-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loader.py
230 lines (209 loc) · 9.23 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import http.client
import boto3
import gzip
import json
import os
import botocore.exceptions
from pymongo import MongoClient, UpdateOne
from botocore.config import Config
def get_synonyms(document_ids):
syn_dict = {}
for doc in reference.find({'PM': {'$in': document_ids}}):
syn_dict[doc['PM']] = [doc['PMC'] if 'PMC' in doc else '', doc['DOI'] if 'DOI' in doc else '']
id_set = set(document_ids)
lookup_dict = lookup_synonyms(list(id_set - syn_dict.keys()))
return syn_dict | lookup_dict
def lookup_synonyms(ids: list[str], sublist_size: int = 200) -> dict:
synonyms_dict = {}
start_index = sublist_size
end_index = len(ids)
extra = end_index % sublist_size
for cap in range(start_index, end_index, sublist_size):
connection = http.client.HTTPConnection('www.ncbi.nlm.nih.gov')
id_sublist = ids[cap - sublist_size: cap]
numerical_ids = [x.replace('PMID:', '') for x in id_sublist]
request_string = f'/pmc/utils/idconv/v1.0/?ids={",".join(numerical_ids)}'
request_string += '&format=json&versions=no&tool=documentmetadataapi&[email protected]'
connection.request('GET', request_string)
response = connection.getresponse()
if response.status == 200:
response_text = response.read()
response_data = json.loads(response_text)
if 'records' in response_data:
for record in response_data['records']:
synonyms_dict[record['pmid']] = [record['pmcid'] if 'pmcid' in record else '',
record['doi'] if 'doi' in record else '']
id_sublist = ids[-extra:]
numerical_ids = [x.replace('PMID:', '') for x in id_sublist]
connection = http.client.HTTPConnection('www.ncbi.nlm.nih.gov')
request_string = f'/pmc/utils/idconv/v1.0/?ids={",".join(numerical_ids)}'
request_string += '&format=json&versions=no&tool=documentmetadataapi&[email protected]'
connection.request('GET', request_string)
response = connection.getresponse()
if response.status == 200:
response_text = response.read()
response_data = json.loads(response_text)
if 'records' in response_data:
for record in response_data['records']:
synonyms_dict[record['pmid']] = [record['pmcid'] if 'pmcid' in record else '',
record['doi'] if 'doi' in record else '']
return synonyms_dict
def get_existing_documents(document_ids):
return [doc['document_id'] for doc in collection.find({'document_id': {'$in': document_ids}})]
def insert_new_documents(pubmed_documents, synonyms_dict):
other_documents = []
for doc in pubmed_documents:
pm = doc['document_id']
pmc_id = synonyms_dict[pm]['PMC']
doi = synonyms_dict[pm]['DOI']
if pmc_id and len(pmc_id) > 0:
pmc_record = doc.copy()
pmc_record['document_id'] = pmc_id
other_documents.append(pmc_record)
if doi and len(doi) > 0:
doi_record = doc.copy()
doi_record['document_id'] = doi
other_documents.append(doi_record)
result = collection.insert_many(pubmed_documents)
print(f'Inserted {len(pubmed_documents)} new PubMed documents')
print(result)
result = collection.insert_many(other_documents)
print(f'Inserted {len(other_documents)} non-PubMed documents')
print(result)
return {'pubmed': len(pubmed_documents), 'other': len(other_documents)}
def upsert_documents(pubmed_documents, synonyms_dict):
if len(pubmed_documents) == 0:
return {'pubmed': 0, 'other': 0}
pm_count = len(pubmed_documents)
pmc_count = 0
doi_count = 0
ops_list = []
for doc in pubmed_documents:
pm = doc['document_id']
pmid = pm.split(':')[-1]
pmc_id = synonyms_dict[pmid][0] if pmid in synonyms_dict else ''
doi = synonyms_dict[pmid][1] if pmid in synonyms_dict else ''
ops_list.append(UpdateOne({'document_id': pm}, {'$set': doc}, upsert=True))
if pmc_id and len(pmc_id) > 0:
pmc_count += 1
pmc_doc = doc.copy()
pmc_doc['document_id'] = pmc_id
ops_list.append(UpdateOne({'document_id': pmc_id}, {'$set': pmc_doc}, upsert=True))
if doi and len(doi) > 0:
doi_count += 1
doi_doc = doc.copy()
doi_doc['document_id'] = doi
ops_list.append(UpdateOne({'document_id': doi}, {'$set': doi_doc}, upsert=True))
