5d43be85 100644 --- a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_distribution.js +++ b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_distribution.js @@ -11,8 +11,8 @@ import PropTypes from 'prop-types'; import React from 'react'; +import { i18n } from '@kbn/i18n'; -import _ from 'lodash'; import d3 from 'd3'; import $ from 'jquery'; import moment from 'moment'; @@ -33,8 +33,6 @@ import { mlFieldFormatService } from '../../services/field_format_service'; import { CHART_TYPE } from '../explorer_constants'; -import { i18n } from '@kbn/i18n'; - const CONTENT_WRAPPER_HEIGHT = 215; // If a rare/event-distribution chart has a cardinality of 10 or less, @@ -403,7 +401,7 @@ export class ExplorerChartDistribution extends React.Component { .attr('cy', (d) => lineChartYScale(d[CHART_Y_ATTRIBUTE])) .attr('class', (d) => { let markerClass = 'metric-value'; - if (_.has(d, 'anomalyScore') && Number(d.anomalyScore) >= severity) { + if (d.anomalyScore !== undefined && Number(d.anomalyScore) >= severity) { markerClass += ' anomaly-marker '; markerClass += getSeverityWithLow(d.anomalyScore).id; } @@ -444,7 +442,7 @@ export class ExplorerChartDistribution extends React.Component { const tooltipData = [{ label: formattedDate }]; const seriesKey = config.detectorLabel; - if (_.has(marker, 'entity')) { + if (marker.entity !== undefined) { tooltipData.push({ label: i18n.translate('xpack.ml.explorer.distributionChart.entityLabel', { defaultMessage: 'entity', @@ -457,7 +455,7 @@ export class ExplorerChartDistribution extends React.Component { }); } - if (_.has(marker, 'anomalyScore')) { + if (marker.anomalyScore !== undefined) { const score = parseInt(marker.anomalyScore); const displayScore = score > 0 ? score : '< 1'; tooltipData.push({ @@ -494,7 +492,7 @@ export class ExplorerChartDistribution extends React.Component { valueAccessor: 'typical', }); } - if (typeof marker.byFieldName !== 'undefined' && _.has(marker, 'numberOfCauses')) { + if (typeof marker.byFieldName !== 'undefined' && marker.numberOfCauses !== undefined) { tooltipData.push({ label: i18n.translate( 'xpack.ml.explorer.distributionChart.unusualByFieldValuesLabel', @@ -532,7 +530,7 @@ export class ExplorerChartDistribution extends React.Component { }); } - if (_.has(marker, 'scheduledEvents')) { + if (marker.scheduledEvents !== undefined) { marker.scheduledEvents.forEach((scheduledEvent, i) => { tooltipData.push({ label: i18n.translate( diff --git a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_single_metric.js b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_single_metric.js index 63775c5ca312e..4d53e747d4855 100644 --- a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_single_metric.js +++ b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_chart_single_metric.js @@ -12,10 +12,10 @@ import PropTypes from 'prop-types'; import React from 'react'; -import _ from 'lodash'; import d3 from 'd3'; import $ from 'jquery'; import moment from 'moment'; +import { i18n } from '@kbn/i18n'; import { formatHumanReadableDateTime } from '../../util/date_utils'; import { formatValue } from '../../formatters/format_value'; @@ -40,8 +40,6 @@ import { getTimeBucketsFromCache } from '../../util/time_buckets'; import { mlEscape } from '../../util/string_utils'; import { mlFieldFormatService } from '../../services/field_format_service'; -import { i18n } from '@kbn/i18n'; - const CONTENT_WRAPPER_HEIGHT = 215; const CONTENT_WRAPPER_CLASS = 'ml-explorer-chart-content-wrapper'; @@ -307,7 +305,7 @@ export class ExplorerChartSingleMetric extends React.Component { .on('mouseout', () => tooltipService.hide()); const isAnomalyVisible = (d) => - _.has(d, 'anomalyScore') && Number(d.anomalyScore) >= severity; + d.anomalyScore !== undefined && Number(d.anomalyScore) >= severity; // Update all dots to new positions. dots @@ -380,7 +378,7 @@ export class ExplorerChartSingleMetric extends React.Component { const tooltipData = [{ label: formattedDate }]; const seriesKey = config.detectorLabel; - if (_.has(marker, 'anomalyScore')) { + if (marker.anomalyScore !== undefined) { const score = parseInt(marker.anomalyScore); const displayScore = score > 0 ? score : '< 1'; tooltipData.push({ @@ -411,7 +409,7 @@ export class ExplorerChartSingleMetric extends React.Component { // Show actual/typical when available except for rare detectors. // Rare detectors always have 1 as actual and the probability as typical. // Exposing those values in the tooltip with actual/typical labels might irritate users. - if (_.has(marker, 'actual') && config.functionDescription !== 'rare') { + if (marker.actual !== undefined && config.functionDescription !== 'rare') { // Display the record actual in preference to the chart value, which may be // different depending on the aggregation interval of the chart. tooltipData.push({ @@ -445,7 +443,7 @@ export class ExplorerChartSingleMetric extends React.Component { }, valueAccessor: 'value', }); - if (_.has(marker, 'byFieldName') && _.has(marker, 'numberOfCauses')) { + if (marker.byFieldName !== undefined && marker.numberOfCauses !== undefined) { tooltipData.push({ label: i18n.translate( 'xpack.ml.explorer.distributionChart.unusualByFieldValuesLabel', @@ -483,7 +481,7 @@ export class ExplorerChartSingleMetric extends React.Component { }); } - if (_.has(marker, 'scheduledEvents')) { + if (marker.scheduledEvents !== undefined) { tooltipData.push({ label: i18n.translate('xpack.ml.explorer.singleMetricChart.scheduledEventsLabel', { defaultMessage: 'Scheduled events', diff --git a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.js b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.js index 1b83a4ed30560..712b64af2db80 100644 --- a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.js +++ b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.js @@ -11,7 +11,12 @@ * and manages the layout of the charts in the containing div. */ -import _ from 'lodash'; +import get from 'lodash/get'; +import each from 'lodash/each'; +import find from 'lodash/find'; +import sortBy from 'lodash/sortBy'; +import map from 'lodash/map'; +import reduce from 'lodash/reduce'; import { buildConfig } from './explorer_chart_config_builder'; import { chartLimits, getChartType } from '../../util/chart_utils'; @@ -113,7 +118,7 @@ export const anomalyDataChange = function ( // If source data can be plotted, use that, otherwise model plot will be available. const useSourceData = isSourceDataChartableForDetector(job, detectorIndex); if (useSourceData === true) { - const datafeedQuery = _.get(config, 'datafeedConfig.query', null); + const datafeedQuery = get(config, 'datafeedConfig.query', null); return mlResultsService .getMetricData( config.datafeedConfig.indices, @@ -131,8 +136,8 @@ export const anomalyDataChange = function ( // Extract the partition, by, over fields on which to filter. const criteriaFields = []; const detector = job.analysis_config.detectors[detectorIndex]; - if (_.has(detector, 'partition_field_name')) { - const partitionEntity = _.find(entityFields, { + if (detector.partition_field_name !== undefined) { + const partitionEntity = find(entityFields, { fieldName: detector.partition_field_name, }); if (partitionEntity !== undefined) { @@ -143,8 +148,8 @@ export const anomalyDataChange = function ( } } - if (_.has(detector, 'over_field_name')) { - const overEntity = _.find(entityFields, { fieldName: detector.over_field_name }); + if (detector.over_field_name !== undefined) { + const overEntity = find(entityFields, { fieldName: detector.over_field_name }); if (overEntity !== undefined) { criteriaFields.push( { fieldName: 'over_field_name', fieldValue: overEntity.fieldName }, @@ -153,8 +158,8 @@ export const anomalyDataChange = function ( } } - if (_.has(detector, 'by_field_name')) { - const byEntity = _.find(entityFields, { fieldName: detector.by_field_name }); + if (detector.by_field_name !== undefined) { + const byEntity = find(entityFields, { fieldName: detector.by_field_name }); if (byEntity !== undefined) { criteriaFields.push( { fieldName: 'by_field_name', fieldValue: byEntity.fieldName }, @@ -236,7 +241,7 @@ export const anomalyDataChange = function ( filterField = config.entityFields.find((f) => f.fieldType === 'partition'); } - const datafeedQuery = _.get(config, 'datafeedConfig.query', null); + const datafeedQuery = get(config, 'datafeedConfig.query', null); return mlResultsService.getEventDistributionData( config.datafeedConfig.indices, splitField, @@ -285,7 +290,7 @@ export const anomalyDataChange = function ( if (eventDistribution.length > 0 && records.length > 0) { const filterField = records[0].by_field_value || records[0].over_field_value; chartData = eventDistribution.filter((d) => d.entity !== filterField); - _.map(metricData, (value, time) => { + map(metricData, (value, time) => { // The filtering for rare/event_distribution charts needs to be handled // differently because of how the source data is structured. // For rare chart values we are only interested wether a value is either `0` or not, @@ -304,7 +309,7 @@ export const anomalyDataChange = function ( } }); } else { - chartData = _.map(metricData, (value, time) => ({ + chartData = map(metricData, (value, time) => ({ date: +time, value: value, })); @@ -314,7 +319,7 @@ export const anomalyDataChange = function ( // Iterate through the anomaly records, adding anomalyScore properties // to the chartData entries for anomalous buckets. const chartDataForPointSearch = getChartDataForPointSearch(chartData, records[0], chartType); - _.each(records, (record) => { + each(records, (record) => { // Look for a chart point with the same time as the record. // If none found, insert a point for anomalies due to a gap in the data. const recordTime = record[ML_TIME_FIELD_NAME]; @@ -330,13 +335,13 @@ export const anomalyDataChange = function ( chartPoint.actual = record.actual; chartPoint.typical = record.typical; } else { - const causes = _.get(record, 'causes', []); + const causes = get(record, 'causes', []); if (causes.length > 0) { chartPoint.byFieldName = record.by_field_name; chartPoint.numberOfCauses = causes.length; if (causes.length === 1) { // If only a single cause, copy actual and typical values to the top level. - const cause = _.first(record.causes); + const cause = record.causes[0]; chartPoint.actual = cause.actual; chartPoint.typical = cause.typical; } @@ -351,7 +356,7 @@ export const anomalyDataChange = function ( // Add a scheduledEvents property to any points in the chart data set // which correspond to times of scheduled events for the job. if (scheduledEvents !== undefined) { - _.each(scheduledEvents, (events, time) => { + each(scheduledEvents, (events, time) => { const chartPoint = findChartPointForTime(chartDataForPointSearch, Number(time)); if (chartPoint !