diff --git a/examples/ConsIndShockModel/IndShockConsumerType.ipynb b/examples/ConsIndShockModel/IndShockConsumerType.ipynb index a6a9855a6..12822dfd6 100644 --- a/examples/ConsIndShockModel/IndShockConsumerType.ipynb +++ b/examples/ConsIndShockModel/IndShockConsumerType.ipynb @@ -2,10 +2,11 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "lines_to_next_cell": 2 + }, "source": [ - "# IndShockConsumerType Documentation\n", - "## Consumption-Saving model with Idiosyncratic Income Shocks" + "# IndShockConsumerType: Consumption-saving model with idiosyncratic income shocks" ] }, { @@ -19,12 +20,14 @@ "outputs": [], "source": [ "# Initial imports and notebook setup, click arrow to show\n", - "from HARK.ConsumptionSaving.ConsIndShockModel import IndShockConsumerType\n", - "from HARK.utilities import plotFuncsDer, plotFuncs\n", - "from time import clock\n", + "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", - "mystr = lambda number : \"{:.4f}\".format(number)" + "\n", + "from HARK.ConsumptionSaving.ConsIndShockModel import IndShockConsumerType\n", + "from HARK.utilities import plotFuncsDer, plotFuncs\n", + "\n", + "mystr = lambda number: \"{:.4f}\".format(number)" ] }, { @@ -33,7 +36,7 @@ "source": [ "The module $\\texttt{HARK.ConsumptionSaving.ConsIndShockModel}$ concerns consumption-saving models with idiosyncratic shocks to (non-capital) income. All of the models assume CRRA utility with geometric discounting, no bequest motive, and income shocks are fully transitory or fully permanent.\n", "\n", - "$\\texttt{ConsIndShockModel}$ includes:\n", + "$\\texttt{ConsIndShockModel}$ currently includes three models:\n", "1. A very basic \"perfect foresight\" model with no uncertainty.\n", "2. A model with risk over transitory and permanent income shocks.\n", "3. The model described in (2), with an interest rate for debt that differs from the interest rate for savings.\n", @@ -52,14 +55,14 @@ "source": [ "## Statement of idiosyncratic income shocks model\n", "\n", - "Suppose we want to solve a model like the one analyzed in [BufferStockTheory](http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory/), which has all the same features as the perfect foresight consumer, plus idiosyncratic shocks to income each period. Agents with this kind of model are represented by the class $\\texttt{IndShockConsumerType}$.\n", + "Suppose we want to solve a model like the one analyzed in [BufferStockTheory](http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory/), with all the same features as the perfect foresight consumer, plus idiosyncratic shocks to income each period. Agents with this kind of model are represented by the class $\\texttt{IndShockConsumerType}$.\n", "\n", - "Specifically, this type of consumer receives two income shocks at the beginning of each period: a completely transitory shock $\\newcommand{\\tShkEmp}{\\theta}{\\tShkEmp_t}$ and a completely permanent shock $\\newcommand{\\pShk}{\\psi}{\\pShk_t}$. Moreover, the agent is subject to borrowing a borrowing limit: the ratio of end-of-period assets $A_t$ to permanent income $P_t$ must be greater than $\\underline{a}$. As with the perfect foresight problem, this model is stated in terms of *normalized* variables, dividing all real variables by $P_t$:\n", + "Specifically, this type of consumer receives two income shocks at the beginning of each period: a completely transitory shock $\\newcommand{\\tShkEmp}{\\theta}{\\tShkEmp_t}$ and a completely permanent shock $\\newcommand{\\pShk}{\\psi}{\\pShk_t}$. Moreover, lenders will not let the agent borrow money such that his ratio of end-of-period assets $A_t$ to permanent income $P_t$ is less than $\\underline{a}$. As with the perfect foresight problem, this model can be framed in terms of *normalized* variables, dividing all real variables by $P_t$:\n", "\n", "\\begin{eqnarray*}\n", - "v_t(m_t) &=& \\max_{c_t} {~} u(c_t) + \\DiscFac (1-\\DiePrb_{t+1}) \\mathbb{E}_{t} \\left[ (\\PermGroFac_{t+1}\\psi_{t+1})^{1-\\CRRA} v_{t+1}(m_{t+1}) \\right], \\\\\n", + "v_t(m_t) &=& \\max_{c_t} {~} U(c_t) + \\DiscFac (1-\\DiePrb_{t+1}) \\mathbb{E}_{t} \\left[ (\\PermGroFac_{t+1}\\psi_{t+1})^{1-\\CRRA} v_{t+1}(m_{t+1}) \\right], \\\\\n", "a_t &=& m_t - c_t, \\\\\n", - "a_t &\\geq& \\text{$\\underline{a}$}, \\\\\n", + "a_t &\\geq& \\underline{a}, \\\\\n", "m_{t+1} &=& \\Rfree/(\\PermGroFac_{t+1} \\psi_{t+1}) a_t + \\theta_{t+1}, \\\\\n", "(\\psi_{t+1},\\theta_{t+1}) &\\sim& F_{t+1}, \\\\\n", "\\mathbb{E}[\\psi]=\\mathbb{E}[\\theta] &=& 1, \\\\\n", @@ -73,21 +76,21 @@ "source": [ "## Solution method for IndShockConsumerType\n", "\n", - "With the introduction of (non-trivial) risk, the idiosyncratic income shocks model has no closed form solution and must be solved numerically. The function $\\texttt{solveConsIndShock}$ solves the one period problem for the $\\texttt{IndShockConsumerType}$ class. To do so, HARK uses the original version of the endogenous grid method (EGM) first described [here](http://www.econ2.jhu.edu/people/ccarroll/EndogenousGridpoints.pdf) ; see also the [SolvingMicroDSOPs](http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs/) lecture notes. \n", + "With the introduction of (non-trivial) risk, the idiosyncratic income shocks model has no closed form solution and must be solved numerically. The function $\\texttt{solveConsIndShock}$ solves the one period problem for the $\\texttt{IndShockConsumerType}$ class. To do so, HARK uses the original version of the endogenous grid method (EGM) first described [here](http://www.econ2.jhu.edu/people/ccarroll/EndogenousGridpoints.pdf); see also the [SolvingMicroDSOPs](http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs/) lecture notes.\n", "\n", - "Briefly, the transition equation for $m_{t+1}$ can be substituted into the problem definition; the second term of the reformulated maximand represents \"end of period value of assets\" $\\mathfrak{v}_t(a_t)$ (\"Gothic v\"):\n", + "Briefly, the transition equation for $m_{t+1}$ can be substituted into the problem definition; the second term of the reformulated maximand represents \"end of period value of assets\" $\\mathfrak{v}_t(a_t)$:\n", "\n", "\\begin{eqnarray*}\n", - "v_t(m_t) &=& \\max_{c_t} {~} u(c_t) + \\underbrace{\\DiscFac (1-\\DiePrb_{t+1}) \\mathbb{E}_{t} \\left[ (\\PermGroFac_{t+1}\\psi_{t+1})^{1-\\CRRA} v_{t+1}(\\Rfree/(\\PermGroFac_{t+1} \\psi_{t+1}) a_t + \\theta_{t+1}) \\right]}_{\\equiv \\mathfrak{v}_t(a_t)}.\n", + "v_t(m_t) &=& \\max_{c_t} {~} U(c_t) + \\underbrace{\\DiscFac (1-\\DiePrb_{t+1}) \\mathbb{E}_{t} \\left[ (\\PermGroFac_{t+1}\\psi_{t+1})^{1-\\CRRA} v_{t+1}(\\Rfree/(\\PermGroFac_{t+1} \\psi_{t+1}) a_t + \\theta_{t+1}) \\right]}_{\\equiv \\mathfrak{v}_t(a_t)}.\n", "\\end{eqnarray*}\n", "\n", "The first order condition with respect to $c_t$ is thus simply:\n", "\n", "\\begin{eqnarray*}\n", - "u^{\\prime}(c_t) - \\mathfrak{v}'_t(a_t) = 0 \\Longrightarrow c_t^{-\\CRRA} = \\mathfrak{v}'_t(a_t) \\Longrightarrow c_t = \\mathfrak{v}'_t(a_t)^{-1/\\CRRA},\n", + "U'(c_t) - \\mathfrak{v}'_t(a_t) = 0 \\Longrightarrow c_t^{-\\CRRA} = \\mathfrak{v}'_t(a_t) \\Longrightarrow c_t = \\mathfrak{v}'_t(a_t)^{-1/\\CRRA}.\n", "\\end{eqnarray*}\n", "\n", - "and the marginal value of end-of-period assets can be computed as:\n", + "Where the marginal value of end-of-period assets can be computed as:\n", "\n", "\\begin{eqnarray*}\n", "\\mathfrak{v}'_t(a_t) = \\DiscFac (1-\\DiePrb_{t+1}) \\mathbb{E}_{t} \\left[ \\Rfree (\\PermGroFac_{t+1}\\psi_{t+1})^{-\\CRRA} v'_{t+1}(\\Rfree/(\\PermGroFac_{t+1} \\psi_{t+1}) a_t + \\theta_{t+1}) \\right].\n", @@ -107,26 +110,26 @@ "| Parameter | Description | Code | Example value | Time-varying? |\n", "| :---: | --- | --- | --- | --- |\n", "| $\\DiscFac$ |Intertemporal discount factor | $\\texttt{DiscFac}$ | $0.96$ | |\n", - "| $\\CRRA$|Coefficient of relative risk aversion | $\\texttt{CRRA}$ | $2.0$ | |\n", + "| $\\CRRA $ |Coefficient of relative risk aversion | $\\texttt{CRRA}$ | $2.0$ | |\n", "| $\\Rfree$ | Risk free interest factor | $\\texttt{Rfree}$ | $1.03$ | |\n", "| $1 - \\DiePrb_{t+1}$ |Survival probability | $\\texttt{LivPrb}$ | $[0.98]$ | $\\surd$ |\n", "|$\\PermGroFac_{t+1}$|Permanent income growth factor|$\\texttt{PermGroFac}$| $[1.01]$ | $\\surd$ |\n", - "| $\\sigma_\\psi$| Standard deviation of log permanent income shocks | $\\texttt{PermShkStd}$ | $[0.1]$ |$\\surd$ |\n", - "| $N_\\psi$| Number of discrete permanent income shocks | $\\texttt{PermShkCount}$ | $7$ | |\n", - "| $\\sigma_\\theta$| Standard deviation of log transitory income shocks | $\\texttt{TranShkStd}$ | $[0.2]$ | $\\surd$ |\n", - "| $N_\\theta$| Number of discrete transitory income shocks | $\\texttt{TranShkCount}$ | $7$ | |\n", + "| $\\sigma_\\psi $ | Standard deviation of log permanent income shocks | $\\texttt{PermShkStd}$ | $[0.1]$ |$\\surd$ |\n", + "| $N_\\psi $ | Number of discrete permanent income shocks | $\\texttt{PermShkCount}$ | $7$ | |\n", + "| $\\sigma_\\theta $ | Standard deviation of log transitory income shocks | $\\texttt{TranShkStd}$ | $[0.2]$ | $\\surd$ |\n", + "| $N_\\theta $ | Number of discrete transitory income shocks | $\\texttt{TranShkCount}$ | $7$ | |\n", "| $\\mho$ | Probability of being unemployed and getting $\\theta=\\underline{\\theta}$ | $\\texttt{UnempPrb}$ | $0.05$ | |\n", - "| $\\underline{\\theta}$| Transitory shock when unemployed | $\\texttt{IncUnemp}$ | $0.3$ | |\n", + "| $\\underline{\\theta} $ | Transitory shock when unemployed | $\\texttt{IncUnemp}$ | $0.3$ | |\n", "| $\\mho^{Ret}$ | Probability of being \"unemployed\" when retired | $\\texttt{UnempPrb}$ | $0.0005$ | |\n", - "| $\\underline{\\theta}^{Ret}$| Transitory shock when \"unemployed\" and retired | $\\texttt{IncUnemp}$ | $0.0$ | |\n", + "| $\\underline{\\theta}^{Ret} $ | Transitory shock when \"unemployed\" and retired | $\\texttt{IncUnemp}$ | $0.0$ | |\n", "| $(none)$ | Period of the lifecycle model when retirement begins | $\\texttt{T_retire}$ | $0$ | |\n", "| $(none)$ | Minimum value in assets-above-minimum grid | $\\texttt{aXtraMin}$ | $0.001$ | |\n", "| $(none)$ | Maximum value in assets-above-minimum grid | $\\texttt{aXtraMax}$ | $20.0$ | |\n", "| $(none)$ | Number of points in base assets-above-minimum grid | $\\texttt{aXtraCount}$ | $48$ | |\n", "| $(none)$ | Exponential nesting factor for base assets-above-minimum grid | $\\texttt{aXtraNestFac}$ | $3$ | |\n", "| $(none)$ | Additional values to add to assets-above-minimum grid | $\\texttt{aXtraExtra}$ | $None$ | |\n", - "| $\\underline{a}$| Artificial borrowing constraint (normalized) | $\\texttt{BoroCnstArt}$ | $0.0$ | |\n", - "| $(none)$|Indicator for whether $\\texttt{vFunc}$ should be computed | $\\texttt{vFuncBool}$ | $True$ | |\n", + "| $\\underline{a} $ | Artificial borrowing constraint (normalized) | $\\texttt{BoroCnstArt}$ | $0.0$ | |\n", + "| $(none) $ |Indicator for whether $\\texttt{vFunc}$ should be computed | $\\texttt{vFuncBool}$ | $True$ | |\n", "| $(none)$ |Indicator for whether $\\texttt{cFunc}$ should use cubic splines | $\\texttt{CubicBool}$ | $False$ | |\n", "|$T$| Number of periods in this type's \"cycle\" |$\\texttt{T_cycle}$| $1$ | |\n", "|(none)| Number of times the \"cycle\" occurs |$\\texttt{cycles}$| $0$ | |" @@ -142,48 +145,44 @@ }, "outputs": [], "source": [ - "IdiosyncDict={\n", + "IdiosyncDict = { # Click the arrow to expand this parameter dictionary\n", " # Parameters shared with the perfect foresight model\n", - " \"CRRA\": 2.0, # Coefficient of relative risk aversion\n", - " \"Rfree\": 1.03, # Interest factor on assets\n", - " \"DiscFac\": 0.96, # Intertemporal discount factor\n", - " \"LivPrb\" : [0.98], # Survival probability\n", - " \"PermGroFac\" :[1.01], # Permanent income growth factor\n", - " \n", + " \"CRRA\": 2.0, # Coefficient of relative risk aversion\n", + " \"Rfree\": 1.03, # Interest factor on assets\n", + " \"DiscFac\": 0.96, # Intertemporal discount factor\n", + " \"LivPrb\": [0.98], # Survival probability\n", + " \"PermGroFac\": [1.01], # Permanent income growth factor\n", + " \"BoroCnstArt\": 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", " # Parameters that specify the income distribution over the