From b338b1881b3ae56ad20b5f0d044d95c12867d154 Mon Sep 17 00:00:00 2001 From: Elastic Machine Date: Sat, 25 May 2024 13:28:46 +0100 Subject: [PATCH] Auto-generated API code (#2571) --- elasticsearch/_async/client/ml.py | 56 +++++++++++++++++++++++++++++++ elasticsearch/_sync/client/ml.py | 56 +++++++++++++++++++++++++++++++ 2 files changed, 112 insertions(+) diff --git a/elasticsearch/_async/client/ml.py b/elasticsearch/_async/client/ml.py index fdb761db76..ff8cd0ba71 100644 --- a/elasticsearch/_async/client/ml.py +++ b/elasticsearch/_async/client/ml.py @@ -5043,6 +5043,62 @@ async def update_model_snapshot( path_parts=__path_parts, ) + @_rewrite_parameters( + body_fields=("number_of_allocations",), + ) + async def update_trained_model_deployment( + self, + *, + model_id: str, + error_trace: t.Optional[bool] = None, + filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None, + human: t.Optional[bool] = None, + number_of_allocations: t.Optional[int] = None, + pretty: t.Optional[bool] = None, + body: t.Optional[t.Dict[str, t.Any]] = None, + ) -> ObjectApiResponse[t.Any]: + """ + Updates certain properties of trained model deployment. + + ``_ + + :param model_id: The unique identifier of the trained model. Currently, only + PyTorch models are supported. + :param number_of_allocations: The number of model allocations on each node where + the model is deployed. All allocations on a node share the same copy of the + model in memory but use a separate set of threads to evaluate the model. + Increasing this value generally increases the throughput. If this setting + is greater than the number of hardware threads it will automatically be changed + to a value less than the number of hardware threads. + """ + if model_id in SKIP_IN_PATH: + raise ValueError("Empty value passed for parameter 'model_id'") + __path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)} + __path = f'/_ml/trained_models/{__path_parts["model_id"]}/deployment/_update' + __query: t.Dict[str, t.Any] = {} + __body: t.Dict[str, t.Any] = body if body is not None else {} + if error_trace is not None: + __query["error_trace"] = error_trace + if filter_path is not None: + __query["filter_path"] = filter_path + if human is not None: + __query["human"] = human + if pretty is not None: + __query["pretty"] = pretty + if not __body: + if number_of_allocations is not None: + __body["number_of_allocations"] = number_of_allocations + __headers = {"accept": "application/json", "content-type": "application/json"} + return await self.perform_request( # type: ignore[return-value] + "POST", + __path, + params=__query, + headers=__headers, + body=__body, + endpoint_id="ml.update_trained_model_deployment", + path_parts=__path_parts, + ) + @_rewrite_parameters() async def upgrade_job_snapshot( self, diff --git a/elasticsearch/_sync/client/ml.py b/elasticsearch/_sync/client/ml.py index 63157ffa9d..90bfaf1541 100644 --- a/elasticsearch/_sync/client/ml.py +++ b/elasticsearch/_sync/client/ml.py @@ -5043,6 +5043,62 @@ def update_model_snapshot( path_parts=__path_parts, ) + @_rewrite_parameters( + body_fields=("number_of_allocations",), + ) + def update_trained_model_deployment( + self, + *, + model_id: str, + error_trace: t.Optional[bool] = None, + filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None, + human: t.Optional[bool] = None, + number_of_allocations: t.Optional[int] = None, + pretty: t.Optional[bool] = None, + body: t.Optional[t.Dict[str, t.Any]] = None, + ) -> ObjectApiResponse[t.Any]: + """ + Updates certain properties of trained model deployment. + + ``_ + + :param model_id: The unique identifier of the trained model. Currently, only + PyTorch models are supported. + :param number_of_allocations: The number of model allocations on each node where + the model is deployed. All allocations on a node share the same copy of the + model in memory but use a separate set of threads to evaluate the model. + Increasing this value generally increases the throughput. If this setting + is greater than the number of hardware threads it will automatically be changed + to a value less than the number of hardware threads. + """ + if model_id in SKIP_IN_PATH: + raise ValueError("Empty value passed for parameter 'model_id'") + __path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)} + __path = f'/_ml/trained_models/{__path_parts["model_id"]}/deployment/_update' + __query: t.Dict[str, t.Any] = {} + __body: t.Dict[str, t.Any] = body if body is not None else {} + if error_trace is not None: + __query["error_trace"] = error_trace + if filter_path is not None: + __query["filter_path"] = filter_path + if human is not None: + __query["human"] = human + if pretty is not None: + __query["pretty"] = pretty + if not __body: + if number_of_allocations is not None: + __body["number_of_allocations"] = number_of_allocations + __headers = {"accept": "application/json", "content-type": "application/json"} + return self.perform_request( # type: ignore[return-value] + "POST", + __path, + params=__query, + headers=__headers, + body=__body, + endpoint_id="ml.update_trained_model_deployment", + path_parts=__path_parts, + ) + @_rewrite_parameters() def upgrade_job_snapshot( self,