== undefined) { // Note if the scheduled event coincides with an absence of the underlying metric data, @@ -385,10 +390,10 @@ export const anomalyDataChange = function ( .then((response) => { // calculate an overall min/max for all series const processedData = response.map(processChartData); - const allDataPoints = _.reduce( + const allDataPoints = reduce( processedData, (datapoints, series) => { - _.each(series, (d) => datapoints.push(d)); + each(series, (d) => datapoints.push(d)); return datapoints; }, [] @@ -420,7 +425,7 @@ function processRecordsForDisplay(anomalyRecords) { // Aggregate by job, detector, and analysis fields (partition, by, over). const aggregatedData = {}; - _.each(anomalyRecords, (record) => { + each(anomalyRecords, (record) => { // Check if we can plot a chart for this record, depending on whether the source data // is chartable, and if model plot is enabled for the job. const job = mlJobService.getJob(record.job_id); @@ -524,20 +529,20 @@ function processRecordsForDisplay(anomalyRecords) { let recordsForSeries = []; // Convert to an array of the records with the highest record_score per unique series. - _.each(aggregatedData, (detectorsForJob) => { - _.each(detectorsForJob, (groupsForDetector) => { + each(aggregatedData, (detectorsForJob) => { + each(detectorsForJob, (groupsForDetector) => { if (groupsForDetector.maxScoreRecord !== undefined) { // Detector with no partition / by field. recordsForSeries.push(groupsForDetector.maxScoreRecord); } else { - _.each(groupsForDetector, (valuesForGroup) => { - _.each(valuesForGroup, (dataForGroupValue) => { + each(groupsForDetector, (valuesForGroup) => { + each(valuesForGroup, (dataForGroupValue) => { if (dataForGroupValue.maxScoreRecord !== undefined) { recordsForSeries.push(dataForGroupValue.maxScoreRecord); } else { // Second level of aggregation for partition and by/over. - _.each(dataForGroupValue, (splitsForGroup) => { - _.each(splitsForGroup, (dataForSplitValue) => { + each(dataForGroupValue, (splitsForGroup) => { + each(splitsForGroup, (dataForSplitValue) => { recordsForSeries.push(dataForSplitValue.maxScoreRecord); }); }); @@ -547,7 +552,7 @@ function processRecordsForDisplay(anomalyRecords) { } }); }); - recordsForSeries = _.sortBy(recordsForSeries, 'record_score').reverse(); + recordsForSeries = sortBy(recordsForSeries, 'record_score').reverse(); return recordsForSeries; } @@ -564,7 +569,7 @@ function calculateChartRange( // Calculate the time range for the charts. // Fit in as many points in the available container width plotted at the job bucket span. const midpointMs = Math.ceil((earliestMs + latestMs) / 2); - const maxBucketSpanMs = Math.max.apply(null, _.map(seriesConfigs, 'bucketSpanSeconds')) * 1000; + const maxBucketSpanMs = Math.max.apply(null, map(seriesConfigs, 'bucketSpanSeconds')) * 1000; const pointsToPlotFullSelection = Math.ceil((latestMs - earliestMs) / maxBucketSpanMs); @@ -588,7 +593,7 @@ function calculateChartRange( let minMs = recordsToPlot[0][timeFieldName]; let maxMs = recordsToPlot[0][timeFieldName]; - _.each(recordsToPlot, (record) => { + each(recordsToPlot, (record) => { const diffMs = maxMs - minMs; if (diffMs < maxTimeSpan) { const recordTime = record[timeFieldName]; diff --git a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.test.js b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.test.js index 433aa65cc5dd4..a7d422d161108 100644 --- a/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.test.js +++ b/x-pack/plugins/ml/public/application/explorer/explorer_charts/explorer_charts_container_service.test.js @@ -4,7 +4,7 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import cloneDeep from 'lodash/cloneDeep'; import mockAnomalyChartRecords from './__mocks__/mock_anomaly_chart_records.json'; import mockDetectorsByJob from './__mocks__/mock_detectors_by_job.json'; @@ -24,10 +24,10 @@ import mockSeriesPromisesResponse from './__mocks__/mock_series_promises_respons // suitable responses from the mocked services. The mocked services check against the // provided alternative values and return specific modified mock responses for the test case. -const mockJobConfigClone = _.cloneDeep(mockJobConfig); +const mockJobConfigClone = cloneDeep(mockJobConfig); // adjust mock data to tests against null/0 values -const mockMetricClone = _.cloneDeep(mockSeriesPromisesResponse[0][0]); +const mockMetricClone = cloneDeep(mockSeriesPromisesResponse[0][0]); mockMetricClone.results['1486712700000'] = null; mockMetricClone.results['1486713600000'] = 0; @@ -127,7 +127,7 @@ describe('explorerChartsContainerService', () => { }); test('filtering should skip values of null', (done) => { - const mockAnomalyChartRecordsClone = _.cloneDeep(mockAnomalyChartRecords).map((d) => { + const mockAnomalyChartRecordsClone = cloneDeep(mockAnomalyChartRecords).map((d) => { d.job_id = 'mock-job-id-distribution'; return d; }); @@ -151,7 +151,7 @@ describe('explorerChartsContainerService', () => { }); test('field value with trailing dot should not throw an error', (done) => { - const mockAnomalyChartRecordsClone = _.cloneDeep(mockAnomalyChartRecords); + const mockAnomalyChartRecordsClone = cloneDeep(mockAnomalyChartRecords); mockAnomalyChartRecordsClone[1].partition_field_value = 'AAL.'; expect(() => { diff --git a/x-pack/plugins/ml/public/application/explorer/explorer_swimlane.tsx b/x-pack/plugins/ml/public/application/explorer/explorer_swimlane.tsx index 2590ab2f1cb23..05e082711f619 100644 --- a/x-pack/plugins/ml/public/application/explorer/explorer_swimlane.tsx +++ b/x-pack/plugins/ml/public/application/explorer/explorer_swimlane.tsx @@ -10,7 +10,9 @@ import React from 'react'; import './_explorer.scss'; -import _, { isEqual } from 'lodash'; +import isEqual from 'lodash/isEqual'; +import uniq from 'lodash/uniq'; +import get from 'lodash/get'; import d3 from 'd3'; import moment from 'moment'; import DragSelect from 'dragselect'; @@ -176,9 +178,9 @@ export class ExplorerSwimlane extends React.Component { } ); - selectedData.laneLabels = _.uniq(selectedData.laneLabels); - selectedData.times = _.uniq(selectedData.times); - if (_.isEqual(selectedData, previousSelectedData) === false) { + selectedData.laneLabels = uniq(selectedData.laneLabels); + selectedData.times = uniq(selectedData.times); + if (isEqual(selectedData, previousSelectedData) === false) { // If no cells containing anomalies have been selected, // immediately clear the selection, otherwise trigger // a reload with the updated selected cells. @@ -246,7 +248,7 @@ export class ExplorerSwimlane extends React.Component { selectedTimes: d3.extent(times), }; - if (_.isEqual(oldSelection, newSelection)) { + if (isEqual(oldSelection, newSelection)) { triggerNewSelection = false; } @@ -277,8 +279,8 @@ export class ExplorerSwimlane extends React.Component { // Check for selection and reselect the corresponding swimlane cell // if the time range and lane label are still in view. const selectionState = selection; - const selectedType = _.get(selectionState, 'type', undefined); - const selectionViewByFieldName = _.get(selectionState, 'viewByFieldName', ''); + const selectedType = get(selectionState, 'type', undefined); + const selectionViewByFieldName = get(selectionState, 'viewByFieldName', ''); // If a selection was done in the other swimlane, add the "masked" classes // to de-emphasize the swimlane cells. @@ -288,8 +290,8 @@ export class ExplorerSwimlane extends React.Component { } const cellsToSelect: Node[] = []; - const selectedLanes = _.get(selectionState, 'lanes', []); - const selectedTimes = _.get(selectionState, 'times', []); + const selectedLanes = get(selectionState, 'lanes', []); + const selectedTimes = get(selectionState, 'times', []); const selectedTimeExtent = d3.extent(selectedTimes); if ( diff --git a/x-pack/plugins/ml/public/application/services/forecast_service.js b/x-pack/plugins/ml/public/application/services/forecast_service.js index ed5a29ff74a63..57e50387a03ab 100644 --- a/x-pack/plugins/ml/public/application/services/forecast_service.js +++ b/x-pack/plugins/ml/public/application/services/forecast_service.js @@ -6,7 +6,9 @@ // Service for carrying out requests to run ML forecasts and to obtain // data on forecasts that have been performed. -import _ from 'lodash'; +import get from 'lodash/get'; +import find from 'lodash/find'; +import each from 'lodash/each'; import { map } from 'rxjs/operators'; import { ml } from './ml_api_service'; @@ -129,8 +131,8 @@ function getForecastDateRange(job, forecastId) { }, }) .then((resp) => { - obj.earliest = _.get(resp, 'aggregations.earliest.value', null); - obj.latest = _.get(resp, 'aggregations.latest.value', null); + obj.earliest = get(resp, 'aggregations.earliest.value', null); + obj.latest = get(resp, 'aggregations.latest.value', null); if (obj.earliest === null || obj.latest === null) { reject(resp); } else { @@ -157,8 +159,8 @@ function getForecastData( // Extract the partition, by, over fields on which to filter. const criteriaFields = []; const detector = job.analysis_config.detectors[detectorIndex]; - if (_.has(detector, 'partition_field_name')) { - const partitionEntity = _.find(entityFields, { fieldName: detector.partition_field_name }); + if (detector.partition_field_name !== undefined) { + const partitionEntity = find(entityFields, { fieldName: detector.partition_field_name }); if (partitionEntity !== undefined) { criteriaFields.push( { fieldName: 'partition_field_name', fieldValue: partitionEntity.fieldName }, @@ -167,8 +169,8 @@ function getForecastData( } } - if (_.has(detector, 'over_field_name')) { - const overEntity = _.find(entityFields, { fieldName: detector.over_field_name }); + if (detector.over_field_name !== undefined) { + const overEntity = find(entityFields, { fieldName: detector.over_field_name }); if (overEntity !== undefined) { criteriaFields.push( { fieldName: 'over_field_name', fieldValue: overEntity.fieldName }, @@ -177,8 +179,8 @@ function getForecastData( } } - if (_.has(detector, 'by_field_name')) { - const byEntity = _.find(entityFields, { fieldName: detector.by_field_name }); + if (detector.by_field_name !== undefined) { + const byEntity = find(entityFields, { fieldName: detector.by_field_name }); if (byEntity !== undefined) { criteriaFields.push( { fieldName: 'by_field_name', fieldValue: byEntity.fieldName }, @@ -222,7 +224,7 @@ function getForecastData( ]; // Add in term queries for each of the specified criteria. - _.each(criteriaFields, (criteria) => { + each(criteriaFields, (criteria) => { filterCriteria.push({ term: { [criteria.fieldName]: criteria.fieldValue, @@ -281,13 +283,13 @@ function getForecastData( }) .pipe( map((resp) => { - const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []); - _.each(aggregationsByTime, (dataForTime) => { + const aggregationsByTime = get(resp, ['aggregations', 'times', 'buckets'], []); + each(aggregationsByTime, (dataForTime) => { const time = dataForTime.key; obj.results[time] = { - prediction: _.get(dataForTime, ['prediction', 'value']), - forecastUpper: _.get(dataForTime, ['forecastUpper', 'value']), - forecastLower: _.get(dataForTime, ['forecastLower', 'value']), + prediction: get(dataForTime, ['prediction', 'value']), + forecastUpper: get(dataForTime, ['forecastUpper', 'value']), + forecastLower: get(dataForTime, ['forecastLower', 'value']), }; }); @@ -355,7 +357,7 @@ function getForecastRequestStats(job, forecastId) { }) .then((resp) => { if (resp.hits.total !