-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_warper.py
124 lines (99 loc) · 4.62 KB
/
train_warper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import random
import argparse
import os
import time
import torch
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from torch.utils.data import DataLoader
from networks import Warper, l1_loss, tv_loss
from dataset import make_dataset
from utils import prepare_sub_folder, weights_init, str2bool, write_image
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='data/WebCaricature_align_1.3_256')
parser.add_argument('--output_path', type=str, default='results/warper/')
parser.add_argument('--max_dataset_size', type=int, default=10000)
parser.add_argument('--resize_crop', type=str2bool, default=True)
parser.add_argument('--enlarge', type=str2bool, default=False)
parser.add_argument('--same_id', type=str2bool, default=True)
parser.add_argument('--hflip', type=str2bool, default=True)
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--iteration', type=int, default=20000)
parser.add_argument('--snapshot_log', type=int, default=100)
parser.add_argument('--snapshot_save', type=int, default=10000)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--img_size', type=int, default=256)
parser.add_argument('--field_size', type=int, default=128)
parser.add_argument('--embedding_dim', type=int, default=32)
parser.add_argument('--warp_dim', type=int, default=64)
parser.add_argument('--scale', type=float, default=1.0)
parser.add_argument('--w_recon_img', type=float, default=10)
parser.add_argument('--w_recon_field', type=float, default=10)
parser.add_argument('--w_tv', type=float, default=0.000005)
args = parser.parse_args()
if __name__ == '__main__':
SEED = 0
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint_dir, image_dir = prepare_sub_folder(args.output_path, delete_first=True)
dataset = make_dataset(args)
dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True, drop_last=False,
num_workers=args.num_workers)
warper = Warper(args)
warper.to(device)
warper.train()
paras = list(warper.parameters())
opt = optim.Adam([p for p in paras if p.requires_grad], lr=args.lr, betas=(0.5, 0.999), weight_decay=1e-5)
warper.apply(weights_init('kaiming'))
train_iter = iter(dataloader)
start = time.time()
for step in range(0, args.iteration + 1):
try:
item = train_iter.next()
except:
train_iter = iter(dataloader)
item = train_iter.next()
if step > args.iteration // 2:
opt.param_groups[0]['lr'] -= ((args.lr - 0.) / (args.iteration // 2))
img_p = item['img_p'].to(device)
img_c = item['img_c'].to(device)
field_p2c = item['field_p2c'].to(device)
field_m2c = item['field_m2c'].to(device)
field_m2p = item['field_m2p'].to(device)
opt.zero_grad()
feat, embedding = warper.encode_p(img_p)
img_recon = warper.decode_p(feat)
loss_recon_p = l1_loss(img_p, img_recon) * args.w_recon_img
z = warper.encode_f(field_m2c)
_, field_recon = warper.decode_f(embedding, z, scale=args.scale)
loss_recon_warp = l1_loss(field_recon, field_p2c) * args.w_recon_field
random_z = torch.randn(img_p.size(0), args.warp_dim, 1, 1).cuda()
_, field_gen = warper.decode_f(embedding, random_z, scale=args.scale)
img_warp_gen = F.grid_sample(img_p, field_gen, align_corners=True)
loss_tv = tv_loss(img_warp_gen) * args.w_tv
loss_total = loss_recon_p + loss_recon_warp + loss_tv
loss_total.backward()
opt.step()
# output log
if (step + 1) % args.snapshot_log == 0:
end = time.time()
print('Step: {} ({:.0f}%) time:{} loss_rec_p:{:.4f} loss_rec_warp:{:.4f} loss_tv:{:.4f}'.format(
step + 1,
100.0 * step / args.iteration,
int(end - start),
loss_recon_p,
loss_recon_warp,
loss_tv))
# input photo, input caricature, image_warp_p2c, image_warp_generated
vis = torch.stack((img_p, img_c, F.grid_sample(img_p, field_p2c, align_corners=True), img_warp_gen), dim=1)
write_image(step, image_dir, vis)
# save checkpoint
if (step + 1) % args.snapshot_save == 0:
warper.save(checkpoint_dir, step)