forked from aburkov/theMLbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradient_descent.py
81 lines (66 loc) · 3.02 KB
/
gradient_descent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
matplotlib.rcParams.update({'font.size': 18})
def plot_original_data():
x, y = np.loadtxt("data.txt", delimiter= "\t", unpack = True)
plt.scatter(x, y, color='#1f77b4', marker='o')
plt.xlabel("Spendings, M$")
plt.ylabel("Sales, Units")
plt.title("Sales as a function of radio ad spendings.")
#plt.show()
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/gradient_descent-1.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-1.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-1.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
def update_w_and_b(spendings, sales, w, b, alpha):
dr_dw = 0.0
dr_db = 0.0
N = len(spendings)
for i in range(N):
dr_dw += -2 * spendings[i] * (sales[i] - (w * spendings[i] + b))
dr_db += -2 * (sales[i] - (w * spendings[i] + b))
# update w and b
w = w - (dr_dw/float(N)) * alpha
b = b - (dr_db/float(N)) * alpha
return w, b
def train(spendings, sales, w, b, alpha, epochs):
image_counter = 2;
for e in range(epochs):
w, b = update_w_and_b(spendings, sales, w, b, alpha)
# log the progress
if (e == 0) or (e < 3000 and e % 400 == 0) or (e % 3000 == 0):
print "epoch: ", str(e), "loss: "+str(loss(spendings, sales, w, b))
print "w, b: ", w, b
plt.figure(image_counter)
axes = plt.gca()
axes.set_xlim([0,50])
axes.set_ylim([0,30])
plt.scatter(spendings, sales)
X_plot = np.linspace(0,50,50)
plt.plot(X_plot, X_plot*w + b)
#plt.show()
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/gradient_descent-' + str(image_counter) + '.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-' + str(image_counter) + '.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-' + str(image_counter) + '.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
image_counter += 1
return w, b
def loss(spendings, sales, w, b):
N = len(spendings)
total_error = 0.0
for i in range(N):
total_error += (sales[i] - (w*spendings[i] + b))**2
return total_error / N
x, y = np.loadtxt("data.txt", delimiter= "\t", unpack = True)
#w, b = train(x, y, 0.0, 0.0, 0.001, 15000)
plot_original_data()
def predict(x, w, b):
return w*x + b
x_new = 23.0
y_new = predict(x_new, w, b)
print y_new