-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathobservation_model.py
196 lines (166 loc) · 6.98 KB
/
observation_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python3
import os
import numpy as np
import pexpect
from pexpect import TIMEOUT, EOF
kaldi_dir = None
nnetdir = "/group/teaching/asr/labs/tdnnf_mono_net/"
bindir = "/group/teaching/asr/labs/bin/"
if not kaldi_dir:
path = ['/group/teaching/asr/labs/bin/lib/',
'/opt/intel/compilers_and_libraries_2019.5.281/linux/mkl/lib/intel64_lin/']
path = ':'.join(path)
else:
path = '{kd}/tools/openfst-1.6.5/lib/'.format(kd=kaldi_dir)
def initialize_nn(debug=False):
nnet = pexpect.spawnu("{}/lab-chain-compute-post".format(bindir),
["--feature-type=fbank",
"--frame-subsampling-factor=1",
"--frames-per-chunk=150",
"--cmvn-config={}/conf/cmvn.conf".format(nnetdir),
"--fbank-config={}/conf/fbank.conf".format(nnetdir),
"--global-cmvn-stats={}/conf/cmvn.gstat".format(nnetdir),
"{}/final.mdl".format(nnetdir),
"{}/den.fst".format(nnetdir),
"scp:-", "ark,t:-"], env={'LD_LIBRARY_PATH': path})
try:
nnet.expect("Ready.")
except (TIMEOUT, EOF):
nn_check_for_errors(debug)
return nnet
def nn_check_for_errors(nnet, debug=False):
if debug is True:
import pdb
pdb.set_trace()
before = nnet.before if type(nnet.before) == str else ''
after = nnet.after if type(nnet.after) == str else ''
stdout = (before + '\r\n' + after).split('\r\n')
err = [x for x in stdout if x.startswith('WARNING') or x.startswith('ERR')]
raise Exception('\n'.join(err))
nnet = initialize_nn()
loaded_first_rec = False
class ObservationModel:
def __init__(self, debug=False, kaldi_dir=None):
self.debug = debug
self.timesteps = 0
self.dummy = False
self.nnetdir = "/group/teaching/asr/labs/tdnnf_mono_net/"
self.bindir = "/group/teaching/asr/labs/bin/"
self.nnet = nnet
self.state_map = self.load_state_map("{}/conf/pdfsmap".format(self.nnetdir))
if not kaldi_dir:
path = ['/group/teaching/asr/labs/bin/lib/',
'/opt/intel/compilers_and_libraries_2019.5.281/linux/mkl/lib/intel64_lin/']
self.path = ':'.join(path)
else:
self.path = '{kd}/tools/openfst-1.6.5/lib/'.format(kd=kaldi_dir)
def load_state_map(self, map_fn):
state_map = {}
with open(map_fn, 'r') as f:
for line in f:
line = line.strip().split(' ')
state = '{}_{}'.format(line[2], int(line[5])+1)
pdf = int(line[8])
state_map[state] = pdf
return state_map
def load_audio(self, wav_fn):
global loaded_first_rec
if wav_fn[-3:] != 'wav':
raise ValueError('Audio must be in wav format')
if not (os.path.exists(wav_fn) and os.path.isfile(wav_fn)):
raise FileNotFoundError("{} not found.".format(wav_fn))
utt_name = wav_fn.split('.')[0] # has to be 16k
if self.dummy:
self.dummy = False
if not self.nnet or not self.nnet.isalive():
self.nnet = initialize_nn(self.debug)
if loaded_first_rec: # not first load data
self.nnet.expect('LOG') # there's a previous line giving logprob over frames
self.nnet.send("{} {}\n".format(utt_name, wav_fn))
try:
self.nnet.expect('LOG')
except (TIMEOUT, EOF):
nn_check_for_errors(self.nnet, self.debug)
self.post_mat = self.parse_kaldi_post_mat(self.nnet.before)
self.timesteps = len(self.post_mat)
loaded_first_rec = True
def parse_kaldi_post_mat(self, mat_str):
mat_str = mat_str.split('\r\n')
rows = []
open_mat = False
close_mat = False
for line in mat_str:
if not open_mat:
idx = line.find('[') # first line
if idx != -1:
open_mat = True
else:
arr = line.strip().split()
try:
if arr and arr[-1] != ']':
rows.append(np.array(arr, dtype='float32')) # not last line
elif arr:
rows.append(np.array(arr[:-1], dtype='float32')) # last line
close_mat = True
except ValueError:
open_mat = False
if not open_mat and close_mat:
raise ValueError("Posterior matrix is malformed")
if rows:
mat = np.vstack(rows)
else:
nn_check_for_errors(self.nnet, self.debug)
raise Exception("Something is wrong, matrix is empty.")
open_mat = False
close_mat = True
return mat
def load_dummy_audio(self):
self.timesteps = 30
self.dummy = True
self.hmm_labels = []
with open('phonelist.txt', 'r') as f:
for ph in f.readlines():
for i in range(1, 4):
self.hmm_labels.append("{}_{}".format(ph.strip(),i))
def observation_length(self):
return self.timesteps
def log_observation_probability(self, hmm_label, t):
if t <= 0 or t > self.timesteps+1:
raise IndexError("Timestep not in range [1,{}]".format(self.timesteps+1))
if self.dummy:
return self.dummy_observation_probability(hmm_label, t)
else:
return np.log(self.post_mat[t-1, self.state_map[hmm_label]])
def dummy_observation_probability(self, hmm_label, t):
""" Computes b_j(t) where j is the current state
This is just a dummy version! In later labs we'll generate
probabilities for real speech frames.
You don't need to look at this function in detail.
Args: hmm_label (str): the HMM state label, j. We'll use string form: "p_1", "p_2", "eh_1" etc
t (int) : current time step, starting at 1
Returns:
p (float): the observation probability p(x_t | q_t = hmm_label)
"""
p = {} # dictionary of probabilities
assert(t > 0)
# this is just a simulation!
if t < 4:
p = {'p_1': 1.0, 'p_2': 1.0, 'p_3': 1.0, 'eh_1': 0.2}
elif t < 9:
p = {'p_3': 0.5, 'eh_1': 1.0, 'eh_2': 1.0, 'eh_3': 1.0}
elif t < 13:
p = {'eh_3': 1.0, 'p_1': 1.0, 'p_2': 1.0, 'p_3': 1.0, 'er_1': 0.5}
elif t < 18:
p = {'p_3': 1.0, 'er_1': 1.0, 'er_2': 1.0, 'er_3': 0.7}
elif t < 25:
p = {'er_3': 1.0, 'z_1': 1.0, 'z_2': 1.0, 'z_3': 1.0}
else:
p = {'z_2': 0.5, 'z_3': 1.0}
for label in self.hmm_labels:
if label not in p:
p[label] = 0.001 # give all other states a small probability to avoid zero probability
# normalise the probabilities:
scale = sum(p.values())
for k in p:
p[k] = p[k]/scale
return np.log(p[hmm_label])