== 0) { - obj.stats = _.first(resp.hits.hits)._source; + obj.stats = resp.hits.hits[0]._source; } resolve(obj); }) diff --git a/x-pack/plugins/ml/public/application/services/job_service.js b/x-pack/plugins/ml/public/application/services/job_service.js index 7e90758ffd7db..704d76059f75c 100644 --- a/x-pack/plugins/ml/public/application/services/job_service.js +++ b/x-pack/plugins/ml/public/application/services/job_service.js @@ -4,7 +4,11 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import cloneDeep from 'lodash/cloneDeep'; +import each from 'lodash/each'; +import find from 'lodash/find'; +import get from 'lodash/get'; +import isNumber from 'lodash/isNumber'; import moment from 'moment'; import { i18n } from '@kbn/i18n'; @@ -135,10 +139,10 @@ class JobService { const jobStats = statsResp.jobs[j]; if (job.job_id === jobStats.job_id) { job.state = jobStats.state; - job.data_counts = _.cloneDeep(jobStats.data_counts); - job.model_size_stats = _.cloneDeep(jobStats.model_size_stats); + job.data_counts = cloneDeep(jobStats.data_counts); + job.model_size_stats = cloneDeep(jobStats.model_size_stats); if (jobStats.node) { - job.node = _.cloneDeep(jobStats.node); + job.node = cloneDeep(jobStats.node); } if (jobStats.open_time) { job.open_time = jobStats.open_time; @@ -212,10 +216,10 @@ class JobService { newJob.state = statsJob.state; newJob.data_counts = {}; newJob.model_size_stats = {}; - newJob.data_counts = _.cloneDeep(statsJob.data_counts); - newJob.model_size_stats = _.cloneDeep(statsJob.model_size_stats); + newJob.data_counts = cloneDeep(statsJob.data_counts); + newJob.model_size_stats = cloneDeep(statsJob.model_size_stats); if (newJob.node) { - newJob.node = _.cloneDeep(statsJob.node); + newJob.node = cloneDeep(statsJob.node); } if (statsJob.open_time) { @@ -352,7 +356,7 @@ class JobService { // create a deep copy of a job object // also remove items from the job which are set by the server and not needed // in the future this formatting could be optional - const tempJob = _.cloneDeep(job); + const tempJob = cloneDeep(job); // remove all of the items which should not be copied // such as counts, state and times @@ -375,7 +379,7 @@ class JobService { delete tempJob.analysis_config.use_per_partition_normalization; - _.each(tempJob.analysis_config.detectors, (d) => { + each(tempJob.analysis_config.detectors, (d) => { delete d.detector_index; }); @@ -469,7 +473,7 @@ class JobService { // find a job based on the id getJob(jobId) { - const job = _.find(jobs, (j) => { + const job = find(jobs, (j) => { return j.job_id === jobId; }); @@ -550,7 +554,7 @@ class JobService { // get fields from detectors if (job.analysis_config.detectors) { - _.each(job.analysis_config.detectors, (dtr) => { + each(job.analysis_config.detectors, (dtr) => { if (dtr.by_field_name) { fields[dtr.by_field_name] = {}; } @@ -568,7 +572,7 @@ class JobService { // get fields from influencers if (job.analysis_config.influencers) { - _.each(job.analysis_config.influencers, (inf) => { + each(job.analysis_config.influencers, (inf) => { fields[inf] = {}; }); } @@ -659,7 +663,7 @@ class JobService { return new Promise((resolve, reject) => { // if the end timestamp is a number, add one ms to it to make it // inclusive of the end of the data - if (_.isNumber(end)) { + if (isNumber(end)) { end++; } @@ -780,7 +784,7 @@ class JobService { }); } }); - _.each(tempGroups, (js, id) => { + each(tempGroups, (js, id) => { groups.push({ id, jobs: js }); }); return groups; @@ -837,9 +841,9 @@ function processBasicJobInfo(localJobService, jobsList) { const customUrlsByJob = {}; // use cloned copy of jobs list so not to alter the original - const jobsListCopy = _.cloneDeep(jobsList); + const jobsListCopy = cloneDeep(jobsList); - _.each(jobsListCopy, (jobObj) => { + each(jobsListCopy, (jobObj) => { const analysisConfig = jobObj.analysis_config; const bucketSpan = parseInterval(analysisConfig.bucket_span); @@ -848,20 +852,20 @@ function processBasicJobInfo(localJobService, jobsList) { bucketSpanSeconds: bucketSpan.asSeconds(), }; - if (_.has(jobObj, 'description') && /^\s*$/.test(jobObj.description) === false) { + if (jobObj.description !== undefined && /^\s*$/.test(jobObj.description) === false) { job.description = jobObj.description; } else { // Just use the id as the description. job.description = jobObj.job_id; } - job.detectors = _.get(analysisConfig, 'detectors', []); + job.detectors = get(analysisConfig, 'detectors', []); detectorsByJob[job.id] = job.detectors; - if (_.has(jobObj, 'custom_settings.custom_urls')) { + if (jobObj.custom_settings !== undefined && jobObj.custom_settings.custom_urls !== undefined) { job.customUrls = []; - _.each(jobObj.custom_settings.custom_urls, (url) => { - if (_.has(url, 'url_name') && _.has(url, 'url_value') && isWebUrl(url.url_value)) { + each(jobObj.custom_settings.custom_urls, (url) => { + if (url.url_name !== undefined && url.url_value !== undefined && isWebUrl(url.url_value)) { // Only make web URLs (i.e. http or https) available in dashboard drilldowns. job.customUrls.push(url); } @@ -897,7 +901,7 @@ function createJobStats(jobsList, jobStats) { const mlNodes = {}; let failedJobs = 0; - _.each(jobsList, (job) => { + each(jobsList, (job) => { if (job.state === 'opened') { jobStats.open.value++; } else if (job.state === 'closed') { diff --git a/x-pack/plugins/ml/public/application/services/mapping_service.js b/x-pack/plugins/ml/public/application/services/mapping_service.js index 52aa5ed7413cb..251bb0bce5690 100644 --- a/x-pack/plugins/ml/public/application/services/mapping_service.js +++ b/x-pack/plugins/ml/public/application/services/mapping_service.js @@ -4,7 +4,7 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import each from 'lodash/each'; import { ml } from './ml_api_service'; @@ -16,8 +16,8 @@ export function getFieldTypeFromMapping(index, fieldName) { ml.getFieldCaps({ index, fields: [fieldName] }) .then((resp) => { let fieldType = ''; - _.each(resp.fields, (field) => { - _.each(field, (type) => { + each(resp.fields, (field) => { + each(field, (type) => { if (fieldType === '') { fieldType = type.type; } diff --git a/x-pack/plugins/ml/public/application/services/results_service/result_service_rx.ts b/x-pack/plugins/ml/public/application/services/results_service/result_service_rx.ts index d7f016b419377..898ca8894cbda 100644 --- a/x-pack/plugins/ml/public/application/services/results_service/result_service_rx.ts +++ b/x-pack/plugins/ml/public/application/services/results_service/result_service_rx.ts @@ -13,7 +13,8 @@ // Returned response contains a results property containing the requested aggregation. import { Observable } from 'rxjs'; import { map } from 'rxjs/operators'; -import _ from 'lodash'; +import each from 'lodash/each'; +import get from 'lodash/get'; import { Dictionary } from '../../../../common/types/common'; import { ML_MEDIAN_PERCENTS } from '../../../../common/util/job_utils'; import { JobId } from '../../../../common/types/anomaly_detection_jobs'; @@ -237,7 +238,7 @@ export function resultsServiceRxProvider(mlApiServices: MlApiServices) { ]; // Add in term queries for each of the specified criteria. - _.each(criteriaFields, (criteria) => { + each(criteriaFields, (criteria) => { mustCriteria.push({ term: { [criteria.fieldName]: criteria.fieldValue, @@ -316,12 +317,12 @@ export function resultsServiceRxProvider(mlApiServices: MlApiServices) { }) .pipe( map((resp) => { - const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []); - _.each(aggregationsByTime, (dataForTime: any) => { + const aggregationsByTime = get(resp, ['aggregations', 'times', 'buckets'], []); + each(aggregationsByTime, (dataForTime: any) => { const time = dataForTime.key; - const modelUpper: number | undefined = _.get(dataForTime, ['modelUpper', 'value']); - const modelLower: number | undefined = _.get(dataForTime, ['modelLower', 'value']); - const actual = _.get(dataForTime, ['actual', 'value']); + const modelUpper: number | undefined = get(dataForTime, ['modelUpper', 'value']); + const modelLower: number | undefined = get(dataForTime, ['modelLower', 'value']); + const actual = get(dataForTime, ['actual', 'value']); obj.results[time] = { actual, @@ -375,7 +376,7 @@ export function resultsServiceRxProvider(mlApiServices: MlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { if (i > 0) { jobIdFilterStr += ' OR '; } @@ -391,7 +392,7 @@ export function resultsServiceRxProvider(mlApiServices: MlApiServices) { } // Add in term queries for each of the specified criteria. - _.each(criteriaFields, (criteria) => { + each(criteriaFields, (criteria) => { boolCriteria.push({ term: { [criteria.fieldName]: criteria.fieldValue, @@ -428,7 +429,7 @@ export function resultsServiceRxProvider(mlApiServices: MlApiServices) { .pipe( map((resp) => { if (resp.hits.total !== 0) { - _.each(resp.hits.hits, (hit: any) => { + each(resp.hits.hits, (hit: any) => { obj.records.push(hit._source); }); } @@ -473,7 +474,7 @@ export function resultsServiceRxProvider(mlApiServices: MlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { jobIdFilterStr += `${i > 0 ? ' OR ' : ''}job_id:${jobId}`; }); boolCriteria.push({ @@ -536,15 +537,15 @@ export function resultsServiceRxProvider(mlApiServices: MlApiServices) { }) .pipe( map((resp) => { - const dataByJobId = _.get(resp, ['aggregations', 'jobs', 'buckets'], []); - _.each(dataByJobId, (dataForJob: any) => { + const dataByJobId = get(resp, ['aggregations', 'jobs', 'buckets'], []); + each(dataByJobId, (dataForJob: any) => { const jobId: string = dataForJob.key; const resultsForTime: Record = {}; - const dataByTime = _.get(dataForJob, ['times', 'buckets'], []); - _.each(dataByTime, (dataForTime: any) => { + const dataByTime = get(dataForJob, ['times', 'buckets'], []); + each(dataByTime, (dataForTime: any) => { const time: string = dataForTime.key; - const events: object[] = _.get(dataForTime, ['events', 'buckets']); - resultsForTime[time] = _.map(events, 'key'); + const events: any[] = get(dataForTime, ['events', 'buckets']); + resultsForTime[time] = events.map((e) => e.key); }); obj.events[jobId] = resultsForTime; }); diff --git a/x-pack/plugins/ml/public/application/services/results_service/results_service.js b/x-pack/plugins/ml/public/application/services/results_service/results_service.js index 50e2d0a5a2a0b..0c3b2e40c8e26 100644 --- a/x-pack/plugins/ml/public/application/services/results_service/results_service.js +++ b/x-pack/plugins/ml/public/application/services/results_service/results_service.js @@ -4,7 +4,8 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import each from 'lodash/each'; +import get from 'lodash/get'; import { ML_MEDIAN_PERCENTS } from '../../../../common/util/job_utils'; import { escapeForElasticsearchQuery } from '../../util/string_utils'; @@ -50,7 +51,7 @@ export function resultsServiceProvider(mlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { if (i > 0) { jobIdFilterStr += ' OR '; } @@ -131,18 +132,18 @@ export function resultsServiceProvider(mlApiServices) { }, }) .then((resp) => { - const dataByJobId = _.get(resp, ['aggregations', 'jobId', 'buckets'], []); - _.each(dataByJobId, (dataForJob) => { + const dataByJobId = get(resp, ['aggregations', 'jobId', 'buckets'], []); + each(dataByJobId, (dataForJob) => { const jobId = dataForJob.key; const resultsForTime = {}; - const dataByTime = _.get(dataForJob, ['byTime', 'buckets'], []); - _.each(dataByTime, (dataForTime) => { - const value = _.get(dataForTime, ['anomalyScore', 'value']); + const dataByTime = get(dataForJob, ['byTime', 'buckets'], []); + each(dataByTime, (dataForTime) => { + const value = get(dataForTime, ['anomalyScore', 'value']); if (value !