-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
202 lines (159 loc) · 7.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""Train the model"""
import argparse
import logging
import os
import numpy as np
import torch
import torch.optim as optim
from tqdm import trange
import utils
import model.net as net
from model.data_loader import DataLoader
from evaluate import evaluate
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='data/preprocessed',
help="Directory containing the dataset")
parser.add_argument('--model_dir', default='experiments/base_model',
help="Directory containing params.json")
parser.add_argument('--restore_file', default=None,
help="Optional, name of the file in --model_dir containing weights to reload before \
training") # 'best' or 'train'
def train(model, optimizer, loss_fn, data_iterator, metrics, params, num_steps):
"""Train the model on `num_steps` batches
Args:
model: (torch.nn.Module) the neural network
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
data_iterator: (generator) a generator that generates batches of data and labels
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
# set model to training mode
model.train()
# summary for current training loop and a running average object for loss
summ = []
loss_avg = utils.RunningAverage()
# Use tqdm for progress bar
t = trange(num_steps)
for i in t:
# fetch the next training batch
train_batch, labels_batch = next(data_iterator)
# compute model output and loss
output_batch = model(train_batch)
loss = loss_fn(output_batch, labels_batch)
# clear previous gradients, compute gradients of all variables wrt loss
optimizer.zero_grad()
loss.backward()
# performs updates using calculated gradients
optimizer.step()
# Evaluate summaries only once in a while
if i % params.save_summary_steps == 0:
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.data.cpu().numpy()
labels_batch = labels_batch.data.cpu().numpy()
# compute all metrics on this batch
summary_batch = {metric: metrics[metric](output_batch, labels_batch)
for metric in metrics}
summary_batch['loss'] = loss.item()
summ.append(summary_batch)
# update the average loss
loss_avg.update(loss.item())
t.set_postfix(loss='{:05.3f}'.format(loss_avg()))
# compute mean of all metrics in summary
metrics_mean = {metric: np.mean([x[metric]
for x in summ]) for metric in summ[0]}
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v)
for k, v in metrics_mean.items())
logging.info("- Train metrics: " + metrics_string)
def train_and_evaluate(model, train_data, val_data, optimizer, loss_fn, metrics, params, model_dir, restore_file=None):
"""Train the model and evaluate every epoch.
Args:
model: (torch.nn.Module) the neural network
train_data: (dict) training data with keys 'data' and 'labels'
val_data: (dict) validation data with keys 'data' and 'labels'
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
model_dir: (string) directory containing config, weights and log
restore_file: (string) optional- name of file to restore from (without its extension .pth.tar)
"""
# reload weights from restore_file if specified
if restore_file is not None:
restore_path = os.path.join(
args.model_dir, args.restore_file + '.pth.tar')
logging.info("Restoring parameters from {}".format(restore_path))
utils.load_checkpoint(restore_path, model, optimizer)
best_val_acc = 0.0
for epoch in range(params.num_epochs):
# Run one epoch
logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs))
# compute number of batches in one epoch (one full pass over the training set)
num_steps = (params.train_size + 1) // params.batch_size
train_data_iterator = data_loader.data_iterator(
train_data, params, shuffle=True)
train(model, optimizer, loss_fn, train_data_iterator,
metrics, params, num_steps)
# Evaluate for one epoch on validation set
num_steps = (params.val_size + 1) // params.batch_size
val_data_iterator = data_loader.data_iterator(
val_data, params, shuffle=False)
val_metrics = evaluate(
model, loss_fn, val_data_iterator, metrics, num_steps)
val_acc = val_metrics['accuracy']
is_best = val_acc >= best_val_acc
# Save weights
utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict()},
is_best=is_best,
checkpoint=model_dir)
# If best_eval, best_save_path
if is_best:
logging.info("- Found new best accuracy")
best_val_acc = val_acc
# Save best val metrics in a json file in the model directory
best_json_path = os.path.join(
model_dir, "metrics_val_best_weights.json")
utils.save_dict_to_json(val_metrics, best_json_path)
# Save latest val metrics in a json file in the model directory
last_json_path = os.path.join(
model_dir, "metrics_val_last_weights.json")
utils.save_dict_to_json(val_metrics, last_json_path)
if __name__ == '__main__':
# Load the parameters from json file
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(
json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# use GPU if available
params.cuda = torch.cuda.is_available()
# Set the random seed for reproducible experiments
torch.manual_seed(230)
if params.cuda:
torch.cuda.manual_seed(230)
# Set the logger
utils.set_logger(os.path.join(args.model_dir, 'train.log'))
# Create the input data pipeline
logging.info("Loading the datasets...")
# load data
data_loader = DataLoader(args.data_dir, params)
data = data_loader.load_data(['train', 'val'], args.data_dir)
train_data = data['train']
val_data = data['val']
# specify the train and val dataset sizes
params.train_size = train_data['size']
params.val_size = val_data['size']
logging.info("- done.")
# Define the model and optimizer
model = net.Net(params).cuda() if params.cuda else net.Net(params)
optimizer = optim.Adam(model.parameters(), lr=params.learning_rate)
# fetch loss function and metrics
loss_fn = net.loss_fn
metrics = net.metrics
# Train the model
logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
train_and_evaluate(model, train_data, val_data, optimizer, loss_fn, metrics, params, args.model_dir,
args.restore_file)