lifecycle\n", - " \"PermShkStd\" : [0.1], # Standard deviation of log permanent shocks to income\n", - " \"PermShkCount\" : 7, # Number of points in discrete approximation to permanent income shocks\n", - " \"TranShkStd\" : [0.2], # Standard deviation of log transitory shocks to income\n", - " \"TranShkCount\" : 7, # Number of points in discrete approximation to transitory income shocks\n", - " \"UnempPrb\" : 0.05, # Probability of unemployment while working\n", - " \"IncUnemp\" : 0.3, # Unemployment benefits replacement rate\n", - " \"UnempPrbRet\" : 0.0005, # Probability of \"unemployment\" while retired\n", - " \"IncUnempRet\" : 0.0, # \"Unemployment\" benefits when retired\n", - " \"T_retire\" : 0, # Period of retirement (0 --> no retirement)\n", - " \"tax_rate\" : 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", - " \n", + " \"PermShkStd\": [0.1], # Standard deviation of log permanent shocks to income\n", + " \"PermShkCount\": 7, # Number of points in discrete approximation to permanent income shocks\n", + " \"TranShkStd\": [0.2], # Standard deviation of log transitory shocks to income\n", + " \"TranShkCount\": 7, # Number of points in discrete approximation to transitory income shocks\n", + " \"UnempPrb\": 0.05, # Probability of unemployment while working\n", + " \"IncUnemp\": 0.3, # Unemployment benefits replacement rate\n", + " \"UnempPrbRet\": 0.0005, # Probability of \"unemployment\" while retired\n", + " \"IncUnempRet\": 0.0, # \"Unemployment\" benefits when retired\n", + " \"T_retire\": 0, # Period of retirement (0 --> no retirement)\n", + " \"tax_rate\": 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", " # Parameters for constructing the \"assets above minimum\" grid\n", - " \"aXtraMin\" : 0.001, # Minimum end-of-period \"assets above minimum\" value\n", - " \"aXtraMax\" : 20, # Maximum end-of-period \"assets above minimum\" value\n", - " \"aXtraCount\" : 48, # Number of points in the base grid of \"assets above minimum\"\n", - " \"aXtraNestFac\" : 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", - " \"aXtraExtra\" : [None], # Additional values to add to aXtraGrid\n", - " \n", + " \"aXtraMin\": 0.001, # Minimum end-of-period \"assets above minimum\" value\n", + " \"aXtraMax\": 20, # Maximum end-of-period \"assets above minimum\" value\n", + " \"aXtraCount\": 48, # Number of points in the base grid of \"assets above minimum\"\n", + " \"aXtraNestFac\": 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", + " \"aXtraExtra\": [None], # Additional values to add to aXtraGrid\n", " # A few other paramaters\n", - " \"BoroCnstArt\" : 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", - " \"vFuncBool\" : True, # Whether to calculate the value function during solution \n", - " \"CubicBool\" : False, # Preference shocks currently only compatible with linear cFunc\n", - " \"T_cycle\" : 1, # Number of periods in the cycle for this agent type \n", - " \n", + " \"vFuncBool\": True, # Whether to calculate the value function during solution\n", + " \"CubicBool\": False, # Preference shocks currently only compatible with linear cFunc\n", + " \"T_cycle\": 1, # Number of periods in the cycle for this agent type\n", " # Parameters only used in simulation\n", - " \"AgentCount\" : 10000, # Number of agents of this type\n", - " \"T_sim\" : 120, # Number of periods to simulate\n", - " \"aNrmInitMean\" : -6.0, # Mean of log initial assets\n", - " \"aNrmInitStd\" : 1.0, # Standard deviation of log initial assets\n", - " \"pLvlInitMean\" : 0.0, # Mean of log initial permanent income\n", - " \"pLvlInitStd\" : 0.0, # Standard deviation of log initial permanent income\n", - " \"PermGroFacAgg\" : 1.0, # Aggregate permanent income growth factor\n", - " \"T_age\" : None, # Age after which simulated agents are automatically killed\n", + " \"AgentCount\": 10000, # Number of agents of this type\n", + " \"T_sim\": 120, # Number of periods to simulate\n", + " \"aNrmInitMean\": -6.0, # Mean of log initial assets\n", + " \"aNrmInitStd\": 1.0, # Standard deviation of log initial assets\n", + " \"pLvlInitMean\": 0.0, # Mean of log initial permanent income\n", + " \"pLvlInitStd\": 0.0, # Standard deviation of log initial permanent income\n", + " \"PermGroFacAgg\": 1.0, # Aggregate permanent income growth factor\n", + " \"T_age\": None, # Age after which simulated agents are automatically killed\n", "}" ] }, @@ -204,9 +203,7 @@ }, { "cell_type": "markdown", - "metadata": { - "heading_collapsed": true - }, + "metadata": {}, "source": [ "## Solving and examining the solution of the idiosyncratic income shocks model\n", "\n", @@ -216,39 +213,88 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "hidden": true, - "lines_to_next_cell": 2 - }, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "GIFPF = 0.984539 \n", - "GIFInd = 0.993777 \n", - "GIFAgg = 0.964848 \n", - "Thorn = AIF = 0.994384 \n", - "PermGroFacAdj = 1.000611 \n", - "uInvEpShkuInv = 0.990704 \n", - "FVAF = 0.932054 \n", - "WRIF = 0.213705 \n", - "DiscFacGIFIndMax = 0.972061 \n", - "DiscFacGIFAggMax = 1.010600 \n" + "GPFPF = 0.984539 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPFInd = 0.993777 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPFAgg = 0.964848 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Thorn = APF = 0.994384 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "PermGroFacAdj = 1.000611 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "uInvEpShkuInv = 0.990704 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "FVAF = 0.932054 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WRPF = 0.213705 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DiscFacGPFIndMax = 0.972061 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DiscFacGPFAggMax = 1.010600 \n" ] } ], "source": [ "IndShockExample = IndShockConsumerType(**IdiosyncDict)\n", - "IndShockExample.cycles = 0 # Make this type have an infinite horizon\n", + "IndShockExample.cycles = 0 # Make this type have an infinite horizon\n", "IndShockExample.solve()" ] }, { "cell_type": "markdown", - "metadata": { - "hidden": true - }, + "metadata": {}, "source": [ "After solving the model, we can examine an element of this type's $\\texttt{solution}$:" ] @@ -256,15 +302,13 @@ { "cell_type": "code", "execution_count": 4, - "metadata": { - "hidden": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'cFunc': , 'vFunc': , 'vPfunc': , 'vPPfunc': , 'mNrmMin': 0.0, 'hNrm': 44.991920196607595, 'MPCmin': 0.044536273404377116, 'MPCmax': 1.0, 'mNrmSS': 1.5488165705077026}\n" + "{'cFunc': , 'vFunc': , 'vPfunc': , 'vPPfunc': , 'mNrmMin': 0.0, 'hNrm': 44.991920196607595, 'MPCmin': 0.044536273404377116, 'MPCmax': 1.0, 'mNrmSS': 1.5488165705077026}\n" ] } ], @@ -274,9 +318,7 @@ }, { "cell_type": "markdown", - "metadata": { - "hidden": true - }, + "metadata": {}, "source": [ "The single-period solution to an idiosyncratic shocks consumer's problem has all of the same attributes as in the perfect foresight model, with a couple additions. The solution can include the marginal marginal value of market resources function $\\texttt{vPPfunc}$, but this is only constructed if $\\texttt{CubicBool}$ is $\\texttt{True}$, so that the MPC can be accurately computed; when it is $\\texttt{False}$, then $\\texttt{vPPfunc}$ merely returns $\\texttt{NaN}$ everywhere.\n", "\n", @@ -288,9 +330,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "hidden": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -301,7 +341,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3hV9Z3v8fc3CeGSK5ALkBDC/SKiQAQVBavWqnW0dRyn1F6sVrQzzrTTnpnpnJ6nnXHOOXN65pnL6RlnEFtHbatU29rhKK2X0QIqKFFA7rdwSwhJCJAruX/PH9mEFIFsyA5rXz6v58mTvdf+ufaXJc+H9fzWb32XuTsiIhJfkoIuQEREIk/hLiIShxTuIiJxSOEuIhKHFO4iInEoJagvzsnJ8eLi4qC+XkQkJn3wwQdH3T23r3GBhXtxcTGlpaVBfb2ISEwyswPhjOtzWsbMnjKzajPb0se4q8ysw8zuCbdIEREZGOHMuT8N3Hq+AWaWDHwfeC0CNYmISD/1Ge7uvho41sewPwF+AVRHoigREemffq+WMbMC4LPAv4UxdomZlZpZaU1NTX+/WkREziESSyH/GfhLd+/qa6C7L3P3Encvyc3t82KviIhcpEislikBlpsZQA5wu5l1uPuvIrBvERG5CP0Od3cff+q1mT0NvKxgFxEJVp/hbmbPAzcAOWZWDnwPGATg7ksHtDoRkQTX1eUcrjvJnupG9tY0hf3f9Rnu7r443J25+/1hf7OIiPRo7+ziQG0Te6obT//UNFJW00RzW+cF7y+wO1RFRBLRybZO9tacDvDd1Q3sqW7kQG0zHV2nH540JmsIE/PS+cOrRjApL51JuelMyksn5/vhfY/CXURkADS2dvxugFc1sru6kUPHmzn1ALzkJGPcyGFMyk3nU5eN6g7xvHQm5qaTNrh/8axwFxHph7rmdvbUNLA7FN67qxvZU9XA4bqWnjGpyUlMyE1jVmEWvz+nkMn53SFePDKN1JSBac6rcBcRCUNtY+vvhPep1zUNrT1jhgxKYlJeOvPGj2ByfgaT8tKZnJdO0YhhpCRf2g7rCncRkRB3p7qhNXQW3h3gp6ZWjjW19YxLS01mUn4Gi6bkMjkvncn56UzOy6AgeyhJSRbgn+A0hbuIJKSjja3sOtLAzqoGdlU1squqgV1VDTS0dPSMyRySwpT8DD51WT6T8jKYHJoTH501hNCNm1FL4S4ica3uZDu7q0IhHgrz3VWN1PY6E88eNogp+RncecUYpuSHQjw/ndz0wVEf4ueicBeRuNDc1r06ZeeR7jPwnVWN7DrSwJH60xc201KTmZyfwc3T85kyKoOp+RlMGRXbIX4uCncRiSmtHZ2U1TT1TKPsPNI9pdJ7iWFqShKTctO5ZuJIpuRnMHVUOlPyMxiTFT1z4gNN4S4iUamryyk/fpLtR+rZUXnqbLyBfUeb6Azd7JOcZIzPSePygu4lhqdCPIjVKdFG4S4igatvaWfnkQZ2VNazPfR755EGmnrddl80YljPxc3us/EMxuekMTglOcDKo5fCXUQumY7OLvbXNrG9soEdR7oDfHtlAxUnTvaMyRySwrTRmdwzt5BpozOZNiqDKfkZ/b5jM9HoaInIgKhtbGXHkQa2V9az40h3mO+qaqSto/u5PslJxsTcNOaMG87n5xcxfXQG00ZlxsQyw1igcBeRfuno7GLf0Sa2Hq5nW2V9T5j3vnMzJ30w00dn8OVrxjFtVCbTRmcwMTedIYM0pTJQFO4iEram1g52HGlg2+E6tlXWs+1wd5C3hs7GU5OTmDIqnYWTc3vOxKeOyiA3Y3DAlScehbuInFV1QwvbQmfjWw/Xs/1wPftqm3qWG2YNHcRlYzL54tXjmDEmkxljMpmYm86gBF+lEi0U7iIJrrPL2V/b1BPk2w53h/nRxtPTKoXDh3LZmEzuurKgJ8jHaG48qincRRJIR2cXe2oa2Vxex9bD9WyuqGN7ZX3Pk35SkozJ+RncMDWXGaO7Q3z66Eyyhg4KuHK5UAp3kTjV3tnFnupGNlfUsaWirifIW9q758eHpSZz2ZhM7i0Zy2Whs/FJeelaNx4nFO4icaC9s4tdVQ09Ib65op4dlfU9FzrTUpO5rCCL++aPY2ZBJpcXZDE+J53kBLkVPxH1Ge5m9hRwB1Dt7jPP8vl9wF8CBjQAX3P3TZEuVES6dXR2sauqkY/KT/SclW8/0tCzfjx9cErPhc7LC7OYWZDF+JFpCdNTRbqFc+b+NPAvwLPn+HwfsMjdj5vZbcAyYH5kyhNJbO7OoWMn2Vh+gk2HTvQE+qmplYwhKcwck8X91xYzsyCLywuyGDdimIJc+g53d19tZsXn+fzdXm/XAYX9L0skMR1tbGXToRNsKq/rCfPjze0ADE5JYmZBFovnFXHl2GxmFWZTPHKYVqzIWUV6zv1B4Nfn+tDMlgBLAIqKiiL81SKxpam1g80Vp0K8jo2HTvT0WEkymJKfwS0zRjFrbBZXFGYzdVSG1pBL2CIW7mb2CbrD/bpzjXH3ZXRP21BSUuKR+m6RaOfuHKht5sODx7t/DpxgZ1VDT+vawuFDubIom/uvLWZWaJ5cjbKkPyLyt8fMZgE/BG5z99pI7FMkljW3dbDpUB0fHjzOhoPH2XDwRM9j3dJSk7myKJs/umEis4uyuaIwm5Hpuj1fIqvf4W5mRcAvgS+6+67+lyQSW9ydg8eae87IPzx4nB1HTp+VT8hJ44apecwZl82couFMyc/QEkQZcOEshXweuAHIMbNy4HvAIAB3Xwp8FxgJ/Gvowk6Hu5cMVMEiQevo7GJ7ZQPv7z9G6f5jrN9/vOdW/bTUZK4Ym83XFk1kzrhsZo8dzvC01IArlkQUzmqZxX18/lXgqxGrSCTKnGzrZMOh45TuP876/cf48MDxnicEFWQP5frJOcwdN5w5RcOZOkpn5RIddMVG5AzHm9ooPdAd5O/vO8aWijo6uhwzmJqfwd1zCikpHs5VxSMYkz006HJFzkrhLgnvRHMb68qOsa6slnVltew40gB09yafVZjFQwsncFXxcOYWjSBrmBpoSWxQuEvCqWtu5719tawrO8baslp2HKnHHYYMSuKq4hHcMWs088aPZFZhlp4UJDFL4S5xr6Glnff3HWPt3lrW7atl6+HuMB+cksTcccP55s1TuHriSK4ozCY1RTcJSXxQuEvc6ejsYlP5CdbsPsqa3UfZeOgEnV1OanISs4uy+fpNk7lmwkiuGJutM3OJWwp3iXnuzv7aZt7eXcOa3UdZu7eWhtYOzGBWQRaPLJrAgkk5zCkarjCXhKFwl5hU39LO27uPsiYU6OXHu3uyFGQP5Y4rRnPdpFyunThSa8wlYSncJSa4O7urG3lrRzVv7qjmgwPH6ehyMgancM3EkTy8cALXTc5Vl0SREIW7RK2TbZ2sLTvKmzuqeWtHTU/HxOmjM1mycEL3Lf1F2aSoU6LIxyjcJapU17fw+vYqXt9Wxbt7a2nr6GJYajLXTcrh0RsnccPUXEZn6cYhkb4o3CVwe2saeW1rFa9tO8KGgycAGDdyGF+YP44bp+Vx1fjhemizyAVSuMsl19XlbCo/wWvbqnht6xH21jQBMKswi/9yyxRuuWwUk/PSNXcu0g8Kd7kkurqcDYeO8/JHlazcXElVfSspScbVE0by5WuLuXl6vvq0iESQwl0GjLuz4dAJXgkFemVdC6kpSdwwJZfbLh/FjVPz1atFZIAo3CWi3J3NFXW8/FElr3xUScWJk6QmJ7FwSi5/ees0bpqeR8YQBbrIQFO4S0QcOtbMf2ys4JcbKiiraWJQsrFwci7fumUKN8/IJ1OBLnJJKdzlotWdbGfl5kpe+rCC9/cfA2D++BEsuX4Ct80crSkXkQAp3OWCdHY5q3fX8GLpId7YVk1bZxcTc9P4809N5a4rx1A4fFjQJYoICncJU8WJk7xYeogXS8upOHGSEWmpfH5+EXfPKeDygiwtWxSJMgp3Oaf2zi7+c3s1y9cfZNWuGgCum5TDdz49nZun56v3uUgU6zPczewp4A6g2t1nnuVzA/4PcDvQDNzv7h9GulC5dKrqW/jJugMsX3+ImoZW8jMH8+gnJnFvyVjGjtC0i0gsCOfM/WngX4Bnz/H5bcDk0M984N9CvyXGfFR+gqfe3sfLH1XS6c6NU/NYPK+IG6bmqjmXSIzpM9zdfbWZFZ9nyF3As+7uwDozyzaz0e5eGaEaZQB1dHbx6tYq/v2dfZQeOE764BS+dE0xX752HONGpgVdnohcpEjMuRcAh3q9Lw9t+1i4m9kSYAlAUVFRBL5aLlZTawc/fe8AT7+zn8N1LYwbOYzv/d4M7plbqJuMROLAJb2g6u7LgGUAJSUlfim/W7qdbOvkx+v2s3RVGcea2rhmwkj+5q6Z3Dgtj+QkrXgRiReRCPcKYGyv94WhbRJFWto7+cm6AyxdtZejjW1cPzmHP/vkFOYUDQ+6NBEZAJEI9xXAo2a2nO4LqXWab48eHZ1dPP/+QX7w5h5qGlpZMGkkS2+eQknxiKBLE5EBFM5SyOeBG4AcMysHvgcMAnD3pcBKupdB7qF7KeRXBqpYuTBv7z7KYy9vZVdVI/PGj+BfFs9m/oSRQZclIpdAOKtlFvfxuQN/HLGKpN/2H23if6zczuvbqigaMYwnvjiXW2bk6y5SkQSiO1TjyMm2Tn7w5m5+uKaM1OQk/uLWqTywYDxDBukRdSKJRuEeJ9bsruE7L23h4LFm7p5TwLdvnUZe5pCgyxKRgCjcY1xtYyv//ZXtvLShggk5aTz/0NVcM1Hz6iKJTuEeo9ydlzZU8NjL22hq7eBPb5zEH31ikqZgRARQuMekmoZW/utLm3l9WxVzxw3nf919OZPzM4IuS0SiiMI9xvx6cyXf+dUWGls7+M7t03nguvG6s1REPkbhHiPqmtv53oot/GrjYWYWZPJP916ps3UROSeFewxYV1bLN5ZvpKaxla/fNJlHb5zEILXgFZHzULhHsc4u5/++uZsf/Oduikem8dIfXcuswuygyxKRGKBwj1JV9S18Y/lG1pbV8tnZBfztZ2aSPlj/u0QkPEqLKPTbndV864VNNLd18vf3zOKeuYVqHSAiF0ThHkW6upwfvLmbf35jN1PzM3j8vtlMytNFUxG5cAr3KNHQ0s6f/WwTb2yv4u45BfzPz16uG5JE5KIp3KPA3ppGljxbyv7aZr73ezO4/9piTcOISL8o3AP2xrYq/uxnG0lNSeKnX53P1eq3LiIRoHAPiLvz5Joy/u7XO5g5JoulX5xLQfbQoMsSkTihcA9AR2cXf/3/tvKTdQf59KzR/MMfXKH5dRGJKIX7JdbY2sGfPPchb+2s4ZFFE/mLT00lSb1hRCTCFO6X0JG6Fh54ej07qxr4u7svZ/G8oqBLEpE4pXC/RPZUN/KlH71HfUsHT91/FYum5AZdkojEsbC6T5nZrWa208z2mNm3z/J5kZm9ZWYbzOwjM7s98qXGri0Vddz7xFraOrv42cNXK9hFZMD1Ge5mlgw8DtwGzAAWm9mMM4b9N+AFd58NfA7410gXGqveK6tl8bJ1DB2UzIuPXMtlY7KCLklEEkA4Z+7zgD3uXububcBy4K4zxjiQGXqdBRyOXImx660d1XzpqffJyxzMz792DeNz0oIuSUQSRDhz7gXAoV7vy4H5Z4z5a+A1M/sTIA24+Ww7MrMlwBKAoqL4vpj48keH+cbyjUwfncnTX7mKkemDgy5JRBJIpJ74sBh42t0LgduBH5vZx/bt7svcvcTdS3Jz43fe+ZWPKvn68o3MLsrmuYfmK9hF5JILJ9wrgLG93heGtvX2IPACgLuvBYYAOZEoMNb8Zkslf7p8A7PHZvP0V+aRMWRQ0CWJSAIKJ9zXA5PNbLyZpdJ9wXTFGWMOAjcBmNl0usO9JpKFxoJXtx7h0ec2cEVhFk8/MI80PVxDRALSZ7i7ewfwKPAqsJ3uVTFbzewxM7szNOxbwENmtgl4Hrjf3X2gio5Gb2yr4tHnPmRmQRbPPDBPT00SkUCFlUDuvhJYeca27/Z6vQ1YENnSYsdbO6r52k8/YMboTJ59UFMxIhK8SF1QTVjvldXyyE8+YOqoDJ59cD6ZCnYRiQIK937YUlHHV58ppXD4UJ59YD5ZQxXsIhIdFO4XqaW9kwefWU/m0EH8+MH5jEhLDbokEZEeuup3kX7+QTlV9a08/9DVjNFDNkQkyujM/SJ0dnU/RenKsdlcPWFE0OWIiHyMwv0i/GbLEQ7UNvPIogl6kLWIRCWF+wVyd5au2suEnDQ+OWNU0OWIiJyVwv0Crd1by+aKOh5aOIFkPR5PRKKUwv0CLV1dRk76YD47uyDoUkREzknhfgG2Hq5j9a4aHriumCGDkoMuR0TknBTuF2DZ6jLSB6dw3/xxQZciInJeCvcwHTrWzMsfVfL5+UW6E1VEop7CPUw/ensfSQYPLBgfdCkiIn1SuIfhWFMby9cf5DNXFjAqa0jQ5YiI9EnhHoZn1+6npb2LJQsnBF2KiEhYFO59ONnWyTPv7ufm6XlMzs8IuhwRkbAo3PvwQukhjje388iiiUGXIiISNoX7eXR0dvHkmjLmjhtOSbEahIlI7FC4n8fKLUcoP35SZ+0iEnMU7ufg7iz97V4m5qZx07S8oMsREbkgYYW7md1qZjvNbI+ZffscY+41s21mttXMnotsmZfe23uOsq2ynocXTiRJDcJEJMb0+SQmM0sGHgc+CZQD681shbtv6zVmMvBXwAJ3P25mMX+qu3TVXvIzB3PX7DFBlyIicsHCOXOfB+xx9zJ3bwOWA3edMeYh4HF3Pw7g7tWRLfPS2lxexzt7anlgwXgGp6hBmIjEnnDCvQA41Ot9eWhbb1OAKWb2jpmtM7Nbz7YjM1tiZqVmVlpTU3NxFV8CT6zeS8bgFD4/vyjoUkRELkqkLqimAJOBG4DFwJNmln3mIHdf5u4l7l6Sm5sboa+OrAO1TazcXMl9V48jY4gahIlIbAon3CuAsb3eF4a29VYOrHD3dnffB+yiO+xjzg/X7CMlKYkHFhQHXYqIyEULJ9zXA5PNbLyZpQKfA1acMeZXdJ+1Y2Y5dE/TlEWwzkviaGMrL5Qe4u45BeRlqkGYiMSuPsPd3TuAR4FXge3AC+6+1cweM7M7Q8NeBWrNbBvwFvDn7l47UEUPlGff3U9bZxcPqUGYiMS4PpdCArj7SmDlGdu+2+u1A98M/cSkptYOnll7gFtm5DMxNz3ockRE+kV3qIb8bP0h6k6287BaDYhIHFC4A+2dXfzo7X3MKx7BnKLhQZcjItJvCnfg5Y8OU3HiJI/coLl2EYkPCR/u7s4Tq8qYkp/ODVNivmuCiAigcOe3u2rYcaRBDcJEJK4kfLg/sWovo7OG8HtXqEGYiMSPhA73jYdOsK7sGA9eN57UlIQ+FCISZxI60Z5YtZfMISl8bp4ahIlIfEnYcN93tInfbD3CF68ZR/rgsO7lEhGJGQkb7stWlzEoOYn7rx0fdCkiIhGXkOFe3dDCLz4s5565heRmDA66HBGRiEvIcH/m3f20d3bx0PW6aUlE4lPChXtjawc/XnuA22aOYnxOWtDliIgMiIQL9+XvH6S+pYOHF6pBmIjEr4QK97aOLn64Zh/XTBjJFWM/9hRAEZG4kVDhvmLTYY7Ut/DwIs21i0h8S5hw7+pynli1l2mjMlg0JTofzi0iEikJE+5v7axmd3UjjyyaiJkahIlIfEuYcH9iVRkF2UP59KzRQZciIjLgEiLcPzhwnPf3H+Or149nUHJC/JFFJMGFlXRmdquZ7TSzPWb27fOM+30zczMriVyJ/ffEqr1kDxvEH141NuhSREQuiT7D3cySgceB24AZwGIzm3GWcRnA14H3Il1kf+ypbuT17VV86epxDEtVgzARSQzhnLnPA/a4e5m7twHLgbvOMu5vge8DLRGsr9+eXF1GanISX762OOhSREQumXDCvQA41Ot9eWhbDzObA4x191fOtyMzW2JmpWZWWlNTc8HFXqiq+hZe2lDBvSVjGZmuBmEikjj6fXXRzJKAfwS+1ddYd1/m7iXuXpKbO/BrzZ96Zx8dXWoQJiKJJ5xwrwB6X4ksDG07JQOYCfzWzPYDVwMrgr6oWt/SznPrDnL75aMpGjksyFJERC65cMJ9PTDZzMabWSrwOWDFqQ/dvc7dc9y92N2LgXXAne5eOiAVh+m59w7S0NrBI4vUIExEEk+f4e7uHcCjwKvAduAFd99qZo+Z2Z0DXeDFaO3o5Km393HdpBxmFmQFXY6IyCUX1tpAd18JrDxj23fPMfaG/pfVP/+x4TDVDa38w71XBF2KiEgg4u52za4uZ+nqvVw2JpPrJuUEXY6ISCDiLtzf2F5FWU0TD6tBmIgksLgKd3dn6aq9jB0xlNtnjgq6HBGRwMRVuJceOM6HB0/w0PUTSFGDMBFJYHGVgE+s2suItFT+YK4ahIlIYoubcN9V1cAb26v58jXFDE1NDrocEZFAxU24L1tdxtBByXzpmnFBlyIiEri4CPfKupP8x8YK/vCqsQxPSw26HBGRwMVFuD/19j66HB68bnzQpYiIRIWYD/e65naee+8gd8wazdgRahAmIgJxEO4/ee8ATW2dPLxQDcJERE6J6XBvae/k39/Zz8IpucwYkxl0OSIiUSOmw/2XH1ZwtLGVRxbpYRwiIr3FbLh3djlPriljVmEW10wYGXQ5IiJRJWbD/bWtR9h3tImHF6pBmIjImWIy3E81CBs3chi3qkGYiMjHxGS4v7fvGJvK63jo+gkkJ+msXUTkTDEZ7ktX7SUnPZV75hYGXYqISFSKuXDfXlnPb3fWcP+1xQwZpAZhIiJnE3Phvmx1GcNSk/nC1WoQJiJyLmGFu5ndamY7zWyPmX37LJ9/08y2mdlHZvafZjYgyVt+vJkVmw6zeF4R2cPUIExE5Fz6DHczSwYeB24DZgCLzWzGGcM2ACXuPgv4OfC/I10owFNv78dQgzARkb6Ec+Y+D9jj7mXu3gYsB+7qPcDd33L35tDbdUDEr3SeaG5j+fqD3HnlGMZkD4307kVE4ko44V4AHOr1vjy07VweBH59tg/MbImZlZpZaU1NTfhVAj9ee4Dmtk6WLFSrARGRvkT0gqqZfQEoAf7+bJ+7+zJ3L3H3ktzc3LD329LeydPv7ucTU3OZNkoNwkRE+pISxpgKoPcTpwtD236Hmd0MfAdY5O6tkSmv24sflFPb1MYji9TWV0QkHOGcua8HJpvZeDNLBT4HrOg9wMxmA08Ad7p7dSQL7OxynlxdxpVjs5k3fkQkdy0iErf6DHd37wAeBV4FtgMvuPtWM3vMzO4MDft7IB140cw2mtmKc+zugv16SyUHjzXzyCI1CBMRCVc40zK4+0pg5Rnbvtvr9c0RruvUfnliVRkTctL45Iz8gfgKEZG4FNV3qL67t5bNFXU8tFANwkRELkRUh/vSVXvJzRjMZ2efb+WliIicKWrDfUtFHWt2H+UrC9QgTETkQkVtuC9bXUb64BTum68GYSIiFyoqw/3QsWZe2VzJ5+cXkTV0UNDliIjEnKgM9x+uKSPJ4IEFahAmInIxoi7cjzW18bPSQ3zmygJGZQ0JuhwRkZgUdeH+zLv7aWnv4uFFahAmInKxoircm9s6eHbtfm6ens+kvIygyxERiVlRFe4vlpZzvLmdR3TWLiLSL1ET7h2dXTy5poy544ZTUqwGYSIi/RE14f7K5krKj59UW18RkQiIinB3d5auKmNSXjo3TcsLuhwRkZgXFeG+ZvdRtlfWs2ThBJLUIExEpN+iItyfWL2X/MzB3HXlmKBLERGJC4GH++byOt7ZU8sDC8YzOEUNwkREIiHwcF+6ei8Zg1P4/PyioEsREYkbgYb7gdomfr25kvuuHkfGEDUIExGJlEDD/ck1ZaQkJfHAguIgyxARiTuBhXtHl/NiaTl3zykgL1MNwkREIimscDezW81sp5ntMbNvn+XzwWb2s9Dn75lZcV/7rG1spa2zi4cWqtWAiEik9RnuZpYMPA7cBswAFpvZjDOGPQgcd/dJwD8B3+9rv7WNbdwyI5+JuekXXrWIiJxXOGfu84A97l7m7m3AcuCuM8bcBTwTev1z4CYzO+/dSJ3uPKxWAyIiAyKccC8ADvV6Xx7adtYx7t4B1AEjz9yRmS0xs1IzKx2a1MWcouEXV7WIiJzXJb2g6u7L3L3E3UsmjVawi4gMlHDCvQIY2+t9YWjbWceYWQqQBdRGokAREblw4YT7emCymY03s1Tgc8CKM8asAL4cen0P8Ka7e+TKFBGRC5HS1wB37zCzR4FXgWTgKXffamaPAaXuvgL4EfBjM9sDHKP7HwAREQlIn+EO4O4rgZVnbPtur9ctwB9EtjQREblYgTcOExGRyFO4i4jEIYW7iEgcUriLiMQhC2rFopk1ADsD+fLokwMcDbqIKKFjcZqOxWk6FqdNdfeMvgaFtVpmgOx095IAvz9qmFmpjkU3HYvTdCxO07E4zcxKwxmnaRkRkTikcBcRiUNBhvuyAL872uhYnKZjcZqOxWk6FqeFdSwCu6AqIiIDR9MyIiJxSOEuIhKHAgn3vh64nSjM7CkzqzazLUHXEjQzG2tmb5nZNjPbamZfD7qmoJjZEDN738w2hY7F3wRdU5DMLNnMNpjZy0HXEjQz229mm81sY19LIi/5nHvogdu7gE/S/ci+9cBid992SQuJAma2EGgEnnX3mUHXEyQzGw2MdvcPzSwD+AD4TIL+vTAgzd0bzWwQ8DbwdXdfF3BpgTCzbwIlQKa73xF0PUEys/1Aibv3eUNXEGfu4TxwOyG4+2q6+98nPHevdPcPQ68bgO18/Fm9CcG7NYbeDgr9JOTKBzMrBD4N/DDoWmJNEOEezgO3JYGZWTEwG3gv2EqCE5qK2AhUA6+7e6Iei38G/gLoCrqQKOHAa2b2gZktOd9AXVCVqGJm6cAvgG+4e33Q9QTF3Tvd/Uq6n1k8z8wSbtrOzO4Aqt39g6BriSLXufsc4Dbgj0NTu2cVRLiH88BtSUCh+eVfAD91918GXU80cPcTwFvArUHXEoAFwJ2heeblwG4/FKsAAADhSURBVI1m9pNgSwqWu1eEflcDL9E9zX1WQYR7OA/clgQTuoj4I2C7u/9j0PUEycxyzSw79Hoo3YsPdgRb1aXn7n/l7oXuXkx3Trzp7l8IuKzAmFlaaLEBZpYG3AKcc6XdJQ93d+8ATj1wezvwgrtvvdR1RAMzex5YC0w1s3IzezDomgK0APgi3WdnG0M/twddVEBGA2+Z2Ud0nwy97u4JvwxQyAfeNrNNwPvAK+7+m3MNVvsBEZE4pAuqIiJxSOEuIhKHFO4iInFI4S4iEocU7iIicUjhLiIShxTuIiJx6P8DQVzuRuOCgoUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3SV9Z3v8fc3CeGSKyQhQEII94sICBHEC1hrrVpnbD1Op+horRekU2c6l3OmPdN1Ts/MnHPmzJo15/T0tDOIllHbKq1TbR2ltTpawCpKlPsdwiWBkIQAuUJu+3v+yDZkMJAN7PDsy+e1VhZ59vNj769b1mf91u/5Pd/H3B0REUksKUEXICIi0adwFxFJQAp3EZEEpHAXEUlACncRkQSUFtQH5+fne2lpaVAfLyISlz788MPj7l7Q37jAwr20tJTy8vKgPl5EJC6Z2aFIxvW7LGNmK82s1sy29TPuWjPrMrN7Iy1SREQGRiRr7s8At19ogJmlAn8HvB6FmkRE5DL1G+7uvhY40c+wPwJ+BtRGoygREbk8l71bxsyKgC8AyyMYu9TMys2svK6u7nI/WkREziMaWyG/A3zD3bv6G+juK9y9zN3LCgr6vdgrIiKXKBq7ZcqAVWYGkA/caWad7v7zKLy3iIhcgssOd3cf//HvZvYM8KqCXUQkWP2Gu5m9ANwM5JtZFfBtYBCAu/e7zi4iIpcuFHKONpxmX20z++taIv57/Ya7uy+J9M3c/aGIP1lERHp0dIU4VN/Cvtrmsz91zVTUtdDa3u8lzU8I7A5VEZFkdLq9i/11ZwN8b20T+2qbOVTfSmfo7MOTxuQMYeLITH7/2hFMGpnJpIJMJo3MJP/vIvschbuIyABobuv89wFe08ze2mYqT7by8QPwUlOMcXnDmFSQyWevGtUd4iMzmViQScbgy4tnhbuIyGVoaO1gX10Te8Phvbe2mX01TRxtONMzJj01hQkFGcwqzuE/zC1mcmF3iJfmZZCeNjDNeRXuIiIRqG9u+3fh/fHvdU1tPWOGDEph0shM5o8fweTCLCaNzGTyyExKRgwjLfXKdlhXuIuIhLk7tU1t4Vl4d4B/vLRyoqW9Z1xGeiqTCrNYPKWAySMzmVyYyeSRWRTlDiUlxQL8LzhL4S4iSel4cxt7jjWxu6aJPTXN7KlpYk9NE01nOnvGZA9JY0phFp+9qpBJI7OYHF4TH50zhPCNmzFL4S4iCa3hdAd7a8IhHg7zvTXN1PeaiecOG8SUwix+d/YYphSGQ7wwk4LMwTEf4uejcBeRhNDa3r07Zfex7hn47ppm9hxr4ljj2QubGempTC7M4tbphUwZlcXUwiymjIrvED8fhbuIxJW2zi4q6lp6llF2H+teUum9xTA9LYVJBZksnJjHlMIspo7KZEphFmNyYmdNfKAp3EUkJoVCTtXJ0+w81siu6o9n400cON5CV/hmn9QUY3x+BlcXdW8x/DjEg9idEmsU7iISuMYzHew+1sSu6kZ2hv/cfayJll633ZeMGNZzcbN7Np7F+PwMBqelBlh57FK4i8gV09kV4mB9Czurm9h1rDvAd1Y3ceTU6Z4x2UPSmDY6m3vnFTNtdDbTRmUxpTDrsu/YTDb6tkRkQNQ3t7HrWBM7qxvZdaw7zPfUNNPeGQK6l1QmFmQwd9xw7ltQwvTRWUwblR0X2wzjgcJdRC5LZ1eIA8db2H60kR3VjT1h3vvOzfzMwUwfncWXF45j2qhspo3OYmJBJkMGaUlloCjcRSRiLW2d7DrWxI6jDeyobmTH0e4gbwvPxtNTU5gyKpNFkwt6ZuJTR2VRkDU44MqTj8JdRPpU23SGHeHZ+Pajjew82siB+pae7YY5Qwdx1ZhsHrhuHDPGZDNjTDYTCzIZlOS7VGKFwl0kyXWFnIP1LT1BvuNod5gfbz67rFI8fChXjcnm7jlFPUE+RmvjMU3hLpJEOrtC7KtrZmtVA9uPNrL1SAM7qxt7nvSTlmJMLszi5qkFzBjdHeLTR2eTM3RQwJXLxVK4iySojq4Q+2qb2XqkgW1HGnqC/ExH9/r4sPRUrhqTzRfLxnJVeDY+aWSm9o0nCIW7SALo6Aqxp6apJ8S3HmlkV3Vjz4XOjPRUrirK4f4F45hZlM3VRTmMz88kNUluxU9G/Ya7ma0E7gJq3X1mH+fvB74RPmwGvurum6NapYj06OwKsaemmS1Vp3pm5TuPNfXsH88cnNZzofPq4hxmFuUwPi8jaXqqSLdIZu7PAN8DnjvP+QPAYnc/aWZ3ACuABdEpTyS5uTuVJ06zqeoUmytP9QT6x0srWUPSmDkmh4euL2VmUQ5XF+UwbsQwBbn0H+7uvtbMSi9w/t1eh+uB4ssvSyQ5HW9uY3PlKTZXNfSE+cnWDgAGp6UwsyiHJfNLmDM2l1nFuZTmDdOOFelTtNfcHwF+eb6TZrYUWApQUlIS5Y8WiS8tbZ1sPfJxiDewqfJUT4+VFIMphVncNmMUs8bmMLs4l6mjsrSHXCIWtXA3s0/RHe43nm+Mu6+ge9mGsrIyj9Zni8Q6d+dQfSsfHT7Z/XPoFLtrmnpa1xYPH8qcklweur6UWeF1cjXKkssRlX89ZjYLeBq4w93ro/GeIvGstb2TzZUNfHT4JBsPn2Tj4VM9j3XLSE9lTkkuf3jzRK4pyWV2cS55mbo9X6LrssPdzEqAl4AH3H3P5ZckEl/cncMnWntm5B8dPsmuY2dn5RPyM7h56kjmjstlbslwphRmaQuiDLhItkK+ANwM5JtZFfBtYBCAuy8H/iuQB/xj+MJOp7uXDVTBIkHr7Aqxs7qJDw6eoPzgCTYcPNlzq35Geiqzx+by1cUTmTsul2vGDmd4RnrAFUsyimS3zJJ+zj8KPBq1ikRizOn2LjZWnqT84Ek2HDzBR4dO9jwhqCh3KDdNzmfeuOHMLRnO1FGalUts0BUbkXOcbGmn/FB3kH9w4ATbjjTQGXLMYGphFvfMLaasdDjXlo5gTO7QoMsV6ZPCXZLeqdZ21lecYH1FPesr6tl1rAno7k0+qziHxxZN4NrS4cwrGUHOMDXQkvigcJek09DawfsH6llfcYL3KurZdawRdxgyKIVrS0dw16zRzB+fx6ziHD0pSOKWwl0SXtOZDj44cIL39tez/kA92492h/ngtBTmjRvOn906hesm5jG7OJf0NN0kJIlB4S4Jp7MrxOaqU6zbe5x1e4+zqfIUXSEnPTWFa0py+fqnJ7NwQh6zx+ZqZi4JS+Eucc/dOVjfyjt761i39zjv7a+nqa0TM5hVlMOyxRO4YVI+c0uGK8wlaSjcJS41nungnb3HWRcO9KqT3T1ZinKHctfs0dw4qYDrJ+Zpj7kkLYW7xAV3Z29tM2/vquWtXbV8eOgknSEna3AaCyfm8fiiCdw4uUBdEkXCFO4Ss063d/FexXHe2lXL27vqejomTh+dzdJFE7pv6S/JJU2dEkU+QeEuMaW28Qxv7KzhjR01vLu/nvbOEMPSU7lxUj5P3DKJm6cWMDpHNw6J9EfhLoHbX9fMr7fX8Osdx9h4+BQA4/KG8QcLxnHLtJFcO364HtoscpEU7nLFhULO5qpT/HpHDb/efoz9dS0AzCrO4T/eNoXbrhrF5JGZWjsXuQwKd7kiQiFnY+VJXt1Szeqt1dQ0tpGWYlw3IY8vX1/KrdML1adFJIoU7jJg3J2Nlad4LRzo1Q1nSE9L4eYpBdxx9ShumVqoXi0iA0ThLlHl7mw90sCrW6p5bUs1R06dJj01hUVTCvjG7dP49PSRZA1RoIsMNIW7REXliVZ+sekIL208QkVdC4NSjUWTC/jz26Zw64xCshXoIleUwl0uWcPpDlZvreblj47wwcETACwYP4KlN03gjpmjteQiEiCFu1yUrpCzdm8dL5ZX8uaOWtq7QkwsyOA/fXYqd88ZQ/HwYUGXKCIo3CVCR06d5sXySl4sr+LIqdOMyEjnvgUl3DO3iKuLcrRtUSTGKNzlvDq6QvzbzlpWbTjMmj11ANw4KZ9vfW46t04vVO9zkRjWb7ib2UrgLqDW3Wf2cd6A/wvcCbQCD7n7R9EuVK6cmsYz/Gj9IVZtqKSuqY3C7ME88alJfLFsLGNHaNlFJB5EMnN/Bvge8Nx5zt8BTA7/LAD+KfynxJktVadY+c4BXt1STZc7t0wdyZL5Jdw8tUDNuUTiTL/h7u5rzaz0AkPuBp5zdwfWm1mumY129+oo1SgDqLMrxOvba/jn3x6g/NBJMgen8eDCUr58/TjG5WUEXZ6IXKJorLkXAZW9jqvCr30i3M1sKbAUoKSkJAofLZeqpa2TH79/iGd+e5CjDWcYlzeMb//ODO6dV6ybjEQSQDTCva9tEt7XQHdfAawAKCsr63OMDKzT7V38cP1Blq+p4ERLOwsn5PFXd8/klmkjSU3RjheRRBGNcK8CxvY6LgaORuF9JYrOdHTxo/WHWL5mP8eb27lpcj5/+pkpzC0ZHnRpIjIAohHurwBPmNkqui+kNmi9PXZ0doV44YPDfPetfdQ1tXHDpDyW3zqFstIRQZcmIgMokq2QLwA3A/lmVgV8GxgE4O7LgdV0b4PcR/dWyK8MVLFycd7Ze5y/fnU7e2qamT9+BN9bcg0LJuQFXZaIXAGR7JZZ0s95B74WtYrksh083sL/WL2TN3bUUDJiGE8+MI/bZhTqLlKRJKI7VBPI6fYuvvvWXp5eV0F6agp/cftUHr5hPEMG6RF1IslG4Z4g1u2t41svb+PwiVbumVvEN2+fxsjsIUGXJSIBUbjHufrmNv77azt5eeMRJuRn8MJj17FwotbVRZKdwj1OuTsvbzzCX7+6g5a2Tv74lkn84acmaQlGRACFe1yqa2rjL1/eyhs7apg3bjj/656rmVyYFXRZIhJDFO5x5pdbq/nWz7fR3NbJt+6czsM3jtedpSLyCQr3ONHQ2sG3X9nGzzcdZWZRNv/ni3M0WxeR81K4x4H1FfX8yapN1DW38fVPT+aJWyYxSC14ReQCFO4xrCvk/L+39vLdf9tLaV4GL//h9cwqzg26LBGJAwr3GFXTeIY/WbWJ9yrq+cI1RfzN52eSOVj/u0QkMkqLGPSb3bX8+U8309rexd/fO4t75xWrdYCIXBSFewwJhZzvvrWX77y5l6mFWXz//muYNFIXTUXk4incY0TTmQ7+9CebeXNnDffMLeJ/fuFq3ZAkIpdM4R4D9tc1s/S5cg7Wt/Lt35nBQ9eXahlGRC6Lwj1gb+6o4U9/son0tBR+/OgCrlO/dRGJAoV7QNydp9ZV8Le/3MXMMTksf2AeRblDgy5LRBKEwj0AnV0h/tu/budH6w/zuVmj+Yffm631dRGJKoX7Fdbc1skfPf8Rb++uY9niifzFZ6eSot4wIhJlCvcr6FjDGR5+ZgO7a5r423uuZsn8kqBLEpEEpXC/QvbVNvPgD96n8UwnKx+6lsVTCoIuSUQSWETdp8zsdjPbbWb7zOybfZzPMbN/NbPNZrbdzL4S/VLj17YjDXzxyfdo7wrxk8evU7CLyIDrN9zNLBX4PnAHMANYYmYzzhn2NWCHu88Gbgb+wczSo1xrXHq/op4lK9YzdFAqLy67nqvG5ARdkogkgUhm7vOBfe5e4e7twCrg7nPGOJBl3XfeZAIngM6oVhqH3t5Vy4MrP2Bk9mD+5asLGZ+fEXRJIpIkIgn3IqCy13FV+LXevgdMB44CW4Gvu3vo3Dcys6VmVm5m5XV1dZdYcnx4dctRHnuunCmFWfz08YWMztEedhG5ciIJ97726fk5x58FNgFjgDnA98ws+xN/yX2Fu5e5e1lBQeKuO7+2pZqvr9rENSW5PP/YAvIyBwddkogkmUjCvQoY2+u4mO4Zem9fAV7ybvuAA8C06JQYX361rZo/XrWRa8bm8sxX5pM1ZFDQJYlIEook3DcAk81sfPgi6ZeAV84Zcxj4NICZFQJTgYpoFhoPXt9+jCee38js4hyeeXg+GXq4hogEpN/0cfdOM3sCeB1IBVa6+3YzWxY+vxz4G+AZM9tK9zLON9z9+ADWHXPe3FHDE89/xMyiHJ59eL6emiQigYoogdx9NbD6nNeW9/r9KHBbdEuLH2/vquWrP/6QGaOzee4RLcWISPAiuolJzu/9inqW/ehDpo7K4rlHFpCtYBeRGKBwvwzbjjTw6LPlFA8fynMPLyBnqIJdRGKDwv0Sneno4pFnN5A9dBA/fGQBIzJ0Q66IxA5d9btE//JhFTWNbbzw2HWM0UM2RCTGaOZ+CbpC3U9RmjM2l+smjAi6HBGRT1C4X4JfbTvGofpWli2eoAdZi0hMUrhfJHdn+Zr9TMjP4DMzRgVdjohInxTuF+m9/fVsPdLAY4smkKrH44lIjFK4X6TlayvIzxzMF645tzGmiEjsULhfhO1HG1i7p46HbyxlyKDUoMsRETkvhftFWLG2gszBady/YFzQpYiIXJDCPUKVJ1p5dUs19y0o0Z2oIhLzFO4R+sE7B0gxePiG8UGXIiLSL4V7BE60tLNqw2E+P6eIUTlDgi5HRKRfCvcIPPfeQc50hFi6aELQpYiIRETh3o/T7V08++5Bbp0+ksmFWUGXIyISEYV7P35aXsnJ1g6WLZ4YdCkiIhFTuF9AZ1eIp9ZVMG/ccMpK1SBMROKHwv0CVm87RtXJ05q1i0jcUbifh7uz/Df7mViQwaenjQy6HBGRixJRuJvZ7Wa228z2mdk3zzPmZjPbZGbbzWxNdMu88t7Zd5wd1Y08vmgiKWoQJiJxpt8nMZlZKvB94DNAFbDBzF5x9x29xuQC/wjc7u6HzSzup7rL1+ynMHswd18zJuhSREQuWiQz9/nAPnevcPd2YBVw9zlj7gNecvfDAO5eG90yr6ytVQ38dl89D98wnsFpahAmIvEnknAvAip7HVeFX+ttCjDczH5jZh+a2YN9vZGZLTWzcjMrr6uru7SKr4An1+4na3Aa9y0oCboUEZFLEkm497Xg7OccpwHzgM8BnwX+i5lN+cRfcl/h7mXuXlZQUHDRxV4Jh+pbWL21mvuvG0fWEDUIE5H41O+aO90z9bG9jouBo32MOe7uLUCLma0FZgN7olLlFfT0ugOkpaTw8A2lQZciInLJIpm5bwAmm9l4M0sHvgS8cs6YXwA3mVmamQ0DFgA7o1vqwDve3MZPyyu5Z24RI7PVIExE4le/M3d37zSzJ4DXgVRgpbtvN7Nl4fPL3X2nmf0K2AKEgKfdfdtAFj4Qnnv3IO1dIR5TgzARiXORLMvg7quB1ee8tvyc478H/j56pV1ZLW2dPPveIW6bUcjEgsygyxERuSy6QzXsJxsqaTjdweNqNSAiCUDhDnR0hfjBOweYXzqCuSXDgy5HROSyKdyBV7cc5cip0yy7WWvtIpIYkj7c3Z0n11QwpTCTm6fEfdcEERFA4c5v9tSx61iTGoSJSEJJ+nB/cs1+RucM4Xdmq0GYiCSOpA73TZWnWF9xgkduHE96WlJ/FSKSYJI60Z5cs5/sIWl8ab4ahIlIYknacD9wvIVfbT/GAwvHkTk4onu5RETiRtKG+4q1FQxKTeGh68cHXYqISNQlZbjXNp3hZx9Vce+8YgqyBgddjohI1CVluD/77kE6ukI8dpNuWhKRxJR04d7c1skP3zvEHTNHMT4/I+hyREQGRNKF+6oPDtN4ppPHF6lBmIgkrqQK9/bOEE+vO8DCCXnMHpsbdDkiIgMmqcL9lc1HOdZ4hscXa61dRBJb0oR7KOQ8uWY/00ZlsXhKbD6cW0QkWpIm3N/eXcve2maWLZ6ImRqEiUhiS5pwf3JNBUW5Q/ncrNFBlyIiMuCSItw/PHSSDw6e4NGbxjMoNSn+k0UkyUWUdGZ2u5ntNrN9ZvbNC4y71sy6zOze6JV4+Z5cs5/cYYP4/WvHBl2KiMgV0W+4m1kq8H3gDmAGsMTMZpxn3N8Br0e7yMuxr7aZN3bW8OB14xiWrgZhIpIcIpm5zwf2uXuFu7cDq4C7+xj3R8DPgNoo1nfZnlpbQXpqCl++vjToUkRErphIwr0IqOx1XBV+rYeZFQFfAJZf6I3MbKmZlZtZeV1d3cXWetFqGs/w8sYjfLFsLHmZahAmIskjknDva9+gn3P8HeAb7t51oTdy9xXuXubuZQUFA7/XfOVvD9AZUoMwEUk+kSxCVwG9r0QWA0fPGVMGrArvH88H7jSzTnf/eVSqvASNZzp4fv1h7rx6NCV5w4IqQ0QkEJGE+wZgspmNB44AXwLu6z3A3XueeGFmzwCvBhnsAM+/f5imtk6WLVaDMBFJPv2Gu7t3mtkTdO+CSQVWuvt2M1sWPn/BdfYgtHV2sfKdA9w4KZ+ZRTlBlyMicsVFtDfQ3VcDq895rc9Qd/eHLr+sy/OLjUepbWrjH744O+hSREQCkXC3a4ZCzvK1+7lqTDY3TsoPuhwRkUAkXLi/ubOGiroWHleDMBFJYgkV7u7O8jX7GTtiKHfOHBV0OSIigUmocC8/dJKPDp/isZsmkKYGYSKSxBIqAZ9cs58RGen83jw1CBOR5JYw4b6npok3d9by5YWlDE1PDbocEZFAJUy4r1hbwdBBqTy4cFzQpYiIBC4hwr264TS/2HSE3792LMMz0oMuR0QkcAkR7ivfOUDI4ZEbx/c/WEQkCcR9uDe0dvD8+4e5a9Zoxo5QgzAREUiAcP/R+4doae/i8UVqECYi8rG4DvczHV38828PsmhKATPGZAddjohIzIjrcH/poyMcb25j2WI9jENEpLe4DfeukPPUugpmFeewcEJe0OWIiMSUuA33X28/xoHjLTy+SA3CRETOFZfh/nGDsHF5w7hdDcJERD4hLsP9/QMn2FzVwGM3TSA1RbN2EZFzxWW4L1+zn/zMdO6dVxx0KSIiMSnuwn1ndSO/2V3HQ9eXMmSQGoSJiPQl7sJ9xdoKhqWn8gfXqUGYiMj5RBTuZna7me02s31m9s0+zt9vZlvCP++a2YA8mbrqZCuvbD7Kkvkl5A5TgzARkfPpN9zNLBX4PnAHMANYYmYzzhl2AFjs7rOAvwFWRLtQgJXvHMRQgzARkf5EMnOfD+xz9wp3bwdWAXf3HuDu77r7yfDheiDqVzpPtbazasNhfnfOGMbkDo3224uIJJRIwr0IqOx1XBV+7XweAX7Z1wkzW2pm5WZWXldXF3mVwA/fO0RrexdLF6nVgIhIfyIJ9742knufA80+RXe4f6Ov8+6+wt3L3L2soKAg4iLPdHTxzLsH+dTUAqaNUoMwEZH+pEUwpgro/cTpYuDouYPMbBbwNHCHu9dHp7xuL35YRX1LO8sWq62viEgkIpm5bwAmm9l4M0sHvgS80nuAmZUALwEPuPueaBbYFXKeWlvBnLG5zB8/IppvLSKSsPqdubt7p5k9AbwOpAIr3X27mS0Ln18O/FcgD/jHcBOvTncvi0aBv9xWzeETrfzlndPVIExEJEKRLMvg7quB1ee8trzX748Cj0a3tO4GYU+uqWBCfgafmVEY7bcXEUlYMX2H6rv769l6pIHHFqlBmIjIxYjpcF++Zj8FWYP5wjUX2nkpIiLnitlw33akgXV7j/OVG9QgTETkYsVsuK9YW0Hm4DTuX6AGYSIiFysmw73yRCuvba3mvgUl5AwdFHQ5IiJxJybD/el1FaQYPHyDGoSJiFyKmAv3Ey3t/KS8ks/PKWJUzpCgyxERiUsxF+7PvnuQMx0hHl+sBmEiIpcqpsK9tb2T5947yK3TC5k0MivockRE4lZMhfuL5VWcbO1gmWbtIiKXJWbCvbMrxFPrKpg3bjhlpWoQJiJyOWIm3F/bWk3VydNq6ysiEgUxEe7uzvI1FUwamcmnp40MuhwRkbgXE+G+bu9xdlY3snTRBFLUIExE5LLFRLg/uXY/hdmDuXvOmKBLERFJCIGH+9aqBn67r56HbxjP4DQ1CBMRiYbAw3352v1kDU7jvgUlQZciIpIwAg33Q/Ut/HJrNfdfN46sIWoQJiISLYGG+1PrKkhLSeHhG0qDLENEJOEEFu6dIefF8irumVvEyGw1CBMRiaaIwt3Mbjez3Wa2z8y+2cd5M7Pvhs9vMbO5/b1nfXMb7V0hHlukVgMiItHWb7ibWSrwfeAOYAawxMxmnDPsDmBy+Gcp8E/9vW99czu3zShkYkHmRRctIiIXFsnMfT6wz90r3L0dWAXcfc6Yu4HnvNt6INfMRl/oTbvceVytBkREBkQk4V4EVPY6rgq/drFjMLOlZlZuZuVDU0LMLRl+sfWKiEgEIgn3vvoB+CWMwd1XuHuZu5dNGq1gFxEZKJGEexUwttdxMXD0EsaIiMgVEkm4bwAmm9l4M0sHvgS8cs6YV4AHw7tmrgMa3L06yrWKiEiE0vob4O6dZvYE8DqQCqx09+1mtix8fjmwGrgT2Ae0Al8ZuJJFRKQ//YY7gLuvpjvAe7+2vNfvDnwtuqWJiMilCrxxmIiIRJ/CXUQkASncRUQSkMJdRCQBWfe10AA+2KwJ2B3Ih8eefOB40EXECH0XZ+m7OEvfxVlT3T2rv0ER7ZYZILvdvSzAz48ZZlau76Kbvouz9F2cpe/iLDMrj2SclmVERBKQwl1EJAEFGe4rAvzsWKPv4ix9F2fpuzhL38VZEX0XgV1QFRGRgaNlGRGRBKRwFxFJQIGEe38P3E4WZrbSzGrNbFvQtQTNzMaa2dtmttPMtpvZ14OuKShmNsTMPjCzzeHv4q+CrilIZpZqZhvN7NWgawmamR00s61mtqm/LZFXfM09/MDtPcBn6H7IxwZgibvvuKKFxAAzWwQ00/382ZlB1xOk8DN3R7v7R2aWBXwIfD5J/10YkOHuzWY2CHgH+Hr4+cRJx8z+DCgDst39rqDrCZKZHQTK3L3fG7qCmLlH8sDtpODua4ETQdcRC9y92t0/Cv/eBOykj+fwJoPwg+abw4eDwj9JufPBzIqBzwFPB11LvAki3CN6mLYkLzMrBa4B3g+2kuCElyI2AbXAG+6erN/Fd4C/AEJBFxIjHPi1mX1oZksvNDCIcI/oYdqSnMwsE/gZ8Cfu3hh0PUFx9y53n0P384jnm1nSLduZ2V1Arbt/GHQtMeQGd58L3AF8Lby026cgwl0P03tNu4sAAAEDSURBVJY+hdeXfwb82N1fCrqeWODup4DfALcHXEoQbgB+N7zOvAq4xcx+FGxJwXL3o+E/a4GX6V7m7lMQ4R7JA7clyYQvIv4A2Onu/zvoeoJkZgVmlhv+fShwK7Ar2KquPHf/z+5e7O6ldOfEW+7+BwGXFRgzywhvNsDMMoDbgPPutLvi4e7uncDHD9zeCfzU3bdf6TpigZm9ALwHTDWzKjN7JOiaAnQD8ADds7NN4Z87gy4qIKOBt81sC92ToTfcPem3AQqFwDtmthn4AHjN3X91vsFqPyAikoB0h6qISAJSuIuIJCCFu4hIAlK4i4gkIIW7iEgCUriLiCQghbuISAL6/6qvB6G0hebfAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -320,7 +360,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWYUlEQVR4nO3de3CV9Z3H8c83OTm5E1QCIkFBwFt1C2xqrdjV1sug7Uq1M1Ydt2try7ajO27turXbTre1s7Vud9xtXaxlWrfTy0qxt6UtLWqFWl1RggoKSBvwQoCBiCCXACHhu3+ckysJOTnPSZ5fnrxfMxnzPOd3zvnOM/rJz9/v9/wec3cBAJKlKO4CAACFR7gDQAIR7gCQQIQ7ACQQ4Q4ACZSK64vHjRvnU6ZMievrAWBEWr169ZvuXjtQu9jCfcqUKWpoaIjr6wFgRDKz13Npx7AMACQQ4Q4ACUS4A0ACEe4AkECEOwAk0IDhbmYPmdlOM3u5n9fNzL5lZo1mttbMZhe+TADAYOTSc/++pLnHef1KSTOyP/MlfTt6WQCAKAZc5+7uT5rZlOM0mSfpB57ZO3ilmY01s4nuvv14n7tj7yHd9+jGQRUbmnSqSDddcJrGVqTjLgUAeijETUyTJG3pdtyUPXdMuJvZfGV690qfPF33L28swNfHo2Mb/FPGluva2XXxFgMAvQzrHaruvlDSQkmqr6/3hns+MJxfX1BNu1t00b3L1XaUh50ACE8hVstslTS523Fd9tzoQLYDCFAhwn2JpI9mV81cIOntgcbbk8DMJElOugMI0IDDMmb2sKRLJI0zsyZJ/yKpRJLc/UFJSyVdJalRUoukjw1VsSGx7D95BC2AEOWyWuaGAV53SbcWrKIRwmzgNgAQF+5QzZOpY1gGAMJDuOepo+fOsAyAEBHuETGhCiBEhHuemFAFEDLCPV8dwzLxVgEAfSLc82Ri0B1AuAj3PLEUEkDICPc8dY65x1oFAPSNcM9T5/YDpDuAABHuETnpDiBAhHueGJYBEDLCPU/coQogZIR7nthbBkDICPd8sRQSQMAI9zx1DcvQdwcQHsI9T3TcAYSMcI+IjjuAEBHueeIZqgBCRrjniS1/AYSMcM+TseUvgIAR7nkyplQBBIxwzxN3qAIIGeEeEROqAEJEuEdEzx1AiAj3PPEkJgAhI9zz1LlxGF13AAEi3PPEhCqAkBHueWJUBkDICPc8dW0/AADhIdzzxPYDAEJGuEfEOncAISLc88SEKoCQEe55YswdQMgI96jougMIUE7hbmZzzWyjmTWa2V19vH6qmS03sxfMbK2ZXVX4UsPDXaoAQjVguJtZsaQFkq6UdI6kG8zsnF7NvihpsbvPknS9pAcKXWiITAzLAAhTLj338yU1uvtmd2+VtEjSvF5tXNKY7O81krYVrsRwmRmjMgCClEu4T5K0pdtxU/Zcd1+WdJOZNUlaKunv+/ogM5tvZg1m1tDc3JxHueFhKSSAEBVqQvUGSd939zpJV0n6oZkd89nuvtDd6929vra2tkBfHR8T86kAwpRLuG+VNLnbcV32XHe3SFosSe7+jKQySeMKUWDIzBhzBxCmXMJ9laQZZjbVzNLKTJgu6dXmDUmXSpKZna1MuCdj3OU4TIy5AwjTgOHu7m2SbpO0TNIGZVbFrDOzu83s6myzz0r6pJmtkfSwpJt9NGx0zlJIAIFK5dLI3ZcqM1Ha/dyXuv2+XtKcwpYWvsxSyOT/DQMw8nCHalRkO4AAEe4RMKEKIFSEewSZCVXiHUB4CPcIzFjnDiBMhHsE7C0DIFSEewTGtpAAAkW4R8D2AwBCRbhHxDp3ACEi3KNgQhVAoAj3CBhxBxAqwj2CzMM66LoDCA/hHgF3qAIIFeEeAcMyAEJFuEfAM1QBhIpwj4ilkABCRLhHwE1MAEJFuEfAhCqAUBHukTDmDiBMhHsEmX3DSHcA4SHcI2ApJIBQEe4R8LAOAKEi3CMi3AGEiHCPwGSscwcQJMI9AoZlAISKcI+AZ6gCCBXhHgF7ywAIFeEOAAlEuEeQ2X6ArjuA8BDuUZHtAAJEuEfAxmEAQkW4R2DiGaoAwkS4R0DPHUCoCPcIeFgHgFDlFO5mNtfMNppZo5nd1U+b68xsvZmtM7P/KWyZYTJjX0gAYUoN1MDMiiUtkHS5pCZJq8xsibuv79ZmhqTPS5rj7rvNbPxQFRwS7lAFEKpceu7nS2p0983u3ippkaR5vdp8UtICd98tSe6+s7BlhosJVQAhyiXcJ0na0u24KXuuuzMknWFmT5vZSjObW6gCg8aEKoBADTgsM4jPmSHpEkl1kp40s/PcfU/3RmY2X9J8STr11FML9NXx4Sl7AEKVS899q6TJ3Y7rsue6a5K0xN2PuPurkv6kTNj34O4L3b3e3etra2vzrTkYZuznDiBMuYT7KkkzzGyqmaUlXS9pSa82v1Sm1y4zG6fMMM3mAtYZJJZCAgjVgOHu7m2SbpO0TNIGSYvdfZ2Z3W1mV2ebLZO0y8zWS1ou6U533zVURYeClZAAQpXTmLu7L5W0tNe5L3X73SXdkf0ZVei5AwgRd6hGwDNUAYSKcI+AZ6gCCBXhHhHZDiBEhHsEPEMVQKgI9wgyi2VIdwDhIdwjYCkkgFAR7hExLAMgRIR7BDyJCUCoCPcITKad+w7FXQYAHKNQu0KOSi2tbdrUfECH29pVmiqOuxwA6ETPPYJLz54gSWo53B5zJQDQE+EewdRxlZKkw21HY64EAHoi3CMoTWUu3+E2eu4AwkK4R9Axzk7PHUBoCPcIOnvuRwh3AGEh3CMoLclcvkMMywAIDOEeQVlJdliGnjuAwBDuETChCiBUhHsETKgCCBV3qEbQ0XO//4lGLW7Y0nn+6neeomtn18VVFgAQ7lFMHFumS88arzf3H9buA62SpE3NB9TS2k64A4gV4R5BaapY37v5XT3Offz7q9S873BMFQFABmPuBVaeLtaB1ra4ywAwyhHuBVaZLmYjMQCxI9wLrCKdUgs9dwAxI9wLrCJdrJbWdjnP3wMQIyZUC6wiXay2o65fvrhVxUWZv50lRaZLzhyv8jQP9AAwPAj3AptYUy5J+sxP1vQ4/7VrztON7z41jpIAjEKEe4FdO3uS6qecoCPtmWGZ1rajuupbf9Seg60xVwZgNCHcC8zMdNpJlZ3H7q4i41F8AIYXE6pDzMxUmU6ppZVwBzB8CPdhUFFazPJIAMOKcB8GlemUDtBzBzCMGHMfBuXpYu0+0Kqdew91nqssTamylMsPYGjklC5mNlfSNyUVS/quu3+9n3YflvRTSe9y94aCVTnC1ZSX6KnGN3X+137fea68pFjPfuFSjSkribEyAEk1YLibWbGkBZIul9QkaZWZLXH39b3aVUu6XdKzQ1HoSPaVq9+h5157q/P4paa3tWjVFjXvO0y4AxgSufTcz5fU6O6bJcnMFkmaJ2l9r3ZflXSvpDsLWmECzJhQrRkTqjuPH6/eoUWrtujAYSZZAQyNXCZUJ0na0u24KXuuk5nNljTZ3X9zvA8ys/lm1mBmDc3NzYMuNimqyjJ/U/cfItwBDI3Iq2XMrEjSfZI+O1Bbd1/o7vXuXl9bWxv1q0esquxE6n567gCGSC7hvlXS5G7HddlzHaolnStphZm9JukCSUvMrL5QRSZNJeEOYIjlMua+StIMM5uqTKhfL+nGjhfd/W1J4zqOzWyFpH9ktUz/Onru9z/RqJ+s6hrxuuIdJ+uWi6bGVRaABBmw5+7ubZJuk7RM0gZJi919nZndbWZXD3WBSXRSZVrXzp6k8dWlnef+vHO/HmnYcpx3AUDuclrn7u5LJS3tde5L/bS9JHpZyVZUZLrvupk9zt2x+EU9u/mtft4BAIPD9gOBqC5NMQYPoGAI90BUlWXCncfzASgEwj0QVaUlaj/qOnTkaNylAEgAdq4KRMeNTZ/72VqVprr+5l40Y5zmzZzU39sAoE+EeyBm1o3VlJMq1NBtD5q3Wlr1/Bu7CXcAg0a4B+K8uhqtuPN9Pc597qdrtXzjzpgqAjCSMeYesDHlKe09dCTuMgCMQIR7wKrLSnToyFEdaWeSFcDgEO4Bq85Osu5j90gAg8SYe8BqyjMP8rjga7+XrOv8FedM0H/dODumqgCMBIR7wC49a4Juv3SGDrd1Dcus2LhTz7++O8aqAIwEhHvAaipK9JnLz+hxrrXtqBazwRiAATDmPsKMKc9sU9DGJCuA4yDcR5iOcXgmWQEcD8MyI8yYsky43/XztapIp7qdT+nzV52tspLiuEoDEBDCfYR55+QanTGhShu27+s8d/BIu5r3Hda8WZM0+9QTYqwOQCgI9xFm+vhqPfqZi3ucW/36bn342//HUA2AToy5J0BNeeZv9N6DbFUAIINwT4Dq7Dg8+9AA6MCwTAJ0TLK+sn2fVve6wWnyieUaX10WR1kAYkS4J0BZSZGqy1L64crX9cOVr/d4bfr4Kj1+x8X9vBNAUhHuCWBm+uWtc9S0+2CP8z9a+bqee/Wtft4FIMkI94SYVlulabVVPc49s2mXVvCwD2BUYkI1wSrTxTrS7mptY6sCYLQh3BOsojTzP2YHW9tjrgTAcCPcE6windmKoOUINzcBow3hnmCd4U7PHRh1mFBNsI6NxW798fOdQS9lVtfc+r5pev9ZE+IqDcAQo+eeYLNOHasrzpmg2upSVZamOn9e2vq2Hlu/I+7yAAwheu4JNq6qVAs/Wn/M+ff9+wodOMxQDZBk9NxHoYp0sVpamWQFkoxwH4Uq0yl67kDCEe6jUEUpPXcg6Qj3UagyndIBlkcCiZbThKqZzZX0TUnFkr7r7l/v9fodkj4hqU1Ss6SPu/vrx3wQglCRLta2PQf12cVrjnnt3Elj9LE5U2OoCkAhDRjuZlYsaYGkyyU1SVplZkvcfX23Zi9Iqnf3FjP7tKR/k/SRoSgY0V04/SQ9s3mXVm7e1eP83kNH9Ks123TzhVNkZjFVB6AQcum5ny+p0d03S5KZLZI0T1JnuLv78m7tV0q6qZBForCumVWna2bVHXP+O3/YpHt++4oOtLarqpRVssBIlsuY+yRJW7odN2XP9ecWSb/t6wUzm29mDWbW0NzcnHuVGBYnVqYlSbsPtMZcCYCoCto9M7ObJNVL6vPRP+6+UNJCSaqvr/dCfjei6wj3/376NZ1cU9rjtbKSYl1XP1llJcV9vRVAYHIJ962SJnc7rsue68HMLpP0BUkXu/vhwpSH4TR9fJXSqSI99PSrfb4+vrpUc8+dOMxVAchHLuG+StIMM5uqTKhfL+nG7g3MbJak70ia6+48+meEOu2kSr305SvU1t7zf6p2t7TqonuXa9ueQzFVBmCwBgx3d28zs9skLVNmKeRD7r7OzO6W1ODuSyR9Q1KVpEeyqyzecPerh7BuDJHSVLF6z6VWpIuVThXp2Vd3aWJN2bHvKSnSe2fUqqSY2yaAUOQ05u7uSyUt7XXuS91+v6zAdSEgZqZptVVatm6Hlq3rezfJB2+azZANEBDWuyEni+ZfoO1vHzzm/OEjRzVvwdN69c2WGKoC0B/CHTmpKS9RTXlJn6+NrSjRr9Zs0859fY/Jz33HyXr36ScNZXkAeiHcEdn7zxyvxzbs0JbVx/beW1rbtWH7Xi2a/54YKgNGL8Idkd33kZn9vnbH4hf1dOOb+vOOff22GVuRVm11ab+vAxg8wh1DalptlX7+/FZd/h9P9tumNFWkhi9epuqyvod9AAwe4Y4h9bcXTtHp4yrV7n3fkLx+2149sGKTNjUf0MzJY4e5OiC5CHcMqarSlK48r/8lkmedPEYPrNikGxauVKq4/50or5k1SXfPO3coSgQSiXBHrKbVVupzc8/qd6WNJD2zaZceXbeDcAcGgXBHrMxMn75k2nHbLFjeqG8s26jL7/vDcdsVF5m++IFzdNGMcYUsERiRCHcE76//4hT9acc+HWk/etx2T7yyU799eTvhDkgy72eia6jV19d7Q0NDLN+NZLruwWf04pY9qqkYeNVNdVlKP5n/HpZgYsQxs9XuXj9QO3ruSIzbL5uhX6/dPmC7/Yfb9Ks127S4YYsuOP3EnD67vCSlsydW8/hBjBiEOxJjzvRxmjN94CGZ1rajemLDDn1j2cZBff4jn3qP3jUltz8GQNwId4w66VSR/ve2i7Rtz7EbofXlSPtRfeIHDbrzkTUaP+bYLY/7U5oq0j3Xnqe6EyryLRXIG+GOUWn6+CpNH1+Vc/v57z1da5r25NzeXfrjn9/UPUtf0ezTThh0fZPGlmvuuScP+n1AByZUgSFyzQNP64U3cv+D0NuDN/1lvztxDqS4yDRz8lilUzxAJWlynVAl3IEh0tZ+VAda2wf9vi1vteiD9z8V+fv/7uLT9aGZkyJ/zsSaMo2tSEf+HBQG4Q6MYBu279WeliN5v/9fl67Xy1v3FqSWqeMqdd917yzIZ3U4uaZME2vKC/qZowXhDoxi2/Yc1NpBzBH0Z23T23pgxaYCVNTTmLKUvvqhc4dsaemsyWM1+cRkTmQT7gAiO3rUtXLzLh0e4O7gwdi+55D++RcvFezz+pIqMt184ZQh/Y4Os087QVcdZ3O8QuMmJgCRFRWZLszh3oHBuuTMWrXkMR+Ri8c37NCC5Y16+Lk3huTzuzvQ2i499aqm1VaqKLAb3Ah3AMPulLFDN94+fXyVPnXx8TejK5Rtew7q3t+9MuC+R4X0eI7tGJYBgBEk12EZFsECQAIR7gCQQIQ7ACQQ4Q4ACUS4A0ACEe4AkECEOwAkEOEOAAkU201MZrZP0uCec5Zc4yS9GXcRgeBadOFadOFadDnT3asHahTn9gMbc7nLajQwswauRQbXogvXogvXoouZ5XRrP8MyAJBAhDsAJFCc4b4wxu8ODdeiC9eiC9eiC9eiS07XIrYJVQDA0GFYBgASiHAHgASKJdzNbK6ZbTSzRjO7K44aQmBmD5nZTjN7Oe5a4mZmk81suZmtN7N1ZnZ73DXFxczKzOw5M1uTvRZfibumOJlZsZm9YGa/jruWuJnZa2b2kpm9ONCSyGEfczezYkl/knS5pCZJqyTd4O7rh7WQAJjZX0naL+kH7n5u3PXEycwmSpro7s+bWbWk1ZI+NEr/vTBJle6+38xKJD0l6XZ3XxlzabEwszsk1Usa4+4fjLueOJnZa5Lq3X3AG7ri6LmfL6nR3Te7e6ukRZLmxVBH7Nz9SUlvxV1HCNx9u7s/n/19n6QNkibFW1U8PGN/9rAk+zMqVz6YWZ2kD0j6bty1jDRxhPskSVu6HTdplP5HjL6Z2RRJsyQ9G28l8ckORbwoaaekx9x9tF6L/5T0T5KG7wnUYXNJj5rZajObf7yGTKgiKGZWJelnkv7B3ffGXU9c3L3d3WdKqpN0vpmNumE7M/ugpJ3uvjruWgJykbvPlnSlpFuzQ7t9iiPct0qa3O24LnsOo1x2fPlnkn7s7j+Pu54QuPseScslzY27lhjMkXR1dpx5kaT3m9mP4i0pXu6+NfvPnZJ+ocwwd5/iCPdVkmaY2VQzS0u6XtKSGOpAQLKTiN+TtMHd74u7njiZWa2Zjc3+Xq7M4oNX4q1q+Ln75929zt2nKJMTT7j7TTGXFRszq8wuNpCZVUq6QlK/K+2GPdzdvU3SbZKWKTNpttjd1w13HSEws4clPSPpTDNrMrNb4q4pRnMk/Y0yvbMXsz9XxV1UTCZKWm5ma5XpDD3m7qN+GSA0QdJTZrZG0nOSfuPuv+uvMdsPAEACMaEKAAlEuANAAhHuAJBAhDsAJBDhDgAJRLgDQAIR7gCQQP8PGnwi+5yc/l4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWaUlEQVR4nO3df5TVdZ3H8dd77sydn8CADIozKD9ENC3URmwzUysTrM1ca/1Rpm0ux03LXbfS9nRq27W2ts1Ny+JwyHU77UptWqKQRP7MlGBQfgj4Y0SRcUxQQIRhGIZ57x/3MtwZ7jB3+N6Z72fufT7O4TTfH/O973NPvvjw+Xy+n4+5uwAAhaUk7gIAAPlHuANAASLcAaAAEe4AUIAIdwAoQKVxffDYsWN94sSJcX08AAxLK1aseMPd6/q7L7ZwnzhxopqamuL6eAAYlsxsYy730S0DAAWIcAeAAkS4A0ABItwBoAAR7gBQgPoNdzO7w8w2m9kzfVw3M7vNzJrNbLWZnZb/MgEAA5FLy/1OSTMPcX2WpKnpP7Ml/SR6WQCAKPqd5+7uj5nZxEPccqGkn3lq7eClZlZrZuPd/bVDPff1He265XfPDajY0JSUmD7ZOEH1tZVxlwIAPeTjJaZ6SZsyjlvS5w4KdzObrVTrXsmjjtMPH27Ow8fHx10qMdMXPzg17lIAoId8hLtlOZd1BxB3nytpriQ1NjZ60799JA8fH5+JNy1UZxebnQAITz5my7RImpBx3CCpNQ/PHR7YyQpAgPIR7gskfSY9a+Y9kt7qr7+9UJj18U8UAIhZv90yZnaXpHMkjTWzFknfkFQmSe4+R9IiSRdIapbUJumzg1VsaEw03AGEKZfZMpf1c90lXZu3ioYRs2zDDQAQP95QjcAkOR0zAAJEuEdgRrcMgDAR7hGR7QBCRLhHYDJa7gCCRLhHYfS5AwgT4R6BSfTLAAgS4R4BMyEBhIpwj8BkNNwBBIlwjyA1FZJ4BxAewj0ish1AiAj3CFJvqAJAeAj3CMyY5w4gTIR7BKwtAyBUhHsUTIUEECjCPQLWcwcQKsI9AtZzBxAqwj0i5rkDCBHhHgF7qAIIFeEeAX3uAEJFuEdgZkyFBBAkwj0ChlMBhIpwj4A9VAGEinCPhCV/AYSJcI+IljuAEBHuERj77AEIFOEeAVMhAYSKcI+AAVUAoSLcIzAmQwIIFOEeQWr5AZruAMJDuEdAnzuAUBHuEZHtAEJEuEfAHqoAQkW4R0SfO4AQEe4RWGqHbAAITk7hbmYzzew5M2s2s5uyXB9lZveZ2SozW2tmn81/qeFhlz0Aoeo33M0sIel2SbMkvUPSZWb2jl63XStpnbtPl3SOpO+bWTLPtQbHWDgMQKByabnPkNTs7hvcvUPSfEkX9rrHJY2w1I7RNZK2SurMa6UBSr2hSrwDCE8u4V4vaVPGcUv6XKYfSTpRUqukNZKud/eu3g8ys9lm1mRmTVu2bDnMksNCtAMIUS7hnq1nuXemnS9ppaSjJZ0i6UdmNvKgX3Kf6+6N7t5YV1c34GJDw0tMAEKVS7i3SJqQcdygVAs902cl3eMpzZJeknRCfkoMV2oPVQAITy7hvlzSVDOblB4kvVTSgl73vCLpg5JkZkdKmiZpQz4LDVGq5U68AwhPaX83uHunmV0nabGkhKQ73H2tmV2Tvj5H0r9KutPM1iiVeTe6+xuDWHcYmAoJIFD9hrskufsiSYt6nZuT8XOrpA/nt7Tw8Q4TgFDxhmpUpDuAABHuEaQGVEl3AOEh3CNgKiSAUBHuEbCHKoBQEe4RpNaWId0BhIdwj4BVIQGEinCPiG4ZACEi3CMi2wGEiHCPgD1UAYSKcI8g1eVOugMID+EeAVMhAYSKcI/AjHY7gDAR7hEYy0ICCBThHgF7qAIIFeEeEdEOIESEewQsHAYgVIR7FOyhCiBQhHsE7KEKIFSEewQsHAYgVIR7BGQ7gFAR7hGwtgyAUBHuEbFZB4AQEe4RMBUSQKgI9whYOAxAqAj3CNhDFUCoCPcoaLkDCBThHgFTIQGEinCPgPXcAYSKcI+KdAcQIMI9AgZUAYSKcI+AqZAAQkW4R0CfO4BQEe4RmIwlfwEEKadwN7OZZvacmTWb2U193HOOma00s7Vm9mh+ywwTS/4CCFVpfzeYWULS7ZLOk9QiabmZLXD3dRn31Er6saSZ7v6KmY0brIJDQ7sdQIhyabnPkNTs7hvcvUPSfEkX9rrnckn3uPsrkuTum/NbZrjolQEQolzCvV7SpozjlvS5TMdLGm1mj5jZCjP7TL4KDJmxhyqAQPXbLaPsb9n3zrRSSe+W9EFJlZKeNLOl7v58jweZzZY0W5KOOeaYgVcbGJNougMIUi4t9xZJEzKOGyS1ZrnnAXff5e5vSHpM0vTeD3L3ue7e6O6NdXV1h1tzMJgKCSBUuYT7cklTzWySmSUlXSppQa977pV0lpmVmlmVpDMkrc9vqeFhsw4Aoeq3W8bdO83sOkmLJSUk3eHua83smvT1Oe6+3swekLRaUpekee7+zGAWHgJjLiSAQOXS5y53XyRpUa9zc3odf0/S9/JX2vDA2jIAQsQbqhHQLQMgVIR7BCwcBiBUhHskzHMHECbCPYJUy514BxAewj0C5soACBXhHgEzIQGEinCPiF4ZACEi3CNgD1UAoSLcIzCTNr+9J+4yAOAghHsEu/fu0/a2vXp1++64SwGAHgj3CC44ebwkaevOjpgrAYCeCPcIxtdWSJL2dO6LuRIA6Ilwj6C8NCFJ2tPZFXMlANAT4R5BeWnq66PlDiA0hHsE5WXpcN9Lyx1AWAj3CPZ3y7TTcgcQGMI9ggpa7gACRbhHwIAqgFAR7hEwoAogVDntoYrs9of7Xcs26YkX3+w+f+aUsfrb90+OqywAoOUeRWmiRBef1qCRFaXatqtD23Z1aHXLW7rziZfjLg1AkaPlHtH3/3p6j+Ov3/uM7lvVGlM1AJBCyz3PKpMJ7eqgDx5AvAj3PKtOlqqjs0ud+5hBAyA+hHueVSVT0yPb9tJ6BxAfwj3PqpKpYYy2PYQ7gPgwoJpn+1vu969u1biRqSWBS0w667g6jaoqi7M0AEWEcM+z8aNSgX7zwvU9zn/+nCn6yswT4igJQBEi3PPsjMlH6PEbz1V7xnozn5zzhLbv3htjVQCKDeE+CBpGV/U4HlFRprY9nTFVA6AYMaA6BKqSCbUx9x3AECLch0B1eSnhDmBIEe5DoCqZ0K4OumUADB363IdAVTKh1u27tXlHe/e58rKERlUyNRLA4Mgp3M1spqRbJSUkzXP37/Rx3+mSlkq6xN1/lbcqh7lRlWV6ccsuzfj2g93nSkxacsPZmlJXE2NlAApVv+FuZglJt0s6T1KLpOVmtsDd12W577uSFg9GocPZ9R86XtMn1HYfb9q6W3MefVEt23YT7gAGRS4t9xmSmt19gySZ2XxJF0pa1+u+L0i6W9Lpea2wANTXVupTZxzbffzsn3dozqMvahfTIwEMklwGVOslbco4bkmf62Zm9ZIukjTnUA8ys9lm1mRmTVu2bBlorQWjpjz1d+rOdsIdwODIJdwtyznvdfwDSTe6+yHn+7n7XHdvdPfGurq6XGssON3hTssdwCDJpVumRdKEjOMGSb23GmqUNN/MJGmspAvMrNPdf5OXKgtMNeEOYJDlEu7LJU01s0mSXpV0qaTLM29w90n7fzazOyXdT7D3rSxRovLSEs1f9or+2PxG9/lTjxmtm2axuBiA6PrtlnH3TknXKTULZr2kX7r7WjO7xsyuGewCC9WV752oCWMOrEHzytY2/XzpxhgrAlBIcprn7u6LJC3qdS7r4Km7XxW9rML3Txec2OP4liXP67YHX1BXl6ukJNswBwDkjuUHAjEi3Q/PMgUA8oFwD0RNBYOsAPKHcA8Ec98B5BMLhwVif8v9uw88q9FVye7zJx09UledOamvXwOArAj3QJxw1AhNHVejda07us/taO/UglWthDuAASPcAzF+VKWW3HB2j3M/fPAFfX/J89rTuU/lpYmYKgMwHNHnHrCR6fXe36YfHsAAEe4BG5HuhyfcAQwU4R6wERX7W+57Y64EwHBDn3vA9m/Dd/FPnlB6UTZJqRk0v/78mXGVBWAYINwDdsqEWn35/Gk9umWe2rhNy17eqs59XSpN8A8vANkR7gFLlpbo2nOP63Hujsdf0rKXt2rnnk7VZsyHB4BMNP2Gmf0zaHbsZpAVQN8I92Fmfz/8W7sZZAXQN7plhpmR6emR/774WY2tKe8+X1FWoi99eJqOyDgHoHgR7sPM1CNH6KSjR2rjm23a+GabJKlzX5da32rXX0wZq49NPzrmCgGEgHAfZsZUJ7Xwi2f1OLd5R7tmfPtB5sMD6EafewFgkBVAb4R7ASgvLVFZwrSDljuANLplCoCZaWRFmTZs2akVG7f1uHbkyHI1jK7q4zcBFCrCvUCMG1mhxWtf1+K1r/c4X5VMaM0/n68Em24DRYVwLxDzrmxU8+adPc498MyfddeyV9TW0dm9CBmA4kC4F4j62krV11b2OLdpa2qqZFvHPsIdKDIMqBaw6vLU7k1tHftirgTAUCPcC1hVMvUPs117mCIJFBvCvYBVJVMt9917abkDxYZwL2D7W+50ywDFhwHVAra/5f7N+9aqtrLngOolp0/QJacfE0dZAIYALfcCNrmuWh+bfrTqaytVXV7a/ad5807dv/q1uMsDMIhouRew8tKEbrvs1IPOX/HTPzHIChQ4Wu5FqCqZoB8eKHCEexGqTpZqVwctd6CQEe5FqKo8obY9tNyBQka4FyFa7kDhy2lA1cxmSrpVUkLSPHf/Tq/rn5J0Y/pwp6S/c/dV+SwU+VOVLFX73i7d8MuVMvVcLbK+tkL/cN7xMmMVSWA46zfczSwh6XZJ50lqkbTczBa4+7qM216SdLa7bzOzWZLmSjpjMApGdI0TR+vYI6r0pw1be5xv6+jUtra9+vR7jtW4kRUxVQcgH3Jpuc+Q1OzuGyTJzOZLulBSd7i7+xMZ9y+V1JDPIpFfZx43Vo9++dyDzi9c/Zqu/d+ntLWtg3AHhrlc+tzrJW3KOG5Jn+vL5yT9NtsFM5ttZk1m1rRly5bcq8SQGFOdlCRt3dURcyUAosql5Z6t89Wz3mh2rlLh/r5s1919rlJdNmpsbMz6DMRnf7j/akWLnnn1rR7XSktK9Fen1au2KhlHaQAGKJdwb5E0IeO4QVJr75vM7F2S5kma5e5v5qc8DKX60ZUaVVmme556Nev1LnddfdbkIa4KwOHIJdyXS5pqZpMkvSrpUkmXZ95gZsdIukfSFe7+fN6rxJCoKS9V09c+pI7OroOunf6t36t1e3sMVQE4HP2Gu7t3mtl1khYrNRXyDndfa2bXpK/PkfR1SUdI+nF6Cl2nuzcOXtkYLGWJEpUlDh6KOWpkhda8ul2/XXPwgmOJEtP7po7tXmIYQPxy+q/R3RdJWtTr3JyMn6+WdHV+S0NIpoyr0ZJ1r2v5y9uyXv/aR06kywYICE0t5OS2S0/Vxq27sl67dO5SvfRG9msA4kG4IyeVyYROOGpk1msNoyv1hxfe0DfvW5v1+nsmH6HzTzpqMMsD0AvhjsjOOX6c/vvJl/WrFS0HXWvfu09L1r1OuANDjHBHZF86f5q+dP60rNduWfK8fvTQC1r/2g6VlmRfr6amolTjR1UOZolA0SHcMaim1FWry6VZt/7hkPc99I9na3JdzRBVBRQ+wh2DatbJ41V5RUId+w6eOy9Jf36rXTcvXK91r+0g3IE8Mvd4VgFobGz0pqamWD4b4djdsU/v+MYDSiZKlCzte6mjMyaN0bwrTx/CyoAwmdmKXN4jouWOWFUmE/rWx9+pFza/3ec9a1re0kPPblb73n2qKEsMYXXA8EW4I3aXn3HMIa/fu/JVNW3cplm3/qHPQdn9Pn/uFF10KitOA4Q7gnf28XW6+LQG7d576K0Bl27Yqt883Uq4A6LPHQXkhl+s1L2rWruXLj6U8tISzbuysc8Xs4BQ0eeOovM375ukimRC/bVX3F3zl2/S/GWb9JfTx+f07LJEiU46epQS/XQLAaGg5Y6i9IH/eEQbBrgezn9eMp0uH8Qu15Y74Y6i1LKtTRu25B7uX5z/tCrLEpowpirn3yktMX111ol6Z8OowykRyIpuGeAQGkZXqWF07kF93bnH6ffrXx/QZzRt3KbvPLBeHzjhyIGWp1GVZbr4tHql90cABoxwB3Jw9VmTB7xe/Rfuelr3rWrVH5sPb9fJ9r37NOUw39o1k97VMIoNVIoY3TLAIOnqcr2959DTN7Np6+jUOd97RHuybHc4EBedWq/Z74++gcoRNUmNG1ER+TnID/rcgWFsw5aden3HnsP+/bmPvaiHn9uSl1pGVJTqv646Pa8zhcZUJ3XsEdV5e14xoc8dGMYm19VEWkht2lEjtOylw+sOytSybbduXrhen5jzZORnZSotMX37oneqIjk4y0lMO3KEph01YlCePVwQ7kABGlOd1MyTc5vD359TJtQeVvdSX3bt6dQNv1ilr9y9Om/PzOaq907sd7mKfJgyrkaXzTj0EhpxINwBHFLjxDF5f+aMSWO0Y3f+/sLItHLTdt28cJ3+r2nToDw/066OfZKk2x9uVmVgi9oR7gCG3LgRFRo3SL0mx42r0SfePTQvm73dvlf/ct867eoYnL+osvl9jvcxoAoAw0iuA6p9744AABi2CHcAKECEOwAUIMIdAAoQ4Q4ABYhwB4ACRLgDQAEi3AGgAMX2EpOZvS3puVg+PDxjJb0RdxGB4Ls4gO/iAL6LA6a5e7/v98a5/MBzubxlVQzMrInvIoXv4gC+iwP4Lg4ws5xe7adbBgAKEOEOAAUoznCfG+Nnh4bv4gC+iwP4Lg7guzggp+8itgFVAMDgoVsGAAoQ4Q4ABSiWcDezmWb2nJk1m9lNcdQQAjO7w8w2m9kzcdcSNzObYGYPm9l6M1trZtfHXVNczKzCzJaZ2ar0d/HNuGuKk5klzOxpM7s/7lriZmYvm9kaM1vZ35TIIe9zN7OEpOclnSepRdJySZe5+7ohLSQAZvZ+STsl/czdT467njiZ2XhJ4939KTMbIWmFpI8X6f8vTFK1u+80szJJj0u63t2XxlxaLMzsBkmNkka6+0fjridOZvaypEZ37/eFrjha7jMkNbv7BnfvkDRf0oUx1BE7d39M0ta46wiBu7/m7k+lf35b0npJ9fFWFQ9P2Zk+LEv/KcqZD2bWIOkjkubFXctwE0e410vK3Ja8RUX6HzGyM7OJkk6V9Kd4K4lPuitipaTNkpa4e7F+Fz+Q9BVJXXEXEgiX9DszW2Fmsw91YxzhblnOFWWrBAczsxpJd0v6e3ffEXc9cXH3fe5+iqQGSTPMrOi67czso5I2u/uKuGsJyJnufpqkWZKuTXftZhVHuLdImpBx3CCpNYY6EJh0//Ldkv7H3e+Ju54QuPt2SY9ImhlzKXE4U9LH0v3M8yV9wMx+Hm9J8XL31vT/bpb0a6W6ubOKI9yXS5pqZpPMLCnpUkkLYqgDAUkPIv5U0np3vyXueuJkZnVmVpv+uVLShyQ9G29VQ8/dv+ruDe4+UamceMjdPx1zWbExs+r0ZAOZWbWkD0vqc6bdkIe7u3dKuk7SYqUGzX7p7muHuo4QmNldkp6UNM3MWszsc3HXFKMzJV2hVOtsZfrPBXEXFZPxkh42s9VKNYaWuHvRTwOEjpT0uJmtkrRM0kJ3f6Cvm1l+AAAKEG+oAkABItwBoAAR7gBQgAh3AChAhDsAFCDCHQAKEOEOAAXo/wGfFSv1vt/xZwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -332,17 +372,15 @@ } ], "source": [ - "print('Consumption function for an idiosyncratic shocks consumer type:')\n", - "plotFuncs(IndShockExample.solution[0].cFunc,IndShockExample.solution[0].mNrmMin,5)\n", - "print('Marginal propensity to consume for an idiosyncratic shocks consumer type:')\n", - "plotFuncsDer(IndShockExample.solution[0].cFunc,IndShockExample.solution[0].mNrmMin,5)" + "print(\"Consumption function for an idiosyncratic shocks consumer type:\")\n", + "plotFuncs(IndShockExample.solution[0].cFunc, IndShockExample.solution[0].mNrmMin, 5)\n", + "print(\"Marginal propensity to consume for an idiosyncratic shocks consumer type:\")\n", + "plotFuncsDer(IndShockExample.solution[0].cFunc, IndShockExample.solution[0].mNrmMin, 5)" ] }, { "cell_type": "markdown", - "metadata": { - "hidden": true - }, + "metadata": {}, "source": [ "The lower part of the consumption function is linear with a slope of 1, representing the *constrained* part of the consumption function where the consumer *would like* to consume more by borrowing-- his marginal utility of consumption exceeds the marginal value of assets-- but he is prevented from doing so by the artificial borrowing constraint.\n", "\n", @@ -354,9 +392,7 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "hidden": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -386,19 +422,29 @@ } ], "source": [ - "print('mNrmGrid for unconstrained cFunc is ',IndShockExample.solution[0].cFunc.functions[0].x_list)\n", - "print('cNrmGrid for unconstrained cFunc is ',IndShockExample.solution[0].cFunc.functions[0].y_list)\n", - "print('mNrmGrid for borrowing constrained cFunc is ',IndShockExample.solution[0].cFunc.functions[1].x_list)\n", - "print('cNrmGrid for borrowing constrained cFunc is ',IndShockExample.solution[0].cFunc.functions[1].y_list)" + "print(\n", + " \"mNrmGrid for unconstrained cFunc is \",\n", + " IndShockExample.solution[0].cFunc.functions[0].x_list,\n", + ")\n", + "print(\n", + " \"cNrmGrid for unconstrained cFunc is \",\n", + " IndShockExample.solution[0].cFunc.functions[0].y_list,\n", + ")\n", + "print(\n", + " \"mNrmGrid for borrowing constrained cFunc is \",\n", + " IndShockExample.solution[0].cFunc.functions[1].x_list,\n", + ")\n", + "print(\n", + " \"cNrmGrid for borrowing constrained cFunc is \",\n", + " IndShockExample.solution[0].cFunc.functions[1].y_list,\n", + ")" ] }, { "cell_type": "markdown", - "metadata": { - "hidden": true - }, + "metadata": {}, "source": [ - "The consumption function in this model is an instance of $\\texttt{LowerEnvelope1D}$, a class that takes an arbitrary number of 1D interpolants as arguments to its initialization method. When called, a $\\texttt{LowerEnvelope1D}$ evaluates each of its component functions and returns the lowest value. Here, the two component functions are the *unconstrained* consumption function-- how the agent would consume if the artificial borrowing constraint did not exist for *just this period*-- and the *borrowing constrained* consumption function-- how much he would consume if the artificial borrowing constraint is binding. \n", + "The consumption function in this model is an instance of $\\texttt{LowerEnvelope1D}$, a class that takes an arbitrary number of 1D interpolants as arguments to its initialization method. When called, a $\\texttt{LowerEnvelope1D}$ evaluates each of its component functions and returns the lowest value. Here, the two component functions are the *unconstrained* consumption function-- how the agent would consume if the artificial borrowing constraint did not exist for *just this period*-- and the *borrowing constrained* consumption function-- how much he would consume if the artificial borrowing constraint is binding.