== undefined) { const time = dataForTime.key; - resultsForTime[time] = _.get(dataForTime, ['anomalyScore', 'value']); + resultsForTime[time] = get(dataForTime, ['anomalyScore', 'value']); } }); obj.results[jobId] = resultsForTime; @@ -198,7 +199,7 @@ export function resultsServiceProvider(mlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { if (i > 0) { jobIdFilterStr += ' OR '; } @@ -305,17 +306,17 @@ export function resultsServiceProvider(mlApiServices) { }, }) .then((resp) => { - const fieldNameBuckets = _.get( + const fieldNameBuckets = get( resp, ['aggregations', 'influencerFieldNames', 'buckets'], [] ); - _.each(fieldNameBuckets, (nameBucket) => { + each(fieldNameBuckets, (nameBucket) => { const fieldName = nameBucket.key; const fieldValues = []; - const fieldValueBuckets = _.get(nameBucket, ['influencerFieldValues', 'buckets'], []); - _.each(fieldValueBuckets, (valueBucket) => { + const fieldValueBuckets = get(nameBucket, ['influencerFieldValues', 'buckets'], []); + each(fieldValueBuckets, (valueBucket) => { const fieldValueResult = { influencerFieldValue: valueBucket.key, maxAnomalyScore: valueBucket.maxAnomalyScore.value, @@ -360,7 +361,7 @@ export function resultsServiceProvider(mlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { if (i > 0) { jobIdFilterStr += ' OR '; } @@ -424,8 +425,8 @@ export function resultsServiceProvider(mlApiServices) { }, }) .then((resp) => { - const buckets = _.get(resp, ['aggregations', 'influencerFieldValues', 'buckets'], []); - _.each(buckets, (bucket) => { + const buckets = get(resp, ['aggregations', 'influencerFieldValues', 'buckets'], []); + each(buckets, (bucket) => { const result = { influencerFieldValue: bucket.key, maxAnomalyScore: bucket.maxAnomalyScore.value, @@ -458,9 +459,9 @@ export function resultsServiceProvider(mlApiServices) { end: latestMs, }) .then((resp) => { - const dataByTime = _.get(resp, ['overall_buckets'], []); - _.each(dataByTime, (dataForTime) => { - const value = _.get(dataForTime, ['overall_score']); + const dataByTime = get(resp, ['overall_buckets'], []); + each(dataByTime, (dataForTime) => { + const value = get(dataForTime, ['overall_score']); if (value !== undefined) { obj.results[dataForTime.timestamp] = value; } @@ -517,7 +518,7 @@ export function resultsServiceProvider(mlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { if (i > 0) { jobIdFilterStr += ' OR '; } @@ -537,7 +538,7 @@ export function resultsServiceProvider(mlApiServices) { if (influencerFieldValues && influencerFieldValues.length > 0) { let influencerFilterStr = ''; - _.each(influencerFieldValues, (value, i) => { + each(influencerFieldValues, (value, i) => { if (i > 0) { influencerFilterStr += ' OR '; } @@ -625,17 +626,17 @@ export function resultsServiceProvider(mlApiServices) { }, }) .then((resp) => { - const fieldValueBuckets = _.get( + const fieldValueBuckets = get( resp, ['aggregations', 'influencerFieldValues', 'buckets'], [] ); - _.each(fieldValueBuckets, (valueBucket) => { + each(fieldValueBuckets, (valueBucket) => { const fieldValue = valueBucket.key; const fieldValues = {}; - const timeBuckets = _.get(valueBucket, ['byTime', 'buckets'], []); - _.each(timeBuckets, (timeBucket) => { + const timeBuckets = get(valueBucket, ['byTime', 'buckets'], []); + each(timeBuckets, (timeBucket) => { const time = timeBucket.key; const score = timeBucket.maxAnomalyScore.value; fieldValues[time] = score; @@ -701,7 +702,7 @@ export function resultsServiceProvider(mlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { if (i > 0) { jobIdFilterStr += ' OR '; } @@ -744,7 +745,7 @@ export function resultsServiceProvider(mlApiServices) { }) .then((resp) => { if (resp.hits.total !== 0) { - _.each(resp.hits.hits, (hit) => { + each(resp.hits.hits, (hit) => { obj.records.push(hit._source); }); } @@ -797,7 +798,7 @@ export function resultsServiceProvider(mlApiServices) { if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i) => { + each(jobIds, (jobId, i) => { if (i > 0) { jobIdFilterStr += ' OR '; } @@ -875,7 +876,7 @@ export function resultsServiceProvider(mlApiServices) { }) .then((resp) => { if (resp.hits.total !== 0) { - _.each(resp.hits.hits, (hit) => { + each(resp.hits.hits, (hit) => { obj.records.push(hit._source); }); } @@ -1000,7 +1001,7 @@ export function resultsServiceProvider(mlApiServices) { }) .then((resp) => { if (resp.hits.total !== 0) { - _.each(resp.hits.hits, (hit) => { + each(resp.hits.hits, (hit) => { obj.records.push(hit._source); }); } @@ -1079,8 +1080,8 @@ export function resultsServiceProvider(mlApiServices) { }, }) .then((resp) => { - const dataByTimeBucket = _.get(resp, ['aggregations', 'eventRate', 'buckets'], []); - _.each(dataByTimeBucket, (dataForTime) => { + const dataByTimeBucket = get(resp, ['aggregations', 'eventRate', 'buckets'], []); + each(dataByTimeBucket, (dataForTime) => { const time = dataForTime.key; obj.results[time] = dataForTime.doc_count; }); @@ -1227,18 +1228,18 @@ export function resultsServiceProvider(mlApiServices) { // Because of the sampling, results of metricFunctions which use sum or count // can be significantly skewed. Taking into account totalHits we calculate a // a factor to normalize results for these metricFunctions. - const totalHits = _.get(resp, ['hits', 'total'], 0); - const successfulShards = _.get(resp, ['_shards', 'successful'], 0); + const totalHits = get(resp, ['hits', 'total'], 0); + const successfulShards = get(resp, ['_shards', 'successful'], 0); let normalizeFactor = 1; if (totalHits > successfulShards * SAMPLER_TOP_TERMS_SHARD_SIZE) { normalizeFactor = totalHits / (successfulShards * SAMPLER_TOP_TERMS_SHARD_SIZE); } - const dataByTime = _.get(resp, ['aggregations', 'sample', 'byTime', 'buckets'], []); + const dataByTime = get(resp, ['aggregations', 'sample', 'byTime', 'buckets'], []); const data = dataByTime.reduce((d, dataForTime) => { const date = +dataForTime.key; - const entities = _.get(dataForTime, ['entities', 'buckets'], []); + const entities = get(dataForTime, ['entities', 'buckets'], []); entities.forEach((entity) => { let value = metricFunction === 'count' ? entity.doc_count : entity.metric.value; @@ -1291,7 +1292,7 @@ export function resultsServiceProvider(mlApiServices) { { term: { job_id: jobId } }, ]; - _.each(criteriaFields, (criteria) => { + each(criteriaFields, (criteria) => { mustCriteria.push({ term: { [criteria.fieldName]: criteria.fieldValue, @@ -1339,11 +1340,11 @@ export function resultsServiceProvider(mlApiServices) { }, }) .then((resp) => { - const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []); - _.each(aggregationsByTime, (dataForTime) => { + const aggregationsByTime = get(resp, ['aggregations', 'times', 'buckets'], []); + each(aggregationsByTime, (dataForTime) => { const time = dataForTime.key; obj.results[time] = { - score: _.get(dataForTime, ['recordScore', 'value']), + score: get(dataForTime, ['recordScore', 'value']), }; }); diff --git a/x-pack/plugins/ml/public/application/timeseriesexplorer/components/forecasting_modal/forecasting_modal.js b/x-pack/plugins/ml/public/application/timeseriesexplorer/components/forecasting_modal/forecasting_modal.js index 86f12d7ca68c8..d825844ffa14b 100644 --- a/x-pack/plugins/ml/public/application/timeseriesexplorer/components/forecasting_modal/forecasting_modal.js +++ b/x-pack/plugins/ml/public/application/timeseriesexplorer/components/forecasting_modal/forecasting_modal.js @@ -9,7 +9,7 @@ */ import PropTypes from 'prop-types'; -import _ from 'lodash'; +import get from 'lodash/get'; import React, { Component } from 'react'; @@ -250,8 +250,8 @@ export class ForecastingModalUI extends Component { .getForecastRequestStats(this.props.job, forecastId) .then((resp) => { // Get the progress (stats value is between 0 and 1). - const progress = _.get(resp, ['stats', 'forecast_progress'], previousProgress); - const status = _.get(resp, ['stats', 'forecast_status']); + const progress = get(resp, ['stats', 'forecast_progress'], previousProgress); + const status = get(resp, ['stats', 'forecast_status']); // The requests for forecast stats can get routed to different shards, // and if these operate at different speeds there is a chance that a @@ -263,7 +263,7 @@ export class ForecastingModalUI extends Component { } // Display any messages returned in the request stats. - let messages = _.get(resp, ['stats', 'forecast_messages'], []); + let messages = get(resp, ['stats', 'forecast_messages'], []); messages = messages.map((message) => ({ message, status: MESSAGE_LEVEL.WARNING })); this.setState({ messages }); diff --git a/x-pack/plugins/ml/public/application/timeseriesexplorer/components/timeseries_chart/timeseries_chart.js b/x-pack/plugins/ml/public/application/timeseriesexplorer/components/timeseries_chart/timeseries_chart.js index 190bce1639c4a..7ec59f4acbc51 100644 --- a/x-pack/plugins/ml/public/application/timeseriesexplorer/components/timeseries_chart/timeseries_chart.js +++ b/x-pack/plugins/ml/public/application/timeseriesexplorer/components/timeseries_chart/timeseries_chart.js @@ -12,9 +12,13 @@ import PropTypes from 'prop-types'; import React, { Component } from 'react'; import useObservable from 'react-use/lib/useObservable'; -import _ from 'lodash'; +import isEqual from 'lodash/isEqual'; +import reduce from 'lodash/reduce'; +import each from 'lodash/each'; +import get from 'lodash/get'; import d3 from 'd3'; import moment from 'moment'; +import { i18n } from '@kbn/i18n'; import { getSeverityWithLow, @@ -49,8 +53,6 @@ import { unhighlightFocusChartAnnotation, } from './timeseries_chart_annotations'; -import { i18n } from '@kbn/i18n'; - const focusZoomPanelHeight = 25; const focusChartHeight = 310; const focusHeight = focusZoomPanelHeight + focusChartHeight; @@ -399,7 +401,7 @@ class TimeseriesChartIntl extends Component { if (zoomFrom) { focusLoadFrom = zoomFrom.getTime(); } else { - focusLoadFrom = _.reduce( + focusLoadFrom = reduce( combinedData, (memo, point) => Math.min(memo, point.date.getTime()), new Date(2099, 12, 31).getTime() @@ -410,11 +412,7 @@ class TimeseriesChartIntl extends Component { if (zoomTo) { focusLoadTo = zoomTo.getTime(); } else { - focusLoadTo = _.reduce( - combinedData, - (memo, point) => Math.max(memo, point.date.getTime()), - 0 - ); + focusLoadTo = reduce(combinedData, (memo, point) => Math.max(memo, point.date.getTime()), 0); } focusLoadTo = Math.min(focusLoadTo, contextXMax); @@ -431,7 +429,7 @@ class TimeseriesChartIntl extends Component { min: moment(new Date(contextXScaleDomain[0])), max: moment(contextXScaleDomain[1]), }; - if (!_.isEqual(newSelectedBounds, this.selectedBounds)) { + if (!isEqual(newSelectedBounds, this.selectedBounds)) { this.selectedBounds = newSelectedBounds; this.setContextBrushExtent( new Date(contextXScaleDomain[0]), @@ -764,7 +762,7 @@ class TimeseriesChartIntl extends Component { }) .attr('class', (d) => { let markerClass = 'metric-value'; - if (_.has(d, 'anomalyScore')) { + if (d.anomalyScore !