result = collection.bulk_write(ops_list, ordered=False)
print(f'Updated {pm_count} PubMed documents')
print(f'Updated {pmc_count} PubMedCentral documents')
print(f'Updated {doi_count} DOI documents')
return {
'pubmed': pm_count,
'pmc': pmc_count,
'doi': doi_count,
'results': {
'matched': result.matched_count,
'upsert': result.upserted_count,
'update': result.modified_count
}
}
def delete_existing_documents(document_ids):
return collection.delete_many({'document_id': {'$in': document_ids}}).deleted_count
def load_file(filepath):
documents = []
print('loading ' + filepath)
with open(filepath, 'r') as infile:
for line in infile:
columns = line.split('\t')
if len(columns) < 10:
print(line)
continue
documents.append({
'document_id': columns[0],
'pub_year': columns[1],
'pub_month': columns[2],
'pub_day': columns[3] if not columns[3] == '-' else '',
'journal_name': columns[4] if len(columns[4]) > 1 else '',
'journal_abbrev': columns[5] if len(columns[5]) > 1 else '',
'volume': columns[6] if len(columns[6]) > 1 else '',
'issue': columns[7] if len(columns[7]) > 1 else '',
'article_title': columns[8] if len(columns[8]) > 1 else '',
'abstract': columns[9] if len(columns[9]) > 1 else '',
})
print(f'{len(documents)} documents loaded')
return documents
def get_file(remote_bucket, remote_filename):
print(f'Attempting to get file {remote_filename} from bucket {remote_bucket}')
try:
with open('/tmp/source.gz', 'wb') as dest:
gcp_client.download_fileobj(remote_bucket, remote_filename, dest)
print('file downloaded, attempting to extract to plaintext file')
with gzip.open('/tmp/source.gz', 'rb') as gzfile:
byte_contents = gzfile.read()
with open('/tmp/source.tsv', 'wb') as tsvfile:
count = tsvfile.write(byte_contents)
print('file created')
os.remove('/tmp/source.gz')
return '/tmp/source.tsv'
except botocore.exceptions.ClientError as error:
print("A ClientError happened")
print(error)
return None
except:
print("An error other than ClientError happened")
return None
def process_file(local_filepath, is_delete=False):
if is_delete:
id_list = [x.strip() for x in open(local_filepath, 'r').readlines()]
if len(id_list) == 0:
return {'delete': 0}
print(f'deleting existing documents ({len(id_list)})')
return {'delete': delete_existing_documents(id_list)}
pubmed_documents = load_file(local_filepath)
print('file loaded')
os.remove(local_filepath)
id_list = [doc['document_id'].split(':')[-1] for doc in pubmed_documents]
existing_ids = get_existing_documents(id_list)
new_ids = list(set(id_list) - set(existing_ids))
synonyms = get_synonyms(id_list)
print('got synonyms\nupserting documents')
upsert_results = upsert_documents(pubmed_documents, synonyms)
return {'load_results': upsert_results, 'sample_ids': new_ids[:5]}
def lambda_handler(event, context):
print('starting')
if 'body' in event:
body = json.loads(event['body'])
else:
body = event
if os.environ and 'connection_string' in os.environ:
client = MongoClient(os.environ['connection_string'])
else:
return 'Could not get database connection information', 500
if 'source' not in body:
return 'No source information provided', 400
source_info = body['source']
print(source_info['bucket'], source_info['filepath'])
global gcp_client
global collection
global reference
print('connected to DocDB\nconnecting to GCP')
gcp_client = boto3.client(
's3',
region_name='auto',
endpoint_url='https://storage.googleapis.com',
aws_access_key_id=source_info['hmac_key_id'],
aws_secret_access_key=source_info['hmac_secret'],
config=Config(connect_timeout=5, retries={'max_attempts': 0})
)
db = client['test']
collection = db['documentMetadata']
reference = db['documentIds']
print('getting file')
local_filepath = get_file(source_info['bucket'], source_info['filepath'])
if not local_filepath:
if '/' in source_info['filepath']:
return {'result': f"could not get file {source_info['filepath'].split('/')[-1]}"}
return {'result': f"could not get file {source_info['filepath']}"}
print('processing file')
return process_file(source_info['bucket'], source_info['filepath'])