\n", "\n", "The *actual* consumption function is the lower of these two functions, pointwise. We can see this by plotting the component functions on the same figure:" ] @@ -406,13 +452,11 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "hidden": true - }, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAD4CAYAAAAn3bdmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU5aHG8d+bfSckIWwhBBABFQUMqOAGIsqi1bpgxapt7+XetrfuVdyriFSlYKvWFutSa6u2Wq1lRxYBZVe2sspOWJMQspHJMu/94wwICmSATM4sz/fzmc9MJmcmz7A8HM55z/saay0iIhIaotwOICIi/lNpi4iEEJW2iEgIUWmLiIQQlbaISAiJCcSbZmVl2by8vEC8tYhIWFq6dGmhtbZZfdsFpLTz8vJYsmRJIN5aRCQsGWO2+rOdDo+IiIQQlbaISAhRaYuIhBCVtohICFFpi4iEEL9GjxhjtgBlQB1Qa63ND2QoERE5tpMZ8tfXWlsYsCQiIlIvHR4REXFb8Sa/N/W3tC0wzRiz1Bgz/FgbGGOGG2OWGGOW7Nu3z+8AIiIRq7Ya5rwAv7/I75f4W9oXW2t7AAOBnxtjLv32Btba8dbafGttfrNm9V6JKSIS2bbMgz9cDDOfgTOv8vtlfpW2tbbAd78X+AjodUohRUQiXUURfPwzeGsw1B6EW/8BN7/t98vrPRFpjEkGoqy1Zb7HA4CnTz2xiEgEsha+egemPw6eMrj4Xrj0QYhLOqm38Wf0SHPgI2PMoe3/Zq2dcvKJRUQi1N61MOFe2PYFtLkQhoyD5med0lvVW9rW2k3Aeaf07iIikay6EuaOgc9/B/EpcO1L0O02iDr1gXsBmZpVRCTibfgUJt4HJVvhvFthwEhIzjrtt1Vpi4g0pNJdMPVh+M9HkNkR7pgA7S5psLdXaYuINARvHSx+HWaOhFoP9H0M+twFMfEN+mNU2iIip2vnMphwD+z8Ctr3hcG/gcwOAflRKm0RkVPlKYOZo2DRHyEpC254Hc65AZzRdgGh0hYROVnWwpp/w+SHoGwX5P8YrngCEtMD/qNV2iIiJ2P/Vpj8IKyfAs27OlcztunZaD9epS0i4o+6Gpj/Cnz2HGBgwDNwwU8hunFrVKUtIlKfbQudE417V0OnwTDwOUhv40oUlbaIyPFUFsOnv4Iv/wxpOXDL36DzYFcjqbRFRL7NWljxPkx9FA7uh4v+Dy5/2LkU3WUqbRGRIxVucC4/3zwHWufD7R9Di65upzpMpS0iAlBTBfPGwrxxEJMIg8fC+T86rcmdAkGlLSKycRZMvB+KN0LXm2DAKEht7naqY1Jpi0jkKt/rHLde+XfIaA8//Ag69HM71QmptEUk8ni98OVbzsiQmoNw2UNw8X0Qm+B2snqptEUksuxe5Yy53rEY8i5xjl03O9PtVH5TaYtIZKiugNmjYf7vnTlCrv8jnDs0oJM7BYJKW0TC39pJznwhB7ZDj9uh/1OQlOF2qlOi0haR8HVghzMT39oJ0KwL/GgKtL3I7VSnRaUtIuGnrtaZ43rWs86KMv1/BRf+HGLi3E522lTaIhJediyFCXfD7pXQcQAMegGa5rmdqsGotEUkPFQdgBlPO+s0praAm/4MZ30v5E401kelLSKhzVpY9SFMfQQq9sEF/wN9H4WENLeTBYRKW0RCV/Em5/LzjTOhZTe49X1o1d3tVAGl0haR0FPrgc9/B3PHQFQsDHweev4XREW7nSzgVNoiElq2zIMJ90LhejjrOrh6NKS1cjtVo1Fpi0hoqCiCaY/B8r9Bei7c+g84c4DbqRqdSltEgpvXC8v+CtMfB0+ZM7HTpb+EuCS3k7lCpS0iwWvvGphwH2z7AnIvgiHjILuL26lcpdIWkeBTXQlzXoAvfgfxqXDty9BtWNCtIuMGv0vbGBMNLAEKrLVDAhdJRCLahunOML6SrXDerTBgJCRnuZ0qaJzMnvbdwBogPEesi4i7SnfBlBGw+mPI7Ah3TIB2l7idKuj4VdrGmBxgMDAKuC+giUQksnjrYPGfYMZIqKuGvo9Bn7sgJt7tZEHJ3z3tF4EHgdTjbWCMGQ4MB8jNzT39ZCIS/nYuc1aR2fkVtO8Lg38DmR3cThXU6j2qb4wZAuy11i490XbW2vHW2nxrbX6zZs0aLKCIhCFPGUweAa/1hQMFcMPrzqK6Kux6+bOn3Qe41hgzCEgA0owx71hrbwtsNBEJO9bCmk+cwi7bBfk/hiuecJb/Er/UW9rW2oeBhwGMMZcDD6iwReSk7d8Kk34JG6ZC864w9C+Qk+92qpCjcdoiElh1NTD/ZZj9HJgoGDAKLvhfiFb9nIqT+lWz1s4GZgckiYiEn20LnMmd9q6GzkPg6l9Dehu3U4U0/VMnIg2vshg+fRK+fBvScuCWd6HzILdThQWVtog0HGthxfsw9VE4uB96/wIuGwHxKW4nCxsqbRFpGIUbnEMhW+ZCTk8Y8jG06Op2qrCj0haR01NTBfPGwrxxEJvozMTX405N7hQgKm0ROXUbZ8HE+5y1GrveBFc9CynZbqcKayptETl55Xud1c9X/gMy2sMPP4YOfd1OFRFU2iLiP68Xlr4Jnz4FtQfhsoeclWRiE9xOFjFU2iLin90rnRONOxZD3iUweCw0O9PtVBFHpS0iJ+Yph9mjYcGrzhwh1/8Rzh0KxridLCKptEXk+NZOcuYLKd0BPW6H/k9BUobbqSKaSltEvuvADpj8EKydANlnwY1TIfdCt1MJKm0ROVJdLSz8A8x6FqwX+v8KLvo/iI51O5n4qLRFxLFjKUy42znh2HEADHoBmua5nUq+RaUtEukOlsCMp2HJG5DaAm5+G7pcqxONQUqlLRKprIVVHzoXyVTsc+a47vsIJKS5nUxOQKUtEomKNsKkB2DjTGjVHW5937mXoKfSFokktR74/Hcw5wWIjoOBL0DPn0BUtNvJxE8qbZFIsXmuM7lT4Xo46zpnFZm0lm6nkpOk0hYJdxWFMO1xWP43SG8Lwz6Ajle6nUpOkUpbJFx5vbDsHZj+BHjKnImdLv0lxCW5nUxOg0pbJBztXeNM7rRtPuT2hiFjIbuL26mkAai0RcJJdSXMeR6+eAniU+Hal6HbMK0iE0ZU2iLhYsN0mHg/lGyF826FASMhOcvtVNLAVNoioa50F0x5CFb/C7LOhDsmQLtL3E4lAaLSFglV3jpY/CeYMRLqqqHvY9DnLoiJdzuZBJBKWyQU7VwGE+6BnV9Bh34waAxkdnA7lTQClbZIKKkqhVmjYNF4SMqCG16Hc27Q5E4RRKUtEgqshTWfOAsTlO12Lj3v97iz/JdEFJW2SLDbv9WZ3GnDNGjRFYa+Azn5bqcSl6i0RYJVXQ3MfxlmPwcmCq56Fnr9D0Trr20kq/d33xiTAMwB4n3bf2CtfTLQwUQi2rYF8O97YN8a6DwEBj4HTXLcTiVBwJ9/sj1AP2ttuTEmFphnjJlsrV0Q4GwikaeyGD59Er58G5q0gVvehc6D3E4lQaTe0rbWWqDc92Ws72YDGUok4lgLy9+DaY86y3/1/gVcNgLiU9xOJkHGr4NjxphoYClwBvCKtXbhMbYZDgwHyM3NbciMIuGtcIMzudOWuZDTE4a8CC3OcTuVBCm/ZpGx1tZZa7sBOUAvY8x3/kRZa8dba/OttfnNmjVr6Jwi4aemCmaOgld7w+4VMGQc/HiaCltO6KROQ1trS4wxs4CrgVWBiSQSATbOdCZ3Kt4EXW9yRoakZLudSkKAP6NHmgE1vsJOBK4Engt4MpFwVLbHWf181QeQ0R5++DF06Ot2Kgkh/uxptwT+7DuuHQX83Vo7IbCxRMKM1wtL34RPn4Lag3DZQ85KMrEJbieTEOPP6JEVQPdGyCISnnavdMZcFyyBvEucY9dZHd1OJSFKl1aJBIqnHGaPhgWvQmJTuP6PcO5QTe4kp0WlLRIIayfBpF9C6Q7ocQf0/xUkZbidSsKASlukIR3YAZMehHUTIfssuHEq5F7odioJIyptkYZQVwsL/wCzngXrhf5PwUU/h+hYt5NJmFFpi5yuHUucE417VkLHq2DQC9C0rdupJEyptEVO1cESmPE0LHkDUlvCzX+BLtfoRKMElEpb5GRZC6s+hCkPQ2UhXPC/0O9RiE91O5lEAJW2yMko2uhcfr5pFrTqDsP+Aa26uZ1KIohKW8QftR74/LcwZwxEx8HAF5x1GqOi3U4mEUalLVKfzXOdqVOLNsDZ18NVoyGtpdupJEKptEWOp6IQpj0Gy9+F9LYw7EPo2N/tVBLhVNoi3+b1wrJ3YPoT4ClzJna69JcQl+R2MhGVtshR9q5xDoVsmw+5vWHIWMju4nYqkcNU2iIA1ZUw53n44iVn6N61L0O3YRDl1+JOIo1GpS2yfhpMuh9KtjlFfeVISM50O5XIMam0JXKV7oIpD8Hqf0HWmXDnRMi72O1UIiek0pbI462DxX+CGSPBWwP9HoPed0FMvNvJROql0pbIsvMrZ3KnXcugQz8Y/BtnrUaREKHSlshQVQqzRsGi8ZDcDG58A87+viZ3kpCj0pbwZq1zzHrKCCjb7Vx63u9xSEx3O5nIKVFpS/jav8VZ8mvDNGjRFYb+FXLOdzuVyGlRaUv4qatxxlt/9jyYKLjqWej1PxCtP+4S+vSnWMLL1vnOFY371kDnITDwOWiS43YqkQaj0pbwUFnszBXy1V+gSRv4wXvQaaDbqUQanEpbQpu1sPw9mPaos/xX77vg8hEQl+x2MpGAUGlL6Nq3HibeB1vmQk5PGPIitDjH7VQiAaXSltBTcxDmjoV545zpUoeMgx53anIniQgqbQktG2fChPtg/2boejNcNQpSst1OJdJoVNoSGsr2wNRHYNUHkNEBfvgxdOjrdiqRRqfSluDm9cLSN+DTp6H2IFw2Ai6+F2IT3E4m4gqVtgSv3SudyZ0KlkC7S2HwWMjq6HYqEVfVW9rGmDbA20BzwALjrbW/DXQwiWCecpg9Gha8ColN4frxcO7NmtxJBP/2tGuB+621XxpjUoGlxpjp1trVAc4mkWjtRJj0IJTugB53QP9fQVKG26lEgka9pW2t3QXs8j0uM8asAVoDKm1pOCXbYfJDsG4iZJ8FN06D3AvcTiUSdE7qmLYxJg/oDiw8xveGA8MBcnNzGyCaRIS6Wlj4KswaDdYL/Z+Ci34O0bFuJxMJSn6XtjEmBfgQuMdaW/rt71trxwPjAfLz822DJZTwtX2xM7nTnpVw5tUw8Hlo2tbtVCJBza/SNsbE4hT2X621/wxsJAl7B0tgxlOw5E1IbQk3/wW6XKMTjSJ+8Gf0iAFeB9ZYa8cGPpKELWth1Ycw5WGoLIQLfwp9H4H4VLeTiYQMf/a0+wA/BFYaY5b5nnvEWjspcLEk7BRthIn3w6ZZ0Ko7DPsHtOrmdiqRkOPP6JF5gP7fKqem1gOf/xbmjIHoOBg0BvJ/DFHRbicTCUm6IlICZ/McZ3Knog1w9vVw1WhIa+l2KpGQptKWhldRCNMeg+XvQnpbGPYhdOzvdiqRsKDSlobj9TrLfU1/Aqor4JL74ZIHnDmvRaRBqLSlYexZ7Yy53r4Acns7CxNkd3Y7lUjYUWnL6amuhM+eg/kvQ3wafO8V6DZMY65FAkSlLadu/TSYdD+UbHOK+sqRkJzpdiqRsKbSlpNXuhOmjIDV/4KsTnDnRMi72O1UIhFBpS3+89bBotdg5jPgrYF+j0HvuyEmzu1kIhFDpS3+KfjSOdG4axl0uAIGj4GM9m6nEok4Km05sapSZ8968WuQ3AxufAPO/r5ONIq4RKUtx2YtrP4YJo+A8j3Q87/gischoYnbyUQimkpbvmv/Fpj4AHw9HVp0hVv+Bjnnu51KRFBpy5Fqq53x1p8970zodNVo6DUcovXHRCRY6G+jOLbOd0407lvjLEhw9XPQpLXbqUTkW1Taka6y2Jkr5Ku/QJM28IP3odPVbqcSkeNQaUcqa51Z+KY95iz/1fsuuHwExCW7nUxETkClHYn2rXcOhWydBzm9nMmdWpzjdioR8YNKO5LUHIS5v4F5LzrTpQ55EXrcAVFRbicTET+ptCPF1zOcNRr3b4Zzh8KAZyAl2+1UImGhzmuprK6lsrqOCs/R95XVdVRU11LpqaWiuu7wdpUe3/O+bf2l0g53ZXtg6sPOKugZHeD2f0H7y91OJeIar9dysMYpzArP0SXrlOuh7/lK1lNLuccp22++PlTIzuOqGq/fPz86ypAUF01SXDTJcTEkxUeTFOt/Fau0w5XXC0vfgE+fhtqDcNkIuPheiE1wO5mI36y1VNV4D5epU5ZOeVZ4ar8p3EMle6hcD+3Ffus1lZ5aKmvqsNa/nx8XHUVSvK9c46JJjo8hOT6apslJpMQf8Vyc83zSkfdx0ST6vu+UtHMfHxOFOcY0EOan/mVSaYejXSucE40FS6DdpTB4HGSd4XYqiRC1dV4qPHWUeWqo8NRR7qmh3FNHeZVTrGW+si331FJW9c3j4+3xev0s2CgDyfExR5VpUlw0rdITDpeps2frFOqhAk6KO/o1yb7vJ8XFEBcTfOd7VNrhxFMOs0fDglchsSlcPx7OvVmTO0m96rz2cHGWH7pVHf34qO/5ti2rcgr2yG39PVSQEBtFiq9kD5VlVkocuZlJpPgOGzh7sEeW6zd7s4f2cA+V7fH2YMONSjtcrJkAkx+E0gI4/07o/yunuCWseb2WimqnPJ1bDWVVtZT67o987tCebfnhPeBvCvlgTZ1fPy8+xle0CU5hpiTEkJ2aQPssp1xTj3g+JT6alPhYkuOjSU2I+eZxfCxJ8dHERgffXmwoUGmHupLtTlmvmwTZZ8ONb0LuBW6nEj94vZby6qOL9ZvS/e5z335cWlVDuae23uOzMVHGKU1fcab69mjzspJ9e7pHl+uhQwxHlvOh51W07lNph6q6GucwyOzRztdXPg0X/gyiY93NFWGqauooPVjDgWPcSg/WfuvrmsN7wCdbuKkJsb77GNpkJJGaEEOa77m0w9/7ZpvUhFjSfPcJsZFx2CBSqLRD0fbFMOEe2LMKzrwaBr0A6blupwpZVTV1lFTWUHKw+jtFe6hsj/ecp/bEx29T4mNokhhLWqJTorkZSYfLNe2oolXhin9U2qHk4H6Y8TQseRNSW8LQd6DzEJ1o9LHWOZlWUlnD/spqiiuqDz/eX1nD/opq9lc6zznfc56v73huaoJTvIduHbNTDj9O892aHOOWlhBDjA4nSANTaYcCa2HlB85FMpVFcOFPoe8jEJ/qdrKA8not+yurKaqoprDcQ1H5N/dFFR72V9RQXPlN+ZZUVlNTd+zjDcZAk8RYmibFkZ4US8smCXRpmUbTpFiaJjvPpSfGHV26ic7ebnSU/lGU4KHSDnZFG2HifbBpNrTqDsM+gFbd3E51yjy1dewr81BYXk2Rr4D3HVHEh4q5sLya4grPMcfoRhnISI6jaVIcTZPjaJeVTI+kONKT4shIjiU9yfnekY+bJKp8JTzUW9rGmDeAIcBea62mgmsstR5nYqe5v4GYeBg0BvJ/7KwoE4Rq6rzsK/Owp7SKPaUe9pZVHX68p7SKvb7n9lfWHPP1yXHRZKXGk5kcR5uMJLrnppOV4nydmRJPZkoczVLiyUyJJz0xligVsEQof/a03wJeBt4ObBQ5bPMc54rGoq+dlc+vehbSWroWp7K6lp0lVewsOejcDlSxt7TqqIIuqqj+zkiI6ChDdmo82WkJtM1Mole7DJqnxdMsNZ6sFOeWmRJHZnI8iXHB+Y+RSLCpt7SttXOMMXmBjyKU73MWJVjxHjTNg2EfQsf+Af+xVTV1bC+uZEtRJVuLKtheXEmBr6R3HTj4nb3jKANZKfE0T0ugVXoC3XLTyU51vm6eFk92agLN0xLITI7THrFIA2uwY9rGmOHAcIDcXA0/OyleL3z1Nkx/Eqor4JIH4NIHIDaxwX7Eweo6NhWWs7Woki1FFWzz3W8tqmTXgaqjtk2Nj6F100RapSfSo206rdITaZ2eSMsmibRKdwpZF1mIuKPBSttaOx4YD5Cfn+/nFC/CntXOoZDtC6BtHxg8FrI7n/Lb1Xkt24orWbe7lDW7yli3u4x1e8rYUlRx1OGLrJQ42mYmc1GHTNpmJJOXlUTbzGTyMpNIT4prgA8mIoGg0SNuqa6Ez56D+S9DfBp87xXoNuykxlyXVdWwqqCUNbtKWbe7jLW7S1m/p/zwuGNjIC8zmU7NU/let1Z0zE6lbWYSbTOdCzxEJPSotN2wfipMegBKtkG325xL0JMzT/gST20da3eVsXxHCcu3H2D5jhI27is/vPeckRxH5xap3NKrDV1apNGpRSodm6eQFKffYpFw4s+Qv3eBy4EsY8wO4Elr7euBDhaWSnfC5IdgzSeQ1QnunAR5fb6zmbWWTYUVfLWthOXbS1ixo4TVu0oPXziSlRLPeTlNuPa8Vpyb04SzWqXRLCVelzuLRAB/Ro/8oDGChDVvHSwaDzOfAW8t9Hscet8FMc6xY6/Xsn5vGYs2F7NwUzELNxdTWO4BnLkrurZuwk8ubs95OU04t006rZokqKBFIpT+7xxoBV86kzvtWg4droDBY6hLb8fqnaUs3LyDhZuLWbylmBLfsLpWTRK4pGMWvdplkN+2KR2apWjYnIgcptIOlKoDzp71otcgJZviQX9kmr2IzyYVMu/rDZRVOasvt81M4souzbmgfSYXtMsgp2mi9qJF5LhU2g3NWlj9MXbyCCjfw5LsGxhVdQPL/mmBVbRsksCgc1rS+4xMLmiXSYsmWmhXRPyn0m5AFbu/puKje8jeM5c1th0jqp9mbUFHerZryqP52VzWqRkds1O0Jy0ip0ylfZqKK6qZuWoHZv5LDN7/F5KIZkzUnRSfcwd3ndWaizpkkhyvX2YRaRhqk1NQ7qll8spdfLysgNpNnzMy5nXOjCpgTdPLqbpiFPeefbamARWRgFBp+6m2zsvcrwv56MsCpq3eTULNAUal/J3BcTOoTmmNveY9unQa6HZMEQlzKu0TsNbyn52l/PPLAj5ZvpPCcg9NEmJ4Jm8F1+19lejqUuhzN3GXPQRxyW7HFZEIoNI+hpLKav75ZQHvL97Ouj1lxEYb+nXO5rYOHvqsHUXUts8hpxdc8yI0P9vtuCISQVTaPtZaFm4u5r1F25i0ajfVtV7Oa5POM9edw5Au6aQvfQk+fRHikuCa30L32yFK05OKSOOK+NLeX1HNB0t38O7ibWzaV0FqQgy39GzDLT1zOatVGnw9A966H/ZvhnOHwoBRkNLM7dgiEqEitrRX7yzlz19s4eNlBXhqveS3bcrPbjqDwV1bOktfle2BD+6BVR9CRge4/V/Q/nK3Y4tIhIuo0q6t8zJt9R7e+mILizYXkxAbxfd7tOaO3nl0bpHmbOStcy49nzESag/C5Q9Dn3sgVlcuioj7IqK0yz21vLdoG29+voWCkoPkNE3kkUGduTm/zdGrtOxa4UzuVLAU2l3mrCKTdYZ7wUVEviWsS3v3gSre/GIzf1u4jbKqWnq1y+DJa87iii7Nj774xVMOs56Fha9CUiZ8/zXoetNJrSIjItIYwrK01+wq5bU5m/hk+U681jKwa0v++5L2dGuTfoyNJ8DkB6G0AM7/EfR/EhKbNn5oERE/hFVpL926n1dmfc3MtXtJiovmtgvb8pOL29EmI+m7G5dsc1aRWTcJss+Gm96CNr0aPbOIyMkI+dK21vL510W8PGsDCzYVk54Uy31XnsntF7U99qridTWw4FWYPdr5+sqRcOFPIVoL3YpI8AvZ0vZ6LZ+u2cMrszeyfHsJ2anxPDa4Cz/olXv8WfW2L4IJ98KeVXDmQBj0PKTnNm5wEZHTEHKl7fVapvxnN7+bsYG1u8tok5HIqOvP4cbzc4iPiT72iw7uh0+fgqVvQWpLGPoOdB6iE40iEnJCprSttUxbvYdx09ezdncZHZolM27oeVxzbitioo9zObm1sPIfMPURqCyCC38GfR+G+NTGDS8i0kCCvrSttcxat5ex09ezqqCUdlnJvDi0G9ec1+rEc1YXbYSJ98Gm2dCqB9z2IbQ8r9Fyi4gEQtCWtrWWuRsKGTt9Pcu2l5CbkcSYm87jum4n2LMGqPXAvHEwdyzExMOgMZD/Y4g6zqETEZEQEpSl/cXGQsZNX8/iLftpnZ7Ir7/flRvOzyH2RGUNsOkzZ++66Gs4+/tw9WhIbdE4oUVEGkFQlfaKHSX8evJavthYRIu0BEZedw4355/gBOMh5ftg2qOw4n1omuccCjmjf6NkFhFpTEFR2luLKnhh6jomrNhFRnIcTww5i1svyCUhtp6y9nrhq7dh+pNQXQGXPACXPgCxiY0TXESkkbla2oXlHl6asYG/LtxGbHQUv+h3BsMvbU9qgh8XuuxZ7Yy53r4A2vaBIeOgWafAhxYRcZErpV3hqeX1eZv542cbqar1MrRnG+65oiPZaX5Mf1pdAZ89B/Nfgfg0+N7vodutGnMtIhGhUUu7zmv5YOl2fjNtPXvLPFx1dnN+eVVnzshO8e8N1k+FiQ/AgW3Q/Tbo/zQkZwY2tIhIEGm00p63oZBnJq5m7e4yuuem8+ptPTi/bYZ/Lz5QAFMegjX/hqxOcOckyOsT2MAiIkEo4KW9YU8Zz05aw6x1+8hpmshLP+jOkHNbYvw5nFFXC4tfg5nPgLcWrngCLvoFxBxjIigRkQjgV2kbY64GfgtEA3+y1v66vtcUlnt48dP1vLtoO0mx0Tw8sDN39M6rf0TIIQVLnRONu5Y7w/cGjYGMdv69VkQkTNVb2saYaOAV4EpgB7DYGPOJtXb18V6zr8xD3xdmU1lTx7ALcrn7io5kpsT7l6jqgLNnveg1SMmGG9+Es6/XiUYREfzb0+4FfG2t3QRgjHkP+B5w3NLeXVrFle0zGDGwi/8nGcGZL+TNQVC+B3r9N/R7DBKa+P96EZEw509ptwa2H/H1DuCCb29kjBkODAdo0SaPP93R8+TTNM2DM66Anj+B1uef/OtFRMJcPZN5+M9aO95am2+tzW+dfYrD8KKi4brfq7BFRI7Dn9IuANoc8XWO7zkREWlk/pT2Yo8P3YUAAANJSURBVKCjMaadMSYOuAX4JLCxRETkWOo9pm2trTXG/B8wFWfI3xvW2v8EPJmIiHyHX+O0rbWTgEkBziIiIvVosBORIiISeCptEZEQotIWEQkhKm0RkRBirLUN/6bG7AO2nsZbZAGFDRQn1ETyZwd9fn3+yP38nay1qfVtFJCpWa21zU7n9caYJdba/IbKE0oi+bODPr8+f+R+fmPMEn+20+EREZEQotIWEQkhwVra490O4KJI/uygz6/PH7n8+uwBOREpIiKBEax72iIicgwqbRGREBJUpW2MudoYs84Y87UxZoTbeRqTMeYNY8xeY8wqt7O4wRjTxhgzyxiz2hjzH2PM3W5naizGmARjzCJjzHLfZ3/K7UxuMMZEG2O+MsZMcDtLYzPGbDHGrDTGLKtv6F/QHNP2LSC8niMWEAZ+cKIFhMOJMeZSoBx421p7jtt5GpsxpiXQ0lr7pTEmFVgKXBcJv//GGAMkW2vLjTGxwDzgbmvtApejNSpjzH1APpBmrR3idp7GZIzZAuRba+u9sCiY9rQPLyBsra0GDi0gHBGstXOAYrdzuMVau8ta+6XvcRmwBmd90rBnHeW+L2N9t+DYm2okxpgcYDDwJ7ezBLtgKu1jLSAcEX9p5WjGmDygO7DQ3SSNx3doYBmwF5hurY2Yz+7zIvAg4HU7iEssMM0Ys9S3SPpxBVNpi2CMSQE+BO6x1pa6naexWGvrrLXdcNZg7WWMiZhDZMaYIcBea+1St7O46GJrbQ9gIPBz3+HSYwqm0tYCwhHOdzz3Q+Cv1tp/up3HDdbaEmAWcLXbWRpRH+Ba33Hd94B+xph33I3UuKy1Bb77vcBHOIeLjymYSlsLCEcw38m414E11tqxbudpTMaYZsaYdN/jRJyT8WvdTdV4rLUPW2tzrLV5OH/vZ1prb3M5VqMxxiT7Tr5jjEkGBgDHHUUWNKVtra0FDi0gvAb4eyQtIGyMeReYD3QyxuwwxvzE7UyNrA/wQ5y9rGW+2yC3QzWSlsAsY8wKnJ2X6dbaiBv2FsGaA/OMMcuBRcBEa+2U420cNEP+RESkfkGzpy0iIvVTaYuIhBCVtohICFFpi4iEEJW2iEgIUWmLiIQQlbaISAj5f8M3G99d/GA6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAD4CAYAAAAn3bdmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU5aHG8d+bfSckIWwhBBABFQUMqOAGIsqi1bpgxapt7+XetrfuVdyriFSlYKvWFutSa6u2Wq1lRxYBZVe2EhbZd0hCyEYmy7z3jzMgKJABMjmzPN/PZz4zmZyZPMPycDjnPe9rrLWIiEhoiHI7gIiI+E+lLSISQlTaIiIhRKUtIhJCVNoiIiEkJhBvmpWVZfPy8gLx1iIiYWnp0qWF1tpm9W0XkNLOy8tjyZIlgXhrEZGwZIzZ4s92OjwiIhJCVNoiIiFEpS0iEkJU2iIiIUSlLSISQvwaPWKM2QyUAXVArbU2P5ChRETk2E5myF9fa21hwJKIiEi9dHhERMRtxRv93tTf0rbANGPMUmPM8GNtYIwZboxZYoxZsm/fPr8DiIhErNpqmPMC/P4iv1/ib2n3sdb2AAYCPzfGXPrtDay14621+dba/GbN6r0SU0Qksm2eB3+4GGY+A2de5ffL/Cpta+1O3/1e4COg1ymFFBGJdBVF8PHP4K3BUHsQbv0H3Py23y+v90SkMSYZiLLWlvkeDwCePvXEIiIRyFr46h2Y/jh4yuDie+HSByEu6aTexp/RI82Bj4wxh7b/m7V2ysknFhGJUHvXwIR7YesX0OZCGDIOmp91Sm9Vb2lbazcC553Su4uIRLLqSpg7Bj7/HcSnwLUvQbfbIOrUB+4FZGpWEZGIt/5TmHgflGyB826FASMhOeu031alLSLSkEp3wdSH4T8fQWZHuGMCtLukwd5epS0i0hC8dbD4dZg5Emo90Pcx6HMXxMQ36I9RaYuInK6dy2DCPbDzK2jfFwb/BjI7BORHqbRFRE6VpwxmjoJFf4SkLLjhdTjnBnBG2wWESltE5GRZCwX/hskPQdkuyP8xXPEEJKYH/EertEVETsb+LTD5QVg3BZp3da5mbNOz0X68SltExB91NTD/FfjsOcDAgGfggp9CdOPWqEpbRKQ+Wxc6Jxr3roZOg2Hgc5DexpUoKm0RkeOpLIZPfwVf/hnScuCWv0Hnwa5GUmmLiHybtbDifZj6KBzcDxf9H1z+sHMpustU2iIiRypc71x+vmkOtM6H2z+GFl3dTnWYSltEBKCmCuaNhXnjICYRBo+F8390WpM7BYJKW0RkwyyYeD8Ub4CuN8GAUZDa3O1Ux6TSFpHIVb7XOW698u+Q0R5++BF06Od2qhNSaYtI5PF64cu3nJEhNQfhsofg4vsgNsHtZPVSaYtIZNm9yhlzvX0x5F3iHLtudqbbqfym0haRyFBdAbNHw/zfO3OEXP9HOHdoQCd3CgSVtoiEvzWTnPlCDmyDHrdD/6cgKcPtVKdEpS0i4evAdmcmvjUToFkX+NEUaHuR26lOi0pbRMJPXa0zx/WsZ50VZfr/Ci78OcTEuZ3stKm0RSS8bF8KE+6G3Suh4wAY9AI0zXM7VYNRaYtIeKg6ADOedtZpTG0BN/0ZzvpeyJ1orI9KW0RCm7Ww6kOY+ghU7IML/gf6PgoJaW4nCwiVtoiEruKNzuXnG2ZCy25w6/vQqrvbqQJKpS0ioafWA5//DuaOgahYGPg89PwviIp2O1nAqbRFJLRsngcT7oXCdXDWdXD1aEhr5XaqRqPSFpHQUFEE0x6D5X+D9Fy49R9w5gC3UzU6lbaIBDevF5b9FaY/Dp4yZ2KnS38JcUluJ3OFSltEgtfeAphwH2z9AnIvgiHjILuL26lcpdIWkeBTXQlzXoAvfgfxqXDty9BtWNCtIuMGv0vbGBMNLAF2WGuHBC6SiES09dOdYXwlW+C8W2HASEjOcjtV0DiZPe27gQIgPEesi4i7SnfBlBGw+mPI7Ah3TIB2l7idKuj4VdrGmBxgMDAKuC+giUQksnjrYPGfYMZIqKuGvo9Bn7sgJt7tZEHJ3z3tF4EHgdTjbWCMGQ4MB8jNzT39ZCIS/nYuc1aR2fkVtO8Lg38DmR3cThXU6j2qb4wZAuy11i490XbW2vHW2nxrbX6zZs0aLKCIhCFPGUweAa/1hQM74IbXnUV1Vdj18mdPuw9wrTFmEJAApBlj3rHW3hbYaCISdqyFgk+cwi7bBfk/hiuecJb/Er/UW9rW2oeBhwGMMZcDD6iwReSk7d8Ck34J66dC864w9C+Qk+92qpCjcdoiElh1NTD/ZZj9HJgoGDAKLvhfiFb9nIqT+lWz1s4GZgckiYiEn60LnMmd9q6GzkPg6l9Dehu3U4U0/VMnIg2vshg+fRK+fBvScuCWd6HzILdThQWVtog0HGthxfsw9VE4uB96/wIuGwHxKW4nCxsqbRFpGIXrnUMhm+dCTk8Y8jG06Op2qrCj0haR01NTBfPGwrxxEJvozMTX405N7hQgKm0ROXUbZsHE+5y1GrveBFc9CynZbqcKayptETl55Xud1c9X/gMy2sMPP4YOfd1OFRFU2iLiP68Xlr4Jnz4FtQfhsoeclWRiE9xOFjFU2iLin90rnRON2xdD3iUweCw0O9PtVBFHpS0iJ+Yph9mjYcGrzhwh1/8Rzh0KxridLCKptEXk+NZMcuYLKd0OPW6H/k9BUobbqSKaSltEvuvAdpj8EKyZANlnwY1TIfdCt1MJKm0ROVJdLSz8A8x6FqwX+v8KLvo/iI51O5n4qLRFxLF9KUy42znh2HEADHoBmua5nUq+RaUtEukOlsCMp2HJG5DaAm5+G7pcqxONQUqlLRKprIVVHzoXyVTsc+a47vsIJKS5nUxOQKUtEomKNsCkB2DDTGjVHW5937mXoKfSFokktR74/Hcw5wWIjoOBL0DPn0BUtNvJxE8qbZFIsWmuM7lT4To46zpnFZm0lm6nkpOk0hYJdxWFMO1xWP43SG8Lwz6Ajle6nUpOkUpbJFx5vbDsHZj+BHjKnImdLv0lxCW5nUxOg0pbJBztLXAmd9o6H3J7w5CxkN3F7VTSAFTaIuGkuhLmPA9fvATxqXDty9BtmFaRCSMqbZFwsX46TLwfSrbAebfCgJGQnOV2KmlgKm2RUFe6C6Y8BKv/BVlnwh0ToN0lbqeSAFFpi4Qqbx0s/hPMGAl11dD3MehzF8TEu51MAkilLRKKdi6DCffAzq+gQz8YNAYyO7idShqBSlsklFSVwqxRsGg8JGXBDa/DOTdocqcIotIWCQXWQsEnzsIEZbudS8/7Pe4s/yURRaUtEuz2b3Emd1o/DVp0haHvQE6+26nEJSptkWBVVwPzX4bZz4GJgquehV7/A9H6axvJ6v3dN8YkAHOAeN/2H1hrnwx0MJGItnUB/Pse2FcAnYfAwOegSY7bqSQI+PNPtgfoZ60tN8bEAvOMMZOttQsCnE0k8lQWw6dPwpdvQ5M2cMu70HmQ26kkiNRb2tZaC5T7voz13WwgQ4lEHGth+Xsw7VFn+a/ev4DLRkB8itvJJMj4dXDMGBMNLAXOAF6x1i48xjbDgeEAubm5DZlRJLwVrncmd9o8F3J6wpAXocU5bqeSIOXXLDLW2jprbTcgB+hljPnOnyhr7Xhrbb61Nr9Zs2YNnVMk/NRUwcxR8Gpv2L0ChoyDH09TYcsJndRpaGttiTFmNnA1sCogiUQiwYaZzuROxRuh603OyJCUbLdTSQjwZ/RIM6DGV9iJQH/guYAnEwlHZXuc1c9XfQAZ7eGHH0OHvm6nkhDiz552S+DPvuPaUcDfrbUTAhtLJMx4vbD0Tfj0Kag9CJc95KwkE5vgdjIJMf6MHlkBdG+ELCLhafdKZ8z1jiWQd4lz7Dqro9upJETp0iqRQPGUw+zRsOBVSGwK1/8Rzh2qyZ3ktKi0RQJhzSSY9Eso3Q497oD+v4KkDLdTSRhQaYs0pAPbYdKDsHYiZJ8FN06F3AvdTiVhRKUt0hDqamHhH2DWs2C90P8puOjnEB3rdjIJMyptkdO1fYlzonHPSuh4FQx6AZq2dTuVhCmVtsipOlgCM56GJW9Aaku4+S/Q5RqdaJSAUmmLnCxrYdWHMOVhqCyEC/4X+j0K8aluJ5MIoNIWORlFG5zLzzfOglbdYdg/oFU3t1NJBFFpi/ij1gOf/xbmjIHoOBj4grNOY1S028kkwqi0Reqzaa4zdWrRejj7erhqNKS1dDuVRCiVtsjxVBTCtMdg+buQ3haGfQgd+7udSiKcSlvk27xeWPYOTH8CPGXOxE6X/hLiktxOJqLSFjnK3gLnUMjW+ZDbG4aMhewubqcSOUylLQJQXQlznocvXnKG7l37MnQbBlF+Le4k0mhU2iLrpsGk+6Fkq1PUV46E5Ey3U4kck0pbIlfpLpjyEKz+F2SdCXdOhLyL3U4lckIqbYk83jpY/CeYMRK8NdDvMeh9F8TEu51MpF4qbYksO79yJnfatQw69IPBv3HWahQJESptiQxVpTBrFCwaD8nN4MY34Ozva3InCTkqbQlv1jrHrKeMgLLdzqXn/R6HxHS3k4mcEpW2hK/9m50lv9ZPgxZdYehfIed8t1OJnBaVtoSfuhpnvPVnz4OJgquehV7/A9H64y6hT3+KJbxsme9c0bivADoPgYHPQZMct1OJNBiVtoSHymJnrpCv/gJN2sAP3oNOA91OJdLgVNoS2qyF5e/BtEed5b963wWXj4C4ZLeTiQSESltC1751MPE+2DwXcnrCkBehxTlupxIJKJW2hJ6agzB3LMwb50yXOmQc9LhTkztJRFBpS2jZMBMm3Af7N0HXm+GqUZCS7XYqkUaj0pbQULYHpj4Cqz6AjA7ww4+hQ1+3U4k0OpW2BDevF5a+AZ8+DbUH4bIRcPG9EJvgdjIRV6i0JXjtXulM7rRjCbS7FAaPhayObqcScVW9pW2MaQO8DbQAvMB4a+1vAx1MIpinHGaPhgWvQmJTuH48nHuzJncSwb897Vrgfmvtl8aYVGCpMWa6tXZ1gLNJJFozESY9CKXboccd0P9XkJThdiqRoFFvaVtrdwG7fI/LjDEFQGtApS0Np2QbTH4I1k6E7LPgxmmQe4HbqUSCzkkd0zbG5AHdgYXH+N5wYDhAbm5uA0STiFBXCwtfhVmjwXqh/1Nw0c8hOtbtZCJBye/SNsakAB8C91hrS7/9fWvteGA8QH5+vm2whBK+ti12JnfasxLOvBoGPg9N27qdSiSo+VXaxphYnML+q7X2n4GNJGHvYAnMeAqWvAmpLeHmv0CXa3SiUcQP/oweMcDrQIG1dmzgI0nYshZWfQhTHobKQrjwp9D3EYhPdTuZSMjwZ0+7D/BDYKUxZpnvuUestZMCF0vCTtEGmHg/bJwFrbrDsH9Aq25upxIJOf6MHpkH6P+tcmpqPfD5b2HOGIiOg0FjIP/HEBXtdjKRkKQrIiVwNs1xJncqWg9nXw9XjYa0lm6nEglpKm1peBWFMO0xWP4upLeFYR9Cx/5upxIJCyptaTher7Pc1/QnoLoCLrkfLnnAmfNaRBqESlsaxp7VzpjrbQsgt7ezMEF2Z7dTiYQdlbacnupK+Ow5mP8yxKfB916BbsM05lokQFTacurWTYNJ90PJVqeorxwJyZlupxIJayptOXmlO2HKCFj9L8jqBHdOhLyL3U4lEhFU2uI/bx0seg1mPgPeGuj3GPS+G2Li3E4mEjFU2uKfHV86Jxp3LYMOV8DgMZDR3u1UIhFHpS0nVlXq7Fkvfg2Sm8GNb8DZ39eJRhGXqLTl2KyF1R/D5BFQvgd6/hdc8TgkNHE7mUhEU2nLd+3fDBMfgK+nQ4uucMvfIOd8t1OJCCptOVJttTPe+rPnnQmdrhoNvYZDtP6YiAQL/W0Ux5b5zonGfQXOggRXPwdNWrudSkS+RaUd6SqLnblCvvoLNGkDP3gfOl3tdioROQ6VdqSy1pmFb9pjzvJfve+Cy0dAXLLbyUTkBFTakWjfOudQyJZ5kNPLmdypxTlupxIRP6i0I0nNQZj7G5j3ojNd6pAXoccdEBXldjIR8ZNKO1J8PcNZo3H/Jjh3KAx4BlKy3U4lEhbqvJbK6loqq+uo8Bx9X1ldR0V1LZWeWiqq6w5vV+nxPe/b1l8q7XBXtgemPuysgp7RAW7/F7S/3O1UIq7xei0Ha5zCrPAcXbJOuR76nq9kPbWUe5yy/ebrQ4XsPK6q8fr986OjDElx0STFRZMcF0NSfDRJsf5XsUo7XHm9sPQN+PRpqD0Il42Ai++F2AS3k4n4zVpLVY33cJk6ZemUZ4Wn9pvCPVSyh8r10F7st15T6amlsqYOa/37+XHRUSTF+8o1Lprk+BiS46NpmpxESvwRz8U5zycdeR8XTaLv+05JO/fxMVGYY0wDYX7qXyaVdjjatcI50bhjCbS7FAaPg6wz3E4lEaK2zkuFp44yTw0VnjrKPTWUe+oor3KKtcxXtuWeWsqqvnl8vD1er58FG2UgOT7mqDJNioumVXrC4TJ19mydQj1UwElxR78m2ff9pLgY4mKC73yPSjuceMph9mhY8CokNoXrx8O5N2tyJ6lXndceLs7yQ7eqox8f9T3ftmVVTsEeua2/hwoSYqNI8ZXsobLMSokjNzOJFN9hA2cP9shy/WZv9tAe7qGyPd4ebLhRaYeLggkw+UEo3QHn3wn9f+UUt4Q1r9dSUe2Up3OroayqllLf/ZHPHdqzLT+8B/xNIR+sqfPr58XH+Io2wSnMlIQYslMTaJ/llGvqEc+nxEeTEh9Lcnw0qQkx3zyOjyUpPprY6ODbiw0FKu1QV7LNKeu1kyD7bLjxTci9wO1U4gev11JefXSxflO6333u249Lq2oo99TWe3w2Jso4pekrzlTfHm1eVrJvT/focj10iOHIcj70vIrWfSrtUFVX4xwGmT3a+frKp+HCn0F0rLu5IkxVTR2lB2s4cIxb6cHab31dc3gP+GQLNzUh1ncfQ5uMJFITYkjzPZd2+HvfbJOaEEua7z4hNjIOG0QKlXYo2rYYJtwDe1bBmVfDoBcgPdftVCGrqqaOksoaSg5Wf6doD5Xt8Z7z1J74+G1KfAxNEmNJS3RKNDcj6XC5ph1VtCpc8Y9KO5Qc3A8znoYlb0JqSxj6DnQeohONPtY6J9NKKmvYX1lNcUX14cf7K2vYX1HN/krnOed7zvP1Hc9NTXCK99CtY3bK4cdpvluTY9zSEmKI0eEEaWAq7VBgLaz8wLlIprIILvwp9H0E4lPdThZQXq9lf2U1RRXVFJZ7KCr/5r6owsP+ihqKK78p35LKamrqjn28wRhokhhL06Q40pNiadkkgS4t02iaFEvTZOe59MS4o0s30dnbjY7SP4oSPFTawa5oA0y8DzbOhlbdYdgH0Kqb26lOmae2jn1lHgrLqynyFfC+I4r4UDEXlldTXOE55hjdKAMZyXE0TYqjaXIc7bKS6ZEUR3pSHBnJsaQnOd878nGTRJWvhId6S9sY8wYwBNhrrdVUcI2l1uNM7DT3NxATD4PGQP6PnRVlglBNnZd9ZR72lFaxp9TD3rKqw4/3lFax1/fc/sqaY74+OS6arNR4MpPjaJORRPfcdLJSnK8zU+LJTImjWUo8mSnxpCfGEqUClgjlz572W8DLwNuBjSKHbZrjXNFY9LWz8vlVz0JaS9fiVFbXsrOkip0lB53bgSr2llYdVdBFFdXfGQkRHWXITo0nOy2BtplJ9GqXQfO0eJqlxpOV4twyU+LITI4nMS44/zESCTb1lra1do4xJi/wUYTyfc6iBCveg6Z5MOxD6Ng/4D+2qqaObcWVbC6qZEtRBduKK9nhK+ldBw5+Z+84ykBWSjzN0xJolZ5At9x0slOdr5unxZOdmkDztAQyk+O0RyzSwBrsmLYxZjgwHCA3V8PPTorXC1+9DdOfhOoKuOQBuPQBiE1ssB9xsLqOjYXlbCmqZHNRBVt991uKKtl1oOqobVPjY2jdNJFW6Yn0aJtOq/REWqcn0rJJIq3SnULWRRYi7miw0rbWjgfGA+Tn5/s5xYuwZ7VzKGTbAmjbBwaPhezOp/x2dV7L1uJK1u4upWBXGWt3l7F2TxmbiyqOOnyRlRJH28xkLuqQSduMZPKykmibmUxeZhLpSXEN8MFEJBA0esQt1ZXw2XMw/2WIT4PvvQLdhp3UmOuyqhpW7SilYFcpa3eXsWZ3Kev2lB8ed2wM5GUm06l5Kt/r1oqO2am0zUyibaZzgYeIhB6VthvWTYVJD0DJVuh2m3MJenLmCV/iqa1jza4ylm8vYfm2AyzfXsKGfeWH954zkuPo3CKVW3q1oUuLNDq1SKVj8xSS4vRbLBJO/Bny9y5wOZBljNkOPGmtfT3QwcJS6U6Y/BAUfAJZneDOSZDX5zubWWvZWFjBV1tLWL6thBXbS1i9q/TwhSNZKfGcl9OEa89rxbk5TTirVRrNUuJ1ubNIBPBn9MgPGiNIWPPWwaLxMPMZ8NZCv8eh910Q4xw79not6/aWsWhTMQs3FrNwUzGF5R7Ambuia+sm/OTi9pyX04Rz26TTqkmCClokQun/zoG240tncqddy6HDFTB4DHXp7Vi9s5SFm7azcFMxizcXU+IbVteqSQKXdMyiV7sM8ts2pUOzFA2bE5HDVNqBUnXA2bNe9BqkZFM86I9Msxfx2aRC5n29nrIqZ/XltplJXNmlORe0z+SCdhnkNE3UXrSIHJdKu6FZC6s/xk4eAeV7WJJ9A6OqbmDZPy2wipZNEhh0Tkt6n5HJBe0yadFEC+2KiP9U2g2oYvfXVHx0D9l75lJg2zGi+mnW7OhIz3ZNeTQ/m8s6NaNjdor2pEXklKm0T1NxRTUzV23HzH+Jwfv/QhLRjIm6k+Jz7uCus1pzUYdMkuP1yywiDUNtcgrKPbVMXrmLj5ftoHbj54yMeZ0zo3ZQ0PRyqq4Yxb1nn61pQEUkIFTafqqt8zL360I++nIH01bvJqHmAKNS/s7guBlUp7TGXvMeXToNdDumiIQ5lfYJWGv5z85S/vnlDj5ZvpPCcg9NEmJ4Jm8F1+19lejqUuhzN3GXPQRxyW7HFZEIoNI+hpLKav755Q7eX7yNtXvKiI029OuczW0dPPRZM4qorZ9DTi+45kVofrbbcUUkgqi0fay1LNxUzHuLtjJp1W6qa72c1yadZ647hyFd0klf+hJ8+iLEJcE1v4Xut0OUpicVkcYV8aW9v6KaD5Zu593FW9m4r4LUhBhu6dmGW3rmclarNPh6Brx1P+zfBOcOhQGjIKWZ27FFJEJFbGmv3lnKn7/YzMfLduCp9ZLftik/u+kMBndt6Sx9VbYHPrgHVn0IGR3g9n9B+8vdji0iES6iSru2zsu01Xt464vNLNpUTEJsFN/v0Zo7eufRuUWas5G3zrn0fMZIqD0Ilz8Mfe6BWF25KCLui4jSLvfU8t6irbz5+WZ2lBwkp2kijwzqzM35bY5epWXXCmdypx1Lod1lzioyWWe4F1xE5FvCurR3H6jizS828beFWymrqqVXuwyevOYsrujS/OiLXzzlMOtZWPgqJGXC91+Drjed1CoyIiKNISxLu2BXKa/N2cgny3fitZaBXVvy35e0p1ub9GNsPAEmPwilO+D8H0H/JyGxaeOHFhHxQ1iV9tIt+3ll1tfMXLOXpLhobruwLT+5uB1tMpK+u3HJVmcVmbWTIPtsuOktaNOr0TOLiJyMkC9tay2ff13Ey7PWs2BjMelJsdx35ZncflHbY68qXlcDC16F2aOdr68cCRf+FKK10K2IBL+QLW2v1/JpwR5emb2B5dtKyE6N57HBXfhBr9zjz6q3bRFMuBf2rIIzB8Kg5yE9t3GDi4ichpArba/XMuU/u/ndjPWs2V1Gm4xERl1/Djeen0N8TPSxX3RwP3z6FCx9C1JbwtB3oPMQnWgUkZATMqVtrWXa6j2Mm76ONbvL6NAsmXFDz+Oac1sRE32cy8mthZX/gKmPQGURXPgz6PswxKc2bngRkQYS9KVtrWXW2r2Mnb6OVTtKaZeVzItDu3HNea1OPGd10QaYeB9snA2tesBtH0LL8xott4hIIARtaVtrmbu+kLHT17FsWwm5GUmMuek8rut2gj1rgFoPzBsHc8dCTDwMGgP5P4ao4xw6EREJIUFZ2l9sKGTc9HUs3ryf1umJ/Pr7Xbnh/BxiT1TWABs/c/aui76Gs78PV4+G1BaNE1pEpBEEVWmv2F7Cryev4YsNRbRIS2Dkdedwc/4JTjAeUr4Ppj0KK96HpnnOoZAz+jdKZhGRxhQUpb2lqIIXpq5lwopdZCTH8cSQs7j1glwSYuspa68Xvnobpj8J1RVwyQNw6QMQm9g4wUVEGpmrpV1Y7uGlGev568KtxEZH8Yt+ZzD80vakJvhxocue1c6Y620LoG0fGDIOmnUKfGgRERe5UtoVnlpen7eJP362gapaL0N7tuGeKzqSnebH9KfVFfDZczD/FYhPg+/9HrrdqjHXIhIRGrW067yWD5Zu4zfT1rG3zMNVZzfnl1d15ozsFP/eYN1UmPgAHNgK3W+D/k9DcmZgQ4uIBJFGK+156wt5ZuJq1uwuo3tuOq/e1oPz22b49+IDO2DKQ1Dwb8jqBHdOgrw+gQ0sIhKEAl7a6/eU8eykAmat3UdO00Re+kF3hpzbEuPP4Yy6Wlj8Gsx8Bry1cMUTcNEvIOYYE0GJiEQAv0rbGHM18FsgGviTtfbX9b2msNzDi5+u491F20iKjebhgZ25o3de/SNCDtmx1DnRuGu5M3xv0BjIaOffa0VEwlS9pW2MiQZeAa4EtgOLjTGfWGtXH+81+8o89H1hNpU1dQy7IJe7r+hIZkq8f4mqDjh71oteg5RsuPFNOPt6nWgUEcG/Pe1ewNfW2o0Axpj3gO8Bxy3t3aVVXNk+gxEDu/h/khGc+ULeHATle6DXf0O/xyChif+vFxEJc/6Udmtg2xFfbwcu+PZGxpjhwHCAFm3y+NMdPU8+TdM8OOMK6PkTaH3+yb9eRCTM1TOZBwDHOi5hv/OEteOttfnW2vzW2ac4DC8qGq77vQpbROQ4/Cnt7UCbI77OAXYGJqlp18oAAANYSURBVI6IiJyIP6W9GOhojGlnjIkDbgE+CWwsERE5lnqPaVtra40x/wdMxRny94a19j8BTyYiIt/h1zhta+0kYFKAs4iISD38OTwiIiJBQqUtIhJCVNoiIiFEpS0iEkKMtd+5Tub039SYfcCW03iLLKCwgeKEmkj+7KDPr88fuZ+/k7U2tb6NAjI1q7W22em83hizxFqb31B5Qkkkf3bQ59fnj9zPb4xZ4s92OjwiIhJCVNoiIiEkWEt7vNsBXBTJnx30+fX5I5dfnz0gJyJFRCQwgnVPW0REjkGlLSISQoKqtI0xVxtj1hpjvjbGjHA7T2MyxrxhjNlrjFnldhY3GGPaGGNmGWMKjDH/Mcbc7XamxmKMSTDGLDLGLPd99qfczuQGY0y0MeYrY8wEt7M0NmPMZmPMSmPMsvqG/gXNMW3fAsLrOGIBYeAHJ1pAOJwYYy4FyoG3rbXnuJ2nsRljWgItrbVfGmNSgaXAdZHw+2+MMUCytbbcGBMLzAPuttYucDlaozLG3AfkA2nW2iFu52lMxpjNQL61tt4Li4JpT/vwAsLW2mrg0ALCEcFaOwcodjuHW6y1u6y1X/oelwEFOOuThj3rKPd9Geu7BcfeVCMxxuQAg4E/uZ0l2AVTaR9rAeGI+EsrRzPG5AHdgYXuJmk8vkMDy4C9wHRrbcR8dp8XgQcBr9tBXGKBacaYpb5F0o8rmErbrwWEJbwZY1KAD4F7rLWlbudpLNbaOmttN5w1WHsZYyLmEJkxZgiw11q71O0sLupjre0BDAR+7jtcekzBVNpaQDjC+Y7nfgj81Vr7T7fzuMFaWwLMBq52OUpj6gNc6zuu+x7QzxjzjruRGpe1dqfvfi/wEc7h4mMKptLWAsIRzHcy7nWgwFo71u08jckY08wYk+57nAj0B9a4m6rxWGsfttbmWGvzcP7ez7TW3uZyrEZjjEn2nXzHGJMMDACOO4osaErbWlsLHFpAuAD4eyQtIGyMeReYD3Qyxmw3xvzE7UyNrA/wQ5y9rGW+2yC3QzWSlsAsY8wKnJ2X6dbaiBv2FsGaA/OMMcuBRcBEa+2U420cNEP+RESkfkGzpy0iIvVTaYuIhBCVtohICFFpi4iEEJW2iEgIUWmLiIQQlbaISAj5fyQGHeDRYSOcAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -424,7 +468,7 @@ } ], "source": [ - "plotFuncs(IndShockExample.solution[0].cFunc.functions,-0.25,5.)" + "plotFuncs(IndShockExample.solution[0].cFunc.functions, -0.25, 5.0)" ] }, { @@ -457,7 +501,7 @@ "metadata": {}, "outputs": [], "source": [ - "IndShockExample.track_vars = ['aNrmNow','mNrmNow','cNrmNow','pLvlNow']\n", + "IndShockExample.track_vars = [\"aNrmNow\", \"mNrmNow\", \"cNrmNow\", \"pLvlNow\"]\n", "IndShockExample.initializeSim()\n", "IndShockExample.simulate()" ] @@ -476,7 +520,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxddZ3/8dcn+940Tdp0T/fSFigQCgiMBUcBURm3EXTEdXD8zSjOOL9xGJxBx9/8Zhwdfy6oDCqCjoMrKgOIKLKDSAuF7rR0X9IszX6T3O3z++Pe0HRJctPk5ubmvJ+Px3009yz3fE5Pcj73u5zv19wdEREJrpxMByAiIpmlRCAiEnBKBCIiAadEICIScEoEIiIBl5fpAEaqurra6+rqMh2GiEhWWb9+fbO715xqXdYlgrq6OtatW5fpMEREsoqZ7R1snaqGREQCTolARCTglAhERAJOiUBEJOCUCEREAk6JQEQk4JQIREQCTolAJKB2NnZy19N7CIWjmQ5FMizrHiiT9OiNxHCH4oLcTIeSUeFonJePdLJ4ehlF+Zn7v+ifJ8TMxuTznnmlhfV7j1JXXcrcqSX8aN1+fvTcfmJx5ztP7ubf3n4mr1lUPSbHyrRY3Im7k587dt9ze8IxwtE4jlNckEth3sh+N6KxOLubuznS0Ud93dTjfrd6IzH2toTY1dRFaWEelyyuJidnbK57qpQIAs7duX/jYT5z72Z6I3Fu+KOFfPjSBZQUBOtX4+mdzfx43X4e3tZIZ2+U0oJcLls+nfr5U8nPy6EwL5c1dVXMm1aSthgOtvXwyw0HeeaVFtbtaSU3x5hVWUR1WSHRmBOOxSkvymPO1GJmTimmqrSAqtICFtWUsXRG2atJoycc42BbD72RGEc6evnWE7v4/a6jxx0rL8d474XzuXRJNZ+7bwvv/taznD23khnlhcycUsTaZdO5eHE1BXk5RGNxjnaHqSkvPO3E1Nod5tebG9iwv423njObCxZOG/X/16k8tLmBz/7PFjp7I3zyDct4zwXzyBsiIfRGYjy6vYmHtx5h9tRirr+ojqrSAgAOtfXw0OYGHtjYwHN7j9I/h5cZzJlazKKaMq5aVcs1q2ef9KUhFI7y/N42nnqlmadfaWHr4Q7C0TgAZYV5XLGylqrSfP6wp5XNB9uJxo9NELZ4ehkfvmQBVaUFNHX10RuJU11WwLTSQhbWlDKrsniM/9fAsm2Gsvr6etcQEyMTjsb5yfr9/HLDIZo7+2jpDlNWmMeSGWVEYnGe2tnCWXOmMHNKEb/efITqskIuXjyN5bUVLJ5exuzKYmZXFlNWlEduGr+pRGNxXjrYTnNnH62hMFWlhayYVcGsKUVj9s0YEn/8fZHETfVgWw+fu28LD205QmVJPq8/YwYXLpzGur2tPLS5gZbu8HH7rp5bycWLp5Gbk4MBS2eUc/HiaRTl53L/S4f50XP76YvFWVxTxpIZZZwxs4IVMyuoKS8cNJ7mrj5u/d1O/vvZfYRjcZbOKOPChdPIMeNQWw8t3WHyc4383Bw6eiIcbOuhuev4uGZNKeKChdPY3dzNphNuLDXlhXz0tYt4+7lzONAWYldTN2fNmcL8aaVAInF889GdPL+vjabOPva3hgiFY1QU5VE7pYjdzd1EYs4VK2fwr28769UbZTQWJzfHTnltWrvD3L/xMNsbOtnW0MEL+9qIxp2C3BzCsTiXL5/Op65czrLa8tO9jBxu7+HJHc3JpBdn6+EOHnu5iWUzyqkuL+CpnS0snVHGaxZVM620gPKiPGKeiHvf0RA7jnSx6VA7oXCM8qI8OnujFOXncNmy6Wxv6GRXczcAy2aU84aVM6gsKcCA9p4Iu5q72XywnV3N3VSW5PO65TPIzUn8rW0/0sX2hg7inki4q+dWcu78qSyvLaeyJJ8HNzXwq40N9EXjrJ5bSX3dVJbVlrOwuoxdzV3c9tguth7uOOU5f+S1C7npqjNO6//LzNa7e/0p1ykRTF7uzi82HORLv3mZ/Ud7OGNmBQtrSqkqKaC9J8LLRzpp6Q5zw6UL+cDFdeTl5rB+byv/+dgrbDrYzqH23pM+MzfHmF1ZzM1Xn8EVK2vHLNbuvigf+f56ntzZfNK64vxc8pIJqCAvh7KiPIrzc+nsjdIWCjOrspi/fv1SrlpVO2TCiMbi/Nfv9/Ifv3mZzt4oOZaoeinIzeGvLl/Mhy9dcFyRPxZ3WkNhYnGnszfCb7c2cu+GQ2w54Y/UDMoK8ujsi7KwupTaKUXsbOyisbPv1W0GHuvaNXO58XVLKMrP5Y6ndvP13+2kJxLjnefN5WOvW8ycqcOXOvqiMdpCEY52h3lxfxu/29bI8/taWVBdSn1dFctryykpyKOkIJdz500dUZVfXzTGUzubeWBjA22hMIunl2MG335iF1NLCvjT+rms23uU9XsTpZaZU4qZP62Ey5ZN59Il1Ty05Qhff2Qnnb1RyovyWDajnPq6Kt501kwW1ZTx3ad3881HX6G7L8q1a+bxN69fSnXZqRPl0zub+dYTu9jf2sOhth5yzZhWVoCZsTt5owYoyM2hojifP790AR+8ZAF5OcZDW47w1Yd3sO9oiM7e49tBKoryWDqjnJWzKnjDylouWFDFnpZubn98F49sb+LM2VN4zaJprF02ncXTy04Zm7vz+11HuevpPazf10quGbk5xsKaUs6ZW8k586dyfl0VZYUnl677q5lOVcXk7mw82I5hVJcXUJSXS0t3mJauPmrKC1lYc+p4hqNEEEB7W7q56Z6NPP1KC6tmV/DJNyxj7dKaEX2zbg9F2N3SzcHkH2EoHCMci/Hw1ka2NXRyxcoZvO+iOuZMLaG8KI/tRzrZcqiD4oJczps/lcU1ZbT1RNjT0k1RXi7La8tfrft0T1R1FObl0h6K8P47/8CL+9v49NUrWLOgiinF+TR29rHlcAe7m7pxHMPoi8bo6ou++i2usriAJ3Y0saOxi7PmTOHda+bxujNmUFNeSDga52BbD680drGjsYtfbjjItoZOLl1SzWuX1tAWiuA4f3bhfGZOSb247e6YGdFYnBcPtPPEjiYOtvZwzerZXLx42qv/x+2hCFsOd7DlcAetyZLFobYefrHhIGWFeVQU53OgtYc/PmMGf3/V8kFvOBPF5kPtfOKHG9jR2MUZMyu4eNE0zOBwey9bDnewq+nYjfny5dP55BuWsmJmxaAlhq88vIP/+v1eCvJyWDy9jMqSAhbXlHH9RfOpqy7l7j/s49O/2ERtRRGrZlcwq7IYd2jpDtMbibGmropLl1azZHr5sCXV3kiMUDhGrhk5OYnqmbEsZWYDJYJJJhSOsm5PK3OmFrOguhQzo7mrjxf3t7HlUAdbGzr43bZG8nNyuOmNZ3Dt+XPHtPEpEovzrSd28ZXf7qAvWe95Kvm5RiR27PeruqyQCxZW0dTZx9ZDHXT2RakoyiMnxwj1xfjqdau5ctXMEccTizv3PH+AWx/Zyd6WEGYwvbyQps4+BtSQsLC6lP99xTKuHKbkkG7bGzr5/IPbaA2F+ZvXL+XSJaccGXhCisWdrr4oU4rzT1q3q6mLJ3c2s2xGecptAK80dfHtJ3ZzqK2H1lCYbYc7icQTVSYv7Gtj7bIavnbdOZQXnXw8GRklgknA3XluTys/XrefX208THc4BkBlST5lhXkcaO15ddv500o4v66Kv33DMmqnFKUtpuauPl5u6ORAaw/tPREWzyhj5awKQn0x1u9tZfuRTqaXF7KgupS2UITHXm5i3Z6j1E4pYsWsCqaXF9HS1UdrKMK1a+aOuteKu7OtoZNfb25gX0uIOVUlzJ1azKLpZSyeXkaFbiYTXmNHL3c9s4cf/mE/bz57Fp+++owhG3sldUoEWeRod5jNh9rZfKiDSDROVVkB4WicHz23n20NnZQV5nH1mTO5clUtRzp6eX5fK93hGGfPmcLquVNZMavilHWSIhJsQyUC3TEmkO8+tZt/vm8Lp8rNK2ZW8G9vO5NrVs8+ruHv2jXzxjFCEZmMlAgmiCd3NPO5+7awdmkNf37pQlbMqqAoP5fWUJi+SJz500oC17glIuMjbYnAzO4A3gQ0uvuqQbZZC3wZyAea3f216YpnItt/NMTH7n6eRTVlfO3d5x5XtTOS3iwiIqcjnSWCO4Fbge+daqWZVQLfAK50931mNj2NsUw4Hb0Rfv78QbYc6uCJHU1E487t19erfl9Exl3a7jru/riZ1Q2xybuBe9x9X3L7xnTFMtG4Ox+/+wUe3d5EVWkBZ8ws52OXL2FBdWmmQxORAMrk18+lQL6ZPQqUA19x98FKDzcANwDMm5f9jaMPb23k0e1N3HTVcm74o4Wq+xeRjMpkB9084DzgauAK4B/NbOmpNnT329293t3ra2qy5+GbU+mNxPjn+7aweHoZH7xkgZKAiGRcJksEB4AWd+8Gus3sceBs4OUMxpR233lyN/uOhvj+h9aM6TC5IiKnK5N3ol8Cl5hZnpmVABcAWzMYT9pta+jg1t/t5A0rZmTVsAIiMrmls/vo3cBaoNrMDgC3kOgmirvf5u5bzexB4CUgDnzb3TelK55MO9LRywe/+xwVxXl89pqVmQ5HRORV6ew1dF0K23wB+EK6YpgouvuifPDO52jvifDjv7hIzwaIyISiTutp1NUX5afr9nPn03vYdzTEd953PitnTcl0WCIix1EiSJOdjZ2847ZnaAtFWD23klvevJLLlgfqmTkRyRJKBGkQjzs33bMRgJ999DWcN39qhiMSERmc+i+mwY/X7ee5Pa38wxvPUBIQkQlPiWCMNXX28X8f2MoFC6p453lzMh2OiMiwlAjG2P+5fwu9kTj/8tYz9dSwiGQFJYIx9OSOZn654RB/sXbRhJ+IXESknxLBGOmNxPjHX26ibloJ/2vtokyHIyKSMvUaGiP/+dgudjd38/0PraEoP3f4HUREJgiVCMbAvpYQX390J28+e5bGEBKRrKNEMAa+8+QucPj01WdkOhQRkRFTIhilzt4IP11/gDedNZMZFUWZDkdEZMSUCEbp5y8cpDsc4/rX1GU6FBGR06JEMAruzl1P7+HsOVNYPbcy0+GIiJwWJYJReGpnC680dXP9RXWZDkVE5LQpEYzCXc/sYVppAVefNTPToYiInDYlgtN0pKOXh7ce4Z31c/XcgIhkNSWC0/TT9QeIO7zr/LmZDkVEZFSUCE6Du/OTdftZs6CKBdWlmQ5HRGRUlAhOwx92H2VPS4h31as0ICLZT4ngNPxo3X7KCvO46szaTIciIjJqSgQj1NEb4YGNh3nz2bMoKdCYfSKS/dKWCMzsDjNrNLNNg6xfa2btZrYh+fqndMUylh546TC9kbgaiUVk0hg2EZjZxWZWmvz5z8zsS2Y2P4XPvhO4cphtnnD31cnXP6fwmRn3wKYG5k8r4ew5UzIdiojImEilRPBNIGRmZwOfBF4BvjfcTu7+OHB0dOFNLO09EZ7e2cyVK2s1DaWITBqpJIKouztwDXCru38dKB+j419kZi+a2a/MbOVgG5nZDWa2zszWNTU1jdGhR+6RbY1E484Vq9RILCKTRyqJoNPMbgLeC9xvZjlA/hgc+3lgvrufDXwN+MVgG7r77e5e7+71NTWZm/jlwU0NzKgoZPUcDTAnIpNHKongXUAf8EF3bwDmAF8Y7YHdvcPdu5I/PwDkm1n1aD83XXrCMR59uZErVtaSk6NqIRGZPIZNBMmb/8+AwuSiZuDnoz2wmdVasqLdzNYkY2kZ7eemy2MvN9EbiXPFSlULicjkMmxHeDP7c+AGoApYBMwGbgNeN8x+dwNrgWozOwDcQrJKyd1vA94BfNTMokAPcG2yLWJCemhzA5Ul+axZUJXpUERExlQqT0T9JbAGeBbA3XeY2fThdnL364ZZfytwaypBZlos7vx26xFev6KW/Fw9gycik0sqd7U+dw/3vzGzPGDCfnNPh93NXXT0RrlwoUoDIjL5pJIIHjOzfwCKzez1wE+A/0lvWBPLxoPtAJyph8hEZBJKJRH8PdAEbAQ+AjwAfDqdQU00Gw90UJSfw+KaskyHIiIy5lJpIygG7nD3bwGYWW5yWSidgU0kmw62c8bMCvLUPiAik1Aqd7aHSdz4+xUDv01POBNPPO5sPtTOmbNVLSQik1MqiaCo/8EvgOTPJekLaWLZ1dxNdzjGKiUCEZmkUkkE3WZ2bv8bMzuPRL//QNjU31CsRCAik1QqbQQ3Aj8xs0OAAbUkhp0IhI0H2ynMy2HJdDUUi8jkNGQiSDYMXwosB5YlF29390i6A5soNqqhWEQmuSHvbu4eA65z94i7b0q+ApME4nFny6EOVQuJyKSWStXQU2Z2K/AjoLt/obs/n7aoJog9Ld109UWVCERkUkslEaxO/jtwKkkHLh/7cCaW/ieK1WNIRCazYROBu182HoFMRJsOtlOQl8OSGWooFpHJK5VhqP/pVMuzZbL50XjpQDsrZ1VoxFERmdRSeo5gwCsGXAXUpTGmCSEedzYdbOcsVQuJyCSXStXQfwx8b2ZfBH6dtogmiP4nis/U/MQiMsmdTp1HCYl5iye1jQfbADhLQ0+LyCSXShvBRo5NRJML1HB8D6JJ6aUD7RTn57JIQ0+LyCSXSvfRNw34OQoccfdomuKZMF460M6q2RXk5limQxERSathq4bcfS9QCbwZeCuwIt1BZVo0Fk8OPa32ARGZ/IZNBGZ2I/ADYHry9QMz+1i6A8uknU1d9Ebiah8QkUBIpWroQ8AF7t4NYGafB54BvpbOwDLppQOJJ4qVCEQkCFLpNWQknh/oF0suG3onszvMrNHMNg2z3flmFjWzd6QQy7jYeKCd8sI86qaVZjoUEZG0S6VE8F3gWTP7OYkEcA3wnRT2uxO4FfjeYBskh7n+PPBQCp83bl462M6q2VPIUUOxiARAKo3FXwI+ABwFWoAPuPuXU9jv8eQ+Q/kY8DOgcfhQx0c4Gmfr4Q5VC4lIYKTSWLwI2OzuXwU2Apea2ai705jZbBK9kL6ZwrY3mNk6M1vX1NQ02kMPad/RbsLROGfMrEjrcUREJopU2gh+BsTMbDFwGzAX+O8xOPaXgU+5e3y4Dd39dnevd/f6mpqaMTj04Pa2hACYP60krccREZkoUmkjiLt71MzeBtzq7l8zsxfG4Nj1wA/NDKAaeKOZRd39F2Pw2aftWCJQQ7GIBEMqiSBiZtcB15N4qAwgf7QHdvcF/T+b2Z3AfZlOAgB7W7opL8xjasmoT1FEJCukkgg+APwF8C/uvtvMFgDfH24nM7sbWAtUm9kB4BaSCcTdbzvtiNNs79EQ86aVkCypiIhMeqkMQ73FzD4FzEu+302iy+dw+12XahDu/v5Ut023fS0hls8sz3QYIiLjJpVeQ28GNgAPJt+vNrN70x1YJsTizv7WEPOq1D4gIsGRSq+hzwBrgDYAd98ALExjTBlzuL2HSMzVY0hEAiWVRBBx9/YTlg3b5TMb7evvMVSlRCAiwZFKY/FmM3s3kGtmS4CPA0+nN6zM2Hs0kQjmqUQgIgGSSongY8BKoI/Eg2TtwCfSGVSm7G0JkZ9rzJxSnOlQRETGzZAlguSgcPe7+2XAzeMTUubsbelmblWJZiUTkUAZskTg7jEgbmaBGIFtb0tI7QMiEjiptBF0ARvN7DdAd/9Cd/942qLKAHdn39EQaxZUZToUEZFxlUoiuCf5mtSOdofp6osyTyUCEQmYVJ4svms8Asm0/h5DeoZARIImlV5DgbBPw0+LSEApESTtbQlhBnOmKhGISLCkMtbQO1NZlu32Hu2mtqKIovzcTIciIjKuUikR3JTisqzW0N7LrEo9SCYiwTNoY7GZXQW8EZhtZl8dsKoCiKY7sPF2pKOXZbUaflpEgmeoEsEhYB3QC6wf8LoXuCL9oY2vxo4+ppcXZToMEZFxN2iJwN1fBF40s/9ObjfP3bePW2TjqLsvSmdflBkVSgQiEjyptBFcySSfmOZIRy8AtVMKMxyJiMj4O92JaRYMtUO2OdLRB8AMVQ2JSACd7sQ0no5gMqWxM1EimK6qIREJIE1Mw7GqoRkVqhoSkeA5nYlpOoAb0xnUeDvS0UdJQS5lhankRRGRySWVRHCdu9/s7ucnXzcDnx1uJzO7w8wazWzTIOuvMbOXzGyDma0zs0tGGvxYaejoZUZFEWaakEZEgieVRPB2M3tP/xszuxWoSWG/O0n0OBrMw8DZ7r4a+CDw7RQ+My0aO3pVLSQigZVKXcjbgXvNLE7ixt7m7h8abid3f9zM6oZY3zXgbSkZbIA+0tHHOfMqM3V4EZGMGrREYGZVZlYFFAMfBv4O6AQ+m1w+amb2VjPbBtxPolQw2HY3JKuP1jU1NY3FoV/l7hxJVg2JiATRUFVD60kMMbEOeASoBK4esHzU3P3n7r4c+BPgc0Nsd7u717t7fU1NKrVSqevoidIXjTO9XFVDIhJMQw0xscDMcoCL3P2pdAaRrEZaaGbV7t6czmOd6Ehnf9dRlQhEJJiGbCx29zhwazoObGaLLdlNx8zOBQqBlnQcaygN7UoEIhJsqTQWP2xmbwfucfeUG3TN7G5gLVBtZgeAW4B8AHe/jUQj9PVmFgF6gHeN5PPHih4mE5GgSyURfAT4GyBqZr2AAe7uFUPt5O7XDbP+88DnUw00XRo7k+MMqUQgIgE1bCJw90k9W8uRjl6mFOdrikoRCayUxlQws6nAEuDVr83u/ni6ghpPR/QwmYgE3LCJwMw+TGJsoTkk5iW4EHgGuDy9oY2Pho4+VQuJSKClMsTEjcD5wF53vww4h+TcBJNBY0evpqgUkUBLJRH0unsvgJkVuvs2YFl6wxof8bjT2NmnqiERCbRU2ggOmFkl8AvgN2bWCuxNb1jjo6U7TCzu1E5RiUBEgiuVXkNvTf74GTN7BJhCcv7ibNf/DIGGlxCRIEulaggzm2pmZ5EYdO4AsCqtUY2Tlu4wANPKlAhEJLhS6TX0OeD9wC4gnlzsTIJeQ22hRCKYWpKf4UhERDInlTaCPwUWuXs43cGMt9ZkiaCypCDDkYiIZE4qVUObSAxBPem0hiIAVBarRCAiwZVKieBfgReScw/39S9097ekLapx0hYKU1GUR15uSk0lIiKTUiqJ4C4Sg8Nt5FgbwaTQGoowtVTVQiISbKkkgpC7fzXtkWRAayis9gERCbxUEsETZvavwL0cXzX0fNqiGietoTDV6joqIgGXSiI4J/nvhQOWTYruo63dEZZOn9SjbIuIDCuVJ4svG49AMqFNVUMiIqk9WTwZhaNxusMxPUwmIoEX2ETQ/1RxpXoNiUjABTYR9D9MphKBiARdqlNVvgaoG7i9u38vTTGNi6Pd/eMMqUQgIsGWyqBz3wcWkZimMpZc7EBWJ4JjA84pEYhIsKVSIqgHVri7j+SDzewO4E1Ao7ufNGy1mb0H+BRgJIa3/qi7vziSY4zGq1VDpaoaEpFgS3XQudrT+Ow7gSuHWL8beK27nwl8Drj9NI5x2lpVIhARAVIrEVQDW8zsD4xg0Dl3f9zM6oZY//SAt78H5qQQy5hpC4Upys+hKD93PA8rIjLhpJIIPpPuIIAPAb8abKWZ3QDcADBv3rwxOWBrKKLSgIgIqT1Z/Fg6AzCzy0gkgkuGiOF2klVH9fX1I2qrGIyeKhYRSRi2jcDMLjSz58ysy8zCZhYzs46xOHhyHuRvA9e4e8tYfGaqjnaHqVJDsYhISo3FtwLXATuAYuDDwNdHe2AzmwfcA7zX3V8e7eeNVFsoohKBiAgpPlDm7jvNLNfdY8B3zewF4Kah9jGzu4G1QLWZHQBuAfKTn3cb8E/ANOAbZgYQdff60z2RkWoNhfVUsYgIKU5MY2YFwAYz+3fgMCmUJNz9umHWf5hE6WLcxeNOe48ai0VEILWqofcmt/sroBuYC7w9nUGlW0dvhLijqiEREVLrNbTXzIqBme7+2XGIKe36nypWY7GISGq9ht5MYpyhB5PvV5vZvekOLJ36B5xTiUBEJLWqoc8Aa4A2AHffACxIY0xppwHnRESOSSURRNy9/YRlY/JQV6ZoLgIRkWNS6TW02czeDeSa2RLg48DTw+wzob06O5lKBCIiKZUIPgasJDHg3N1AB/CJdAaVbq2hMLk5RkVRSo9RiIhMaqn0GgoBNydfk0JiwLl8kg+yiYgE2qCJYLieQcMNQz2RacA5EZFjhioRXATsJ1Ed9CyJmcQmhaPdGl5CRKTfUImgFng9iQHn3g3cD9zt7pvHI7B06uiJMquyKNNhiIhMCIM2Frt7zN0fdPf3ARcCO4FHzeyvxi26NOnsi1BepBKBiAgM01hsZoXA1SRKBXXAV4Gfpz+s9OrqjVJWqB5DIiIwdGPx94BVwAPAZ91907hFlUbuTmdvlHJ1HRURAYYuEfwZidFGbwQ+PqCrpQHu7hVpji0t+qJxonGnTIlARAQYIhG4eyoPm2Wdjt7E8BJqIxARSZiUN/uhdPZGAShXG4GICBDARNDVnwhUNSQiAgQwEbxaIlDVkIgIEMBE0NWXaCNQ91ERkYTAJYIOVQ2JiBwncIlAbQQiIsdLWyIwszvMrNHMTvkgmpktN7NnzKzPzP42XXGcqL+NQFVDIiIJ6SwR3AlcOcT6oyRmO/tiGmM4SWdvhOL8XPJyA1cYEhE5pbTdDd39cRI3+8HWN7r7c0AkXTGcSlefhpcQERkoK74Wm9kNZrbOzNY1NTWN6rM6e6MaXkJEZICsSATufru717t7fU1