== undefined) { markerClass += ` anomaly-marker ${getSeverityWithLow(d.anomalyScore).id}`; } return markerClass; @@ -887,14 +885,14 @@ class TimeseriesChartIntl extends Component { ); const zoomOptions = [{ durationMs: autoZoomDuration, label: 'auto' }]; - _.each(ZOOM_INTERVAL_OPTIONS, (option) => { + each(ZOOM_INTERVAL_OPTIONS, (option) => { if (option.duration.asSeconds() > minSecs && option.duration.asSeconds() < boundsSecs) { zoomOptions.push({ durationMs: option.duration.asMilliseconds(), label: option.label }); } }); xPos += zoomLabel.node().getBBox().width + 4; - _.each(zoomOptions, (option) => { + each(zoomOptions, (option) => { const text = zoomGroup .append('a') .attr('data-ms', option.durationMs) @@ -960,7 +958,7 @@ class TimeseriesChartIntl extends Component { const combinedData = contextForecastData === undefined ? data : data.concat(contextForecastData); const valuesRange = { min: Number.MAX_VALUE, max: Number.MIN_VALUE }; - _.each(combinedData, (item) => { + each(combinedData, (item) => { valuesRange.min = Math.min(item.value, valuesRange.min); valuesRange.max = Math.max(item.value, valuesRange.max); }); @@ -973,7 +971,7 @@ class TimeseriesChartIntl extends Component { (contextForecastData !== undefined && contextForecastData.length > 0) ) { const boundsRange = { min: Number.MAX_VALUE, max: Number.MIN_VALUE }; - _.each(combinedData, (item) => { + each(combinedData, (item) => { boundsRange.min = Math.min(item.lower, boundsRange.min); boundsRange.max = Math.max(item.upper, boundsRange.max); }); @@ -1294,7 +1292,7 @@ class TimeseriesChartIntl extends Component { if (swimlaneData !== undefined && swimlaneData.length > 0) { // Adjust the earliest back to the time of the first swimlane point // if this is before the time filter minimum. - earliest = Math.min(_.first(swimlaneData).date.getTime(), bounds.min.valueOf()); + earliest = Math.min(swimlaneData[0].date.getTime(), bounds.min.valueOf()); } const contextAggMs = contextAggregationInterval.asMilliseconds(); @@ -1352,7 +1350,7 @@ class TimeseriesChartIntl extends Component { const formattedDate = formatHumanReadableDateTimeSeconds(marker.date); const tooltipData = [{ label: formattedDate }]; - if (_.has(marker, 'anomalyScore')) { + if (marker.anomalyScore !== undefined) { const score = parseInt(marker.anomalyScore); const displayScore = score > 0 ? score : '< 1'; tooltipData.push({ @@ -1387,7 +1385,7 @@ class TimeseriesChartIntl extends Component { // Show actual/typical when available except for rare detectors. // Rare detectors always have 1 as actual and the probability as typical. // Exposing those values in the tooltip with actual/typical labels might irritate users. - if (_.has(marker, 'actual') && marker.function !== 'rare') { + if (marker.actual !== undefined && marker.function !== 'rare') { // Display the record actual in preference to the chart value, which may be // different depending on the aggregation interval of the chart. tooltipData.push({ @@ -1421,7 +1419,7 @@ class TimeseriesChartIntl extends Component { }, valueAccessor: 'value', }); - if (_.has(marker, 'byFieldName') && _.has(marker, 'numberOfCauses')) { + if (marker.byFieldName !== undefined && marker.numberOfCauses !== undefined) { const numberOfCauses = marker.numberOfCauses; // If numberOfCauses === 1, won't go into this block as actual/typical copied to top level fields. const byFieldName = mlEscape(marker.byFieldName); @@ -1488,7 +1486,7 @@ class TimeseriesChartIntl extends Component { } } else { // TODO - need better formatting for small decimals. - if (_.get(marker, 'isForecast', false) === true) { + if (get(marker, 'isForecast', false) === true) { tooltipData.push({ label: i18n.translate( 'xpack.ml.timeSeriesExplorer.timeSeriesChart.withoutAnomalyScore.predictionLabel', @@ -1548,7 +1546,7 @@ class TimeseriesChartIntl extends Component { } } - if (_.has(marker, 'scheduledEvents')) { + if (marker.scheduledEvents !== undefined) { marker.scheduledEvents.forEach((scheduledEvent, i) => { tooltipData.push({ label: i18n.translate( @@ -1569,7 +1567,7 @@ class TimeseriesChartIntl extends Component { }); } - if (_.has(marker, 'annotation')) { + if (marker.annotation !== undefined) { tooltipData.length = 0; // header tooltipData.push({ diff --git a/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseries_search_service.ts b/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseries_search_service.ts index ce5a7565c519b..d1e959b33e5dc 100644 --- a/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseries_search_service.ts +++ b/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseries_search_service.ts @@ -4,7 +4,10 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import each from 'lodash/each'; +import find from 'lodash/find'; +import get from 'lodash/get'; +import filter from 'lodash/filter'; import { Observable } from 'rxjs'; import { map } from 'rxjs/operators'; @@ -35,8 +38,8 @@ function getMetricData( // Extract the partition, by, over fields on which to filter. const criteriaFields = []; const detector = job.analysis_config.detectors[detectorIndex]; - if (_.has(detector, 'partition_field_name')) { - const partitionEntity: any = _.find(entityFields, { + if (detector.partition_field_name !== undefined) { + const partitionEntity: any = find(entityFields, { fieldName: detector.partition_field_name, }); if (partitionEntity !== undefined) { @@ -47,8 +50,8 @@ function getMetricData( } } - if (_.has(detector, 'over_field_name')) { - const overEntity: any = _.find(entityFields, { fieldName: detector.over_field_name }); + if (detector.over_field_name !== undefined) { + const overEntity: any = find(entityFields, { fieldName: detector.over_field_name }); if (overEntity !== undefined) { criteriaFields.push( { fieldName: 'over_field_name', fieldValue: overEntity.fieldName }, @@ -57,8 +60,8 @@ function getMetricData( } } - if (_.has(detector, 'by_field_name')) { - const byEntity: any = _.find(entityFields, { fieldName: detector.by_field_name }); + if (detector.by_field_name !== undefined) { + const byEntity: any = find(entityFields, { fieldName: detector.by_field_name }); if (byEntity !== undefined) { criteriaFields.push( { fieldName: 'by_field_name', fieldValue: byEntity.fieldName }, @@ -97,7 +100,7 @@ function getMetricData( ) .pipe( map((resp) => { - _.each(resp.results, (value, time) => { + each(resp.results, (value, time) => { // @ts-ignore obj.results[time] = { actual: value, @@ -134,7 +137,7 @@ function getChartDetails( } obj.results.functionLabel = functionLabel; - const blankEntityFields = _.filter(entityFields, (entity) => { + const blankEntityFields = filter(entityFields, (entity) => { return entity.fieldValue === null; }); @@ -145,7 +148,7 @@ function getChartDetails( obj.results.entityData.entities = entityFields; resolve(obj); } else { - const entityFieldNames: string[] = _.map(blankEntityFields, 'fieldName'); + const entityFieldNames: string[] = blankEntityFields.map((f) => f.fieldName); ml.getCardinalityOfFields({ index: chartConfig.datafeedConfig.indices, fieldNames: entityFieldNames, @@ -155,12 +158,12 @@ function getChartDetails( latestMs, }) .then((results: any) => { - _.each(blankEntityFields, (field) => { + each(blankEntityFields, (field) => { // results will not contain keys for non-aggregatable fields, // so store as 0 to indicate over all field values. obj.results.entityData.entities.push({ fieldName: field.fieldName, - cardinality: _.get(results, field.fieldName, 0), + cardinality: get(results, field.fieldName, 0), }); }); diff --git a/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseriesexplorer_utils/timeseriesexplorer_utils.js b/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseriesexplorer_utils/timeseriesexplorer_utils.js index 857db302e664e..7d14bb43ef811 100644 --- a/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseriesexplorer_utils/timeseriesexplorer_utils.js +++ b/x-pack/plugins/ml/public/application/timeseriesexplorer/timeseriesexplorer_utils/timeseriesexplorer_utils.js @@ -10,7 +10,9 @@ * Viewer dashboard. */ -import _ from 'lodash'; +import each from 'lodash/each'; +import get from 'lodash/get'; +import find from 'lodash/find'; import moment from 'moment-timezone'; import { isTimeSeriesViewJob } from '../../../../common/util/job_utils'; @@ -41,7 +43,7 @@ export function createTimeSeriesJobData(jobs) { export function processMetricPlotResults(metricPlotData, modelPlotEnabled) { const metricPlotChartData = []; if (modelPlotEnabled === true) { - _.each(metricPlotData, (dataForTime, time) => { + each(metricPlotData, (dataForTime, time) => { metricPlotChartData.push({ date: new Date(+time), lower: dataForTime.modelLower, @@ -50,7 +52,7 @@ export function processMetricPlotResults(metricPlotData, modelPlotEnabled) { }); }); } else { - _.each(metricPlotData, (dataForTime, time) => { + each(metricPlotData, (dataForTime, time) => { metricPlotChartData.push({ date: new Date(+time), value: dataForTime.actual, @@ -66,7 +68,7 @@ export function processMetricPlotResults(metricPlotData, modelPlotEnabled) { // value, lower and upper keys. export function processForecastResults(forecastData) { const forecastPlotChartData = []; - _.each(forecastData, (dataForTime, time) => { + each(forecastData, (dataForTime, time) => { forecastPlotChartData.push({ date: new Date(+time), isForecast: true, @@ -83,7 +85,7 @@ export function processForecastResults(forecastData) { // i.e. array of Objects with keys date (JavaScript date) and score. export function processRecordScoreResults(scoreData) { const bucketScoreData = []; - _.each(scoreData, (dataForTime, time) => { + each(scoreData, (dataForTime, time) => { bucketScoreData.push({ date: new Date(+time), score: dataForTime.score, @@ -153,7 +155,7 @@ export function processDataForFocusAnomalies( chartPoint.anomalyScore = recordScore; chartPoint.function = record.function; - if (_.has(record, 'actual')) { + if (record.actual !== undefined) { // If cannot match chart point for anomaly time // substitute the value with the record's actual so it won't plot as null/0 if (chartPoint.value === null) { @@ -163,13 +165,13 @@ export function processDataForFocusAnomalies( chartPoint.actual = record.actual; chartPoint.typical = record.typical; } else { - const causes = _.get(record, 'causes', []); + const causes = get(record, 'causes', []); if (causes.length > 0) { chartPoint.byFieldName = record.by_field_name; chartPoint.numberOfCauses = causes.length; if (causes.length === 1) { // If only a single cause, copy actual and typical values to the top level. - const cause = _.first(record.causes); + const cause = record.causes[0]; chartPoint.actual = cause.actual; chartPoint.typical = cause.typical; // substitute the value with the record's actual so it won't plot as null/0 @@ -180,7 +182,7 @@ export function processDataForFocusAnomalies( } } - if (_.has(record, 'multi_bucket_impact')) { + if (record.multi_bucket_impact !== undefined) { chartPoint.multiBucketImpact = record.multi_bucket_impact; } } @@ -194,7 +196,7 @@ export function processDataForFocusAnomalies( // which correspond to times of scheduled events for the job. export function processScheduledEventsForChart(chartData, scheduledEvents) { if (scheduledEvents !== undefined) { - _.each(scheduledEvents, (events, time) => { + each(scheduledEvents, (events, time) => { const chartPoint = findNearestChartPointToTime(chartData, time); if (chartPoint !== undefined) { // Note if the scheduled event coincides with an absence of the underlying metric data, @@ -301,7 +303,7 @@ export function calculateAggregationInterval(bounds, bucketsTarget, jobs, select // Ensure the aggregation interval is always a multiple of the bucket span to avoid strange // behaviour such as adjacent chart buckets holding different numbers of job results. - const bucketSpanSeconds = _.find(jobs, { id: selectedJob.job_id }).bucketSpanSeconds; + const bucketSpanSeconds = find(jobs, { id: selectedJob.job_id }).bucketSpanSeconds; let aggInterval = buckets.getIntervalToNearestMultiple(bucketSpanSeconds); // Set the interval back to the job bucket span if the auto interval is smaller. @@ -324,8 +326,8 @@ export function calculateDefaultFocusRange( const combinedData = isForecastData === false ? contextChartData : contextChartData.concat(contextForecastData); - const earliestDataDate = _.first(combinedData).date; - const latestDataDate = _.last(combinedData).date; + const earliestDataDate = combinedData[0].date; + const latestDataDate = combinedData[combinedData.length - 1].date; let rangeEarliestMs; let rangeLatestMs; @@ -333,8 +335,8 @@ export function calculateDefaultFocusRange( if (isForecastData === true) { // Return a range centred on the start of the forecast range, depending // on the time range of the forecast and data. - const earliestForecastDataDate = _.first(contextForecastData).date; - const latestForecastDataDate = _.last(contextForecastData).date; + const earliestForecastDataDate = contextForecastData[0].date; + const latestForecastDataDate = contextForecastData[contextForecastData.length - 1].date; rangeLatestMs = Math.min( earliestForecastDataDate.getTime() + autoZoomDuration / 2, @@ -379,7 +381,7 @@ export function getAutoZoomDuration(jobs, selectedJob) { // Calculate the 'auto' zoom duration which shows data at bucket span granularity. // Get the minimum bucket span of selected jobs. // TODO - only look at jobs for which data has been returned? - const bucketSpanSeconds = _.find(jobs, { id: selectedJob.job_id }).bucketSpanSeconds; + const bucketSpanSeconds = find(jobs, { id: selectedJob.job_id }).bucketSpanSeconds; // In most cases the duration can be obtained by simply multiplying the points target // Check that this duration returns the bucket span when run back through the diff --git a/x-pack/plugins/ml/public/application/util/chart_config_builder.js b/x-pack/plugins/ml/public/application/util/chart_config_builder.js index 3b09e09d3dd4a..bc63404a106db 100644 --- a/x-pack/plugins/ml/public/application/util/chart_config_builder.js +++ b/x-pack/plugins/ml/public/application/util/chart_config_builder.js @@ -9,7 +9,7 @@ * in the source metric data. */ -import _ from 'lodash'; +import get from 'lodash/get'; import { mlFunctionToESAggregation } from '../../../common/util/job_utils'; @@ -44,15 +44,16 @@ export function buildConfigFromDetector(job, detectorIndex) { // aggregations//aggregations//cardinality/field // or aggs//aggs//cardinality/field let cardinalityField = undefined; - const topAgg = _.get(job.datafeed_config, 'aggregations') || _.get(job.datafeed_config, 'aggs'); - if (topAgg !== undefined && _.values(topAgg).length > 0) { + const topAgg = get(job.datafeed_config, 'aggregations') || get(job.datafeed_config, 'aggs'); + if (topAgg !== undefined && Object.values(topAgg).length > 0) { cardinalityField = - _.get(_.values(topAgg)[0], [ + get(Object.values(topAgg)[0], [ 'aggregations', summaryCountFieldName, 'cardinality', 'field', - ]) || _.get(_.values(topAgg)[0], ['aggs', summaryCountFieldName, 'cardinality', 'field']); + ]) || + get(Object.values(topAgg)[0], ['aggs', summaryCountFieldName, 'cardinality', 'field']); } if (detector.function === 'non_zero_count' && cardinalityField !== undefined) { diff --git a/x-pack/plugins/ml/public/application/util/inherits.js b/x-pack/plugins/ml/public/application/util/inherits.js deleted file mode 100644 index bf16e573117d9..0000000000000 --- a/x-pack/plugins/ml/public/application/util/inherits.js +++ /dev/null @@ -1,36 +0,0 @@ -/* - * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one - * or more contributor license agreements. Licensed under the Elastic License; - * you may not use this file except in compliance with the Elastic License. - */ - -// create a property descriptor for properties -// that won't change -function describeConst(val) { - return { - writable: false, - enumerable: false, - configurable: false, - value: val, - }; -} - -/** - * Apply inheritance in the legacy `_.class(SubClass).inherits(SuperClass)` - * @param {Function} SubClass class that should inherit SuperClass - * @param {Function} SuperClass - * @return {Function} - */ -export function inherits(SubClass, SuperClass) { - const prototype = Object.create(SuperClass.prototype, { - constructor: describeConst(SubClass), - superConstructor: describeConst(SuperClass), - }); - - Object.defineProperties(SubClass, { - prototype: describeConst(prototype), - Super: describeConst(SuperClass), - }); - - return SubClass; -} diff --git a/x-pack/plugins/ml/public/application/util/time_buckets.js b/x-pack/plugins/ml/public/application/util/time_buckets.js index 19d499faf6c8d..15b8f24804ec8 100644 --- a/x-pack/plugins/ml/public/application/util/time_buckets.js +++ b/x-pack/plugins/ml/public/application/util/time_buckets.js @@ -4,7 +4,11 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import isPlainObject from 'lodash/isPlainObject'; +import isString from 'lodash/isString'; +import ary from 'lodash/ary'; +import sortBy from 'lodash/sortBy'; +import assign from 'lodash/assign'; import moment from 'moment'; import dateMath from '@elastic/datemath'; @@ -80,16 +84,16 @@ TimeBuckets.prototype.setBounds = function (input) { if (!input) return this.clearBounds(); let bounds; - if (_.isPlainObject(input)) { + if (isPlainObject(input)) { // accept the response from timefilter.getActiveBounds() bounds = [input.min, input.max]; } else { bounds = Array.isArray(input) ? input : []; } - const moments = _(bounds).map(_.ary(moment, 1)).sortBy(Number); + const moments = sortBy(bounds.map(ary(moment, 1)), Number); - const valid = moments.size() === 2 && moments.every(isValidMoment); + const valid = moments.length === 2 && moments.every(isValidMoment); if (!valid) { this.clearBounds(); throw new Error('invalid bounds set: ' + input); @@ -175,7 +179,7 @@ TimeBuckets.prototype.setInterval = function (input) { return; } - if (_.isString(interval)) { + if (isString(interval)) { input = interval; interval = parseInterval(interval); if (+interval === 0) { @@ -256,7 +260,7 @@ TimeBuckets.prototype.getInterval = function () { if (+scaled === +interval) return interval; decorateInterval(interval, duration); - return _.assign(scaled, { + return assign(scaled, { preScaled: interval, scale: interval / scaled, scaled: true, @@ -287,7 +291,7 @@ TimeBuckets.prototype.getIntervalToNearestMultiple = function (divisorSecs) { decorateInterval(nearestMultipleInt, this.getDuration()); // Check to see if the new interval is scaled compared to the original. - const preScaled = _.get(interval, 'preScaled'); + const preScaled = interval.preScaled; if (preScaled !== undefined && preScaled < nearestMultipleInt) { nearestMultipleInt.preScaled = preScaled; nearestMultipleInt.scale = preScaled / nearestMultipleInt; diff --git a/x-pack/plugins/ml/server/lib/telemetry/telemetry.ts b/x-pack/plugins/ml/server/lib/telemetry/telemetry.ts index f2162ff2c3d30..d9ebccd554733 100644 --- a/x-pack/plugins/ml/server/lib/telemetry/telemetry.ts +++ b/x-pack/plugins/ml/server/lib/telemetry/telemetry.ts @@ -4,7 +4,7 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import isEmpty from 'lodash/isEmpty'; import { ISavedObjectsRepository } from 'kibana/server'; import { getInternalRepository } from './internal_repository'; @@ -58,7 +58,7 @@ export async function updateTelemetry(internalRepo?: ISavedObjectsRepository) { let telemetry = await getTelemetry(internalRepository); // Create if doesn't exist - if (telemetry === null || _.isEmpty(telemetry)) { + if (telemetry === null || isEmpty(telemetry)) { const newTelemetrySavedObject = await internalRepository.create( TELEMETRY_DOC_ID, initTelemetry(), diff --git a/x-pack/plugins/ml/server/models/annotation_service/annotation.ts b/x-pack/plugins/ml/server/models/annotation_service/annotation.ts index 8094689abf3e5..a585449db0a25 100644 --- a/x-pack/plugins/ml/server/models/annotation_service/annotation.ts +++ b/x-pack/plugins/ml/server/models/annotation_service/annotation.ts @@ -5,7 +5,8 @@ */ import Boom from 'boom'; -import _ from 'lodash'; +import each from 'lodash/each'; +import get from 'lodash/get'; import { ILegacyScopedClusterClient } from 'kibana/server'; import { ANNOTATION_EVENT_USER, ANNOTATION_TYPE } from '../../../common/constants/annotations'; @@ -190,7 +191,7 @@ export function annotationProvider({ callAsInternalUser }: ILegacyScopedClusterC if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) { let jobIdFilterStr = ''; - _.each(jobIds, (jobId, i: number) => { + each(jobIds, (jobId, i: number) => { jobIdFilterStr += `${i! > 0 ? ' OR ' : ''}job_id:${jobId}`; }); boolCriteria.push({ @@ -293,7 +294,7 @@ export function annotationProvider({ callAsInternalUser }: ILegacyScopedClusterC throw new Error(`Annotations couldn't be retrieved from Elasticsearch.`); } - const docs: Annotations = _.get(resp, ['hits', 'hits'], []).map((d: EsResult) => { + const docs: Annotations = get(resp, ['hits', 'hits'], []).map((d: EsResult) => { // get the original source document and the document id, we need it // to identify the annotation when editing/deleting it. // if original `event` is undefined then substitute with 'user` by default @@ -305,7 +306,7 @@ export function annotationProvider({ callAsInternalUser }: ILegacyScopedClusterC } as Annotation; }); - const aggregations = _.get(resp, ['aggregations'], {}) as EsAggregationResult; + const aggregations = get(resp, ['aggregations'], {}) as EsAggregationResult; if (fields) { obj.aggregations = aggregations; } diff --git a/x-pack/plugins/ml/server/models/bucket_span_estimator/bucket_span_estimator.js b/x-pack/plugins/ml/server/models/bucket_span_estimator/bucket_span_estimator.js index 3758547779403..381c615051e3b 100644 --- a/x-pack/plugins/ml/server/models/bucket_span_estimator/bucket_span_estimator.js +++ b/x-pack/plugins/ml/server/models/bucket_span_estimator/bucket_span_estimator.js @@ -4,7 +4,11 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import cloneDeep from 'lodash/cloneDeep'; +import each from 'lodash/each'; +import remove from 'lodash/remove'; +import sortBy from 'lodash/sortBy'; +import get from 'lodash/get'; import { mlLog } from '../../client/log'; @@ -91,7 +95,7 @@ export function estimateBucketSpanFactory(mlClusterClient) { } else { // loop over partition values for (let j = 0; j < this.splitFieldValues.length; j++) { - const queryCopy = _.cloneDeep(this.query); + const queryCopy = cloneDeep(this.query); // add a term to the query to filter on the partition value queryCopy.bool.must.push({ term: { @@ -151,7 +155,7 @@ export function estimateBucketSpanFactory(mlClusterClient) { } }; - _.each(this.checkers, (check) => { + each(this.checkers, (check) => { check.check .run() .then((interval) => { @@ -174,7 +178,7 @@ export function estimateBucketSpanFactory(mlClusterClient) { } processResults() { - const allResults = _.map(this.checkers, 'result'); + const allResults = this.checkers.map((c) => c.result); let reducedResults = []; const numberOfSplitFields = this.splitFieldValues.length || 1; @@ -185,8 +189,8 @@ export function estimateBucketSpanFactory(mlClusterClient) { const pos = i * numberOfSplitFields; let resultsSubset = allResults.slice(pos, pos + numberOfSplitFields); // remove results of tests which have failed - resultsSubset = _.remove(resultsSubset, (res) => res !== null); - resultsSubset = _.sortBy(resultsSubset, (r) => r.ms); + resultsSubset = remove(resultsSubset, (res) => res !== null); + resultsSubset = sortBy(resultsSubset, (r) => r.ms); const tempMedian = this.findMedian(resultsSubset); if (tempMedian !== null) { @@ -194,7 +198,7 @@ export function estimateBucketSpanFactory(mlClusterClient) { } } - reducedResults = _.sortBy(reducedResults, (r) => r.ms); + reducedResults = sortBy(reducedResults, (r) => r.ms); return this.findMedian(reducedResults); } @@ -256,7 +260,7 @@ export function estimateBucketSpanFactory(mlClusterClient) { }, }) .then((resp) => { - const value = _.get(resp, ['aggregations', 'field_count', 'value'], 0); + const value = get(resp, ['aggregations', 'field_count', 'value'], 0); resolve(value); }) .catch((resp) => { @@ -293,9 +297,10 @@ export function estimateBucketSpanFactory(mlClusterClient) { }, }) .then((partitionResp) => { - if (_.has(partitionResp, 'aggregations.fields_bucket_counts.buckets')) { + // eslint-disable-next-line camelcase + if (partitionResp.aggregations?.fields_bucket_counts?.buckets !== undefined) { const buckets = partitionResp.aggregations.fields_bucket_counts.buckets; - fieldValues = _.map(buckets, (b) => b.key); + fieldValues = buckets.map((b) => b.key); } resolve(fieldValues); }) diff --git a/x-pack/plugins/ml/server/models/bucket_span_estimator/polled_data_checker.js b/x-pack/plugins/ml/server/models/bucket_span_estimator/polled_data_checker.js index 347843e276c36..d3bbd59f3cf9b 100644 --- a/x-pack/plugins/ml/server/models/bucket_span_estimator/polled_data_checker.js +++ b/x-pack/plugins/ml/server/models/bucket_span_estimator/polled_data_checker.js @@ -10,7 +10,7 @@ * And a minimum bucket span */ -import _ from 'lodash'; +import get from 'lodash/get'; export function polledDataCheckerFactory({ callAsCurrentUser }) { class PolledDataChecker { @@ -29,7 +29,7 @@ export function polledDataCheckerFactory({ callAsCurrentUser }) { const interval = { name: '1m', ms: 60000 }; this.performSearch(interval.ms) .then((resp) => { - const fullBuckets = _.get(resp, 'aggregations.non_empty_buckets.buckets', []); + const fullBuckets = get(resp, 'aggregations.non_empty_buckets.buckets', []); const result = this.isPolledData(fullBuckets, interval); if (result.pass) { // data is polled, return a flag and the minimumBucketSpan which should be diff --git a/x-pack/plugins/ml/server/models/data_visualizer/data_visualizer.ts b/x-pack/plugins/ml/server/models/data_visualizer/data_visualizer.ts index 7f19f32373e07..838315d8d272c 100644 --- a/x-pack/plugins/ml/server/models/data_visualizer/data_visualizer.ts +++ b/x-pack/plugins/ml/server/models/data_visualizer/data_visualizer.ts @@ -5,7 +5,10 @@ */ import { ILegacyScopedClusterClient } from 'kibana/server'; -import _ from 'lodash'; +import get from 'lodash/get'; +import each from 'lodash/each'; +import last from 'lodash/last'; +import find from 'lodash/find'; import { KBN_FIELD_TYPES } from '../../../../../../src/plugins/data/server'; import { ML_JOB_FIELD_TYPES } from '../../../common/constants/field_types'; import { getSafeAggregationName } from '../../../common/util/job_utils'; @@ -216,7 +219,7 @@ const getAggIntervals = async ( const aggsPath = getSamplerAggregationsResponsePath(samplerShardSize); const aggregations = - aggsPath.length > 0 ? _.get(respStats.aggregations, aggsPath) : respStats.aggregations; + aggsPath.length > 0 ? get(respStats.aggregations, aggsPath) : respStats.aggregations; return Object.keys(aggregations).reduce((p, aggName) => { const stats = [aggregations[aggName].min, aggregations[aggName].max]; @@ -300,9 +303,7 @@ export const getHistogramsForFields = async ( const aggsPath = getSamplerAggregationsResponsePath(samplerShardSize); const aggregations = - aggsPath.length > 0 - ? _.get(respChartsData.aggregations, aggsPath) - : respChartsData.aggregations; + aggsPath.length > 0 ? get(respChartsData.aggregations, aggsPath) : respChartsData.aggregations; const chartsData: ChartData[] = fields.map( (field): ChartData => { @@ -382,8 +383,8 @@ export class DataVisualizer { // To avoid checking for the existence of too many aggregatable fields in one request, // split the check into multiple batches (max 200 fields per request). const batches: string[][] = [[]]; - _.each(aggregatableFields, (field) => { - let lastArray: string[] = _.last(batches) as string[]; + each(aggregatableFields, (field) => { + let lastArray: string[] = last(batches) as string[]; if (lastArray.length === AGGREGATABLE_EXISTS_REQUEST_BATCH_SIZE) { lastArray = []; batches.push(lastArray); @@ -475,7 +476,7 @@ export class DataVisualizer { // Batch up fields by type, getting stats for multiple fields at a time. const batches: Field[][] = []; const batchedFields: { [key: string]: Field[][] } = {}; - _.each(fields, (field) => { + each(fields, (field) => { if (field.fieldName === undefined) { // undefined fieldName is used for a document count request. // getDocumentCountStats requires timeField - don't add to batched requests if not defined @@ -487,7 +488,7 @@ export class DataVisualizer { if (batchedFields[fieldType] === undefined) { batchedFields[fieldType] = [[]]; } - let lastArray: Field[] = _.last(batchedFields[fieldType]) as Field[]; + let lastArray: Field[] = last(batchedFields[fieldType]) as Field[]; if (lastArray.length === FIELDS_REQUEST_BATCH_SIZE) { lastArray = []; batchedFields[fieldType].push(lastArray); @@ -496,7 +497,7 @@ export class DataVisualizer { } }); - _.each(batchedFields, (lists) => { + each(batchedFields, (lists) => { batches.push(...lists); }); @@ -636,7 +637,7 @@ export class DataVisualizer { body, }); const aggregations = resp.aggregations; - const totalCount = _.get(resp, ['hits', 'total'], 0); + const totalCount = get(resp, ['hits', 'total'], 0); const stats = { totalCount, aggregatableExistsFields: [] as FieldData[], @@ -645,12 +646,12 @@ export class DataVisualizer { const aggsPath = getSamplerAggregationsResponsePath(samplerShardSize); const sampleCount = - samplerShardSize > 0 ? _.get(aggregations, ['sample', 'doc_count'], 0) : totalCount; + samplerShardSize > 0 ? get(aggregations, ['sample', 'doc_count'], 0) : totalCount; aggregatableFields.forEach((field, i) => { const safeFieldName = getSafeAggregationName(field, i); - const count = _.get(aggregations, [...aggsPath, `${safeFieldName}_count`, 'doc_count'], 0); + const count = get(aggregations, [...aggsPath, `${safeFieldName}_count`, 'doc_count'], 0); if (count > 0) { - const cardinality = _.get( + const cardinality = get( aggregations, [...aggsPath, `${safeFieldName}_cardinality`, 'value'], 0 @@ -745,12 +746,12 @@ export class DataVisualizer { }); const buckets: { [key: string]: number } = {}; - const dataByTimeBucket: Array<{ key: string; doc_count: number }> = _.get( + const dataByTimeBucket: Array<{ key: string; doc_count: number }> = get( resp, ['aggregations', 'eventRate', 'buckets'], [] ); - _.each(dataByTimeBucket, (dataForTime) => { + each(dataByTimeBucket, (dataForTime) => { const time = dataForTime.key; buckets[time] = dataForTime.doc_count; }); @@ -851,12 +852,12 @@ export class DataVisualizer { const batchStats: NumericFieldStats[] = []; fields.forEach((field, i) => { const safeFieldName = getSafeAggregationName(field.fieldName, i); - const docCount = _.get( + const docCount = get( aggregations, [...aggsPath, `${safeFieldName}_field_stats`, 'doc_count'], 0 ); - const fieldStatsResp = _.get( + const fieldStatsResp = get( aggregations, [...aggsPath, `${safeFieldName}_field_stats`, 'actual_stats'], {} @@ -867,20 +868,20 @@ export class DataVisualizer { topAggsPath.push('top'); } - const topValues: Bucket[] = _.get(aggregations, [...topAggsPath, 'buckets'], []); + const topValues: Bucket[] = get(aggregations, [...topAggsPath, 'buckets'], []); const stats: NumericFieldStats = { fieldName: field.fieldName, count: docCount, - min: _.get(fieldStatsResp, 'min', 0), - max: _.get(fieldStatsResp, 'max', 0), - avg: _.get(fieldStatsResp, 'avg', 0), + min: get(fieldStatsResp, 'min', 0), + max: get(fieldStatsResp, 'max', 0), + avg: get(fieldStatsResp, 'avg', 0), isTopValuesSampled: field.cardinality >= SAMPLER_TOP_TERMS_THRESHOLD || samplerShardSize > 0, topValues, topValuesSampleSize: topValues.reduce( (acc, curr) => acc + curr.doc_count, - _.get(aggregations, [...topAggsPath, 'sum_other_doc_count'], 0) + get(aggregations, [...topAggsPath, 'sum_other_doc_count'], 0) ), topValuesSamplerShardSize: field.cardinality >= SAMPLER_TOP_TERMS_THRESHOLD @@ -889,12 +890,12 @@ export class DataVisualizer { }; if (stats.count > 0) { - const percentiles = _.get( + const percentiles = get( aggregations, [...aggsPath, `${safeFieldName}_percentiles`, 'values'], [] ); - const medianPercentile: { value: number; key: number } | undefined = _.find(percentiles, { + const medianPercentile: { value: number; key: number } | undefined = find(percentiles, { key: 50, }); stats.median = medianPercentile !== undefined ? medianPercentile!.value : 0; @@ -978,7 +979,7 @@ export class DataVisualizer { topAggsPath.push('top'); } - const topValues: Bucket[] = _.get(aggregations, [...topAggsPath, 'buckets'], []); + const topValues: Bucket[] = get(aggregations, [...topAggsPath, 'buckets'], []); const stats = { fieldName: field.fieldName, @@ -987,7 +988,7 @@ export class DataVisualizer { topValues, topValuesSampleSize: topValues.reduce( (acc, curr) => acc + curr.doc_count, - _.get(aggregations, [...topAggsPath, 'sum_other_doc_count'], 0) + get(aggregations, [...topAggsPath, 'sum_other_doc_count'], 0) ), topValuesSamplerShardSize: field.cardinality >= SAMPLER_TOP_TERMS_THRESHOLD @@ -1046,12 +1047,12 @@ export class DataVisualizer { const batchStats: DateFieldStats[] = []; fields.forEach((field, i) => { const safeFieldName = getSafeAggregationName(field.fieldName, i); - const docCount = _.get( + const docCount = get( aggregations, [...aggsPath, `${safeFieldName}_field_stats`, 'doc_count'], 0 ); - const fieldStatsResp = _.get( + const fieldStatsResp = get( aggregations, [...aggsPath, `${safeFieldName}_field_stats`, 'actual_stats'], {} @@ -1059,8 +1060,8 @@ export class DataVisualizer { batchStats.push({ fieldName: field.fieldName, count: docCount, - earliest: _.get(fieldStatsResp, 'min', 0), - latest: _.get(fieldStatsResp, 'max', 0), + earliest: get(fieldStatsResp, 'min', 0), + latest: get(fieldStatsResp, 'max', 0), }); }); @@ -1115,17 +1116,17 @@ export class DataVisualizer { const safeFieldName = getSafeAggregationName(field.fieldName, i); const stats: BooleanFieldStats = { fieldName: field.fieldName, - count: _.get(aggregations, [...aggsPath, `${safeFieldName}_value_count`, 'doc_count'], 0), + count: get(aggregations, [...aggsPath, `${safeFieldName}_value_count`, 'doc_count'], 0), trueCount: 0, falseCount: 0, }; - const valueBuckets: Array<{ [key: string]: number }> = _.get( + const valueBuckets: Array<{ [key: string]: number }> = get( aggregations, [...aggsPath, `${safeFieldName}_values`, 'buckets'], [] ); - _.forEach(valueBuckets, (bucket) => { + valueBuckets.forEach((bucket) => { stats[`${bucket.key_as_string}Count`] = bucket.doc_count; }); @@ -1182,8 +1183,8 @@ export class DataVisualizer { // If the field is not in the _source (as will happen if the // field is populated using copy_to in the index mapping), // there will be no example to add. - // Use lodash _.get() to support field names containing dots. - const example: any = _.get(hits[i]._source, field); + // Use lodash get() to support field names containing dots. + const example: any = get(hits[i]._source, field); if (example !== undefined && stats.examples.indexOf(example) === -1) { stats.examples.push(example); if (stats.examples.length === maxExamples) { @@ -1216,7 +1217,7 @@ export class DataVisualizer { // Look ahead to the last percentiles and process these too if // they don't add more than 50% to the value range. - const lastValue = (_.last(percentileBuckets) as any).value; + const lastValue = (last(percentileBuckets) as any).value; const upperBound = lowerBound + 1.5 * (lastValue - lowerBound); const filteredLength = percentileBuckets.length; for (let i = filteredLength; i < percentiles.length; i++) { @@ -1237,7 +1238,7 @@ export class DataVisualizer { // Add in 0-5 and 95-100% if they don't add more // than 25% to the value range at either end. - const lastValue: number = (_.last(percentileBuckets) as any).value; + const lastValue: number = (last(percentileBuckets) as any).value; const maxDiff = 0.25 * (lastValue - lowerBound); if (lowerBound - dataMin < maxDiff) { percentileBuckets.splice(0, 0, percentiles[0]); diff --git a/x-pack/plugins/ml/server/models/job_validation/validate_cardinality.test.ts b/x-pack/plugins/ml/server/models/job_validation/validate_cardinality.test.ts index 92933877e2836..16ee70ad9efde 100644 --- a/x-pack/plugins/ml/server/models/job_validation/validate_cardinality.test.ts +++ b/x-pack/plugins/ml/server/models/job_validation/validate_cardinality.test.ts @@ -4,7 +4,7 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import cloneDeep from 'lodash/cloneDeep'; import { ILegacyScopedClusterClient } from 'kibana/server'; @@ -145,7 +145,7 @@ describe('ML - validateCardinality', () => { test: (ids: string[]) => void ) => { const job = getJobConfig(fieldName); - const mockCardinality = _.cloneDeep(mockResponses); + const mockCardinality = cloneDeep(mockResponses); mockCardinality.search.aggregations.airline_cardinality.value = cardinality; return validateCardinality( mlClusterClientFactory(mockCardinality), @@ -250,7 +250,7 @@ describe('ML - validateCardinality', () => { it(`disabled model_plot, over field cardinality of ${cardinality} doesn't trigger a warning`, () => { const job = (getJobConfig('over_field_name') as unknown) as CombinedJob; job.model_plot_config = { enabled: false }; - const mockCardinality = _.cloneDeep(mockResponses); + const mockCardinality = cloneDeep(mockResponses); mockCardinality.search.aggregations.airline_cardinality.value = cardinality; return validateCardinality(mlClusterClientFactory(mockCardinality), job).then((messages) => { const ids = messages.map((m) => m.id); @@ -261,7 +261,7 @@ describe('ML - validateCardinality', () => { it(`enabled model_plot, over field cardinality of ${cardinality} triggers a model plot warning`, () => { const job = (getJobConfig('over_field_name') as unknown) as CombinedJob; job.model_plot_config = { enabled: true }; - const mockCardinality = _.cloneDeep(mockResponses); + const mockCardinality = cloneDeep(mockResponses); mockCardinality.search.aggregations.airline_cardinality.value = cardinality; return validateCardinality(mlClusterClientFactory(mockCardinality), job).then((messages) => { const ids = messages.map((m) => m.id); @@ -272,7 +272,7 @@ describe('ML - validateCardinality', () => { it(`disabled model_plot, by field cardinality of ${cardinality} triggers a field cardinality warning`, () => { const job = (getJobConfig('by_field_name') as unknown) as CombinedJob; job.model_plot_config = { enabled: false }; - const mockCardinality = _.cloneDeep(mockResponses); + const mockCardinality = cloneDeep(mockResponses); mockCardinality.search.aggregations.airline_cardinality.value = cardinality; return validateCardinality(mlClusterClientFactory(mockCardinality), job).then((messages) => { const ids = messages.map((m) => m.id); @@ -283,7 +283,7 @@ describe('ML - validateCardinality', () => { it(`enabled model_plot, by field cardinality of ${cardinality} triggers a model plot warning and field cardinality warning`, () => { const job = (getJobConfig('by_field_name') as unknown) as CombinedJob; job.model_plot_config = { enabled: true }; - const mockCardinality = _.cloneDeep(mockResponses); + const mockCardinality = cloneDeep(mockResponses); mockCardinality.search.aggregations.airline_cardinality.value = cardinality; return validateCardinality(mlClusterClientFactory(mockCardinality), job).then((messages) => { const ids = messages.map((m) => m.id); @@ -294,7 +294,7 @@ describe('ML - validateCardinality', () => { it(`enabled model_plot with terms, by field cardinality of ${cardinality} triggers just field cardinality warning`, () => { const job = (getJobConfig('by_field_name') as unknown) as CombinedJob; job.model_plot_config = { enabled: true, terms: 'AAL,AAB' }; - const mockCardinality = _.cloneDeep(mockResponses); + const mockCardinality = cloneDeep(mockResponses); mockCardinality.search.aggregations.airline_cardinality.value = cardinality; return validateCardinality(mlClusterClientFactory(mockCardinality), job).then((messages) => { const ids = messages.map((m) => m.id); diff --git a/x-pack/plugins/ml/server/models/job_validation/validate_time_range.test.ts b/x-pack/plugins/ml/server/models/job_validation/validate_time_range.test.ts index f74d8a26ef370..a45be189ba3d8 100644 --- a/x-pack/plugins/ml/server/models/job_validation/validate_time_range.test.ts +++ b/x-pack/plugins/ml/server/models/job_validation/validate_time_range.test.ts @@ -4,7 +4,7 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import cloneDeep from 'lodash/cloneDeep'; import { ILegacyScopedClusterClient } from 'kibana/server'; @@ -144,7 +144,7 @@ describe('ML - validateTimeRange', () => { }); it('invalid time field', () => { - const mockSearchResponseInvalid = _.cloneDeep(mockSearchResponse); + const mockSearchResponseInvalid = cloneDeep(mockSearchResponse); mockSearchResponseInvalid.fieldCaps = undefined; const duration = { start: 0, end: 1 }; return validateTimeRange( diff --git a/x-pack/plugins/ml/server/models/results_service/build_anomaly_table_items.js b/x-pack/plugins/ml/server/models/results_service/build_anomaly_table_items.js index e664a1403d7d6..588e0e10a8d63 100644 --- a/x-pack/plugins/ml/server/models/results_service/build_anomaly_table_items.js +++ b/x-pack/plugins/ml/server/models/results_service/build_anomaly_table_items.js @@ -4,7 +4,8 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import sortBy from 'lodash/sortBy'; +import each from 'lodash/each'; import moment from 'moment-timezone'; import { @@ -55,7 +56,7 @@ export function buildAnomalyTableItems(anomalyRecords, aggregationInterval, date if (source.influencers !== undefined) { const influencers = []; - const sourceInfluencers = _.sortBy(source.influencers, 'influencer_field_name'); + const sourceInfluencers = sortBy(source.influencers, 'influencer_field_name'); sourceInfluencers.forEach((influencer) => { const influencerFieldName = influencer.influencer_field_name; influencer.influencer_field_values.forEach((influencerFieldValue) => { @@ -172,10 +173,10 @@ function aggregateAnomalies(anomalyRecords, interval, dateFormatTz) { // Flatten the aggregatedData to give a list of records with // the highest score per bucketed time / jobId / detectorIndex. const summaryRecords = []; - _.each(aggregatedData, (times, roundedTime) => { - _.each(times, (jobIds) => { - _.each(jobIds, (entityDetectors) => { - _.each(entityDetectors, (record) => { + each(aggregatedData, (times, roundedTime) => { + each(times, (jobIds) => { + each(jobIds, (entityDetectors) => { + each(entityDetectors, (record) => { summaryRecords.push({ time: +roundedTime, source: record, diff --git a/x-pack/plugins/ml/server/models/results_service/results_service.ts b/x-pack/plugins/ml/server/models/results_service/results_service.ts index 04997e517bba9..8e71384942b57 100644 --- a/x-pack/plugins/ml/server/models/results_service/results_service.ts +++ b/x-pack/plugins/ml/server/models/results_service/results_service.ts @@ -4,7 +4,9 @@ * you may not use this file except in compliance with the Elastic License. */ -import _ from 'lodash'; +import sortBy from 'lodash/sortBy'; +import slice from 'lodash/slice'; +import get from 'lodash/get'; import moment from 'moment'; import { SearchResponse } from 'elasticsearch'; import { ILegacyScopedClusterClient } from 'kibana/server'; @@ -175,7 +177,7 @@ export function resultsServiceProvider(mlClusterClient: ILegacyScopedClusterClie }); // Sort anomalies in ascending time order. - records = _.sortBy(records, 'timestamp'); + records = sortBy(records, 'timestamp'); tableData.interval = aggregationInterval; if (aggregationInterval === 'auto') { // Determine the actual interval to use if aggregating. @@ -197,7 +199,7 @@ export function resultsServiceProvider(mlClusterClient: ILegacyScopedClusterClie const categoryIdsByJobId: { [key: string]: any } = {}; categoryAnomalies.forEach((anomaly) => { - if (!_.has(categoryIdsByJobId, anomaly.jobId)) { + if (categoryIdsByJobId[anomaly.jobId] === undefined) { categoryIdsByJobId[anomaly.jobId] = []; } if (categoryIdsByJobId[anomaly.jobId].indexOf(anomaly.entityValue) === -1) { @@ -289,7 +291,7 @@ export function resultsServiceProvider(mlClusterClient: ILegacyScopedClusterClie }; const resp = await callAsInternalUser('search', query); - const maxScore = _.get(resp, ['aggregations', 'max_score', 'value'], null); + const maxScore = get(resp, ['aggregations', 'max_score', 'value'], null); return { maxScore }; } @@ -353,7 +355,7 @@ export function resultsServiceProvider(mlClusterClient: ILegacyScopedClusterClie }, }); - const bucketsByJobId: Array<{ key: string; maxTimestamp: { value?: number } }> = _.get( + const bucketsByJobId: Array<{ key: string; maxTimestamp: { value?: number } }> = get( resp, ['aggregations', 'byJobId', 'buckets'], [] @@ -387,7 +389,7 @@ export function resultsServiceProvider(mlClusterClient: ILegacyScopedClusterClie if (resp.hits.total !== 0) { resp.hits.hits.forEach((hit: any) => { if (maxExamples) { - examplesByCategoryId[hit._source.category_id] = _.slice( + examplesByCategoryId[hit._source.category_id] = slice( hit._source.examples, 0, Math.min(hit._source.examples.length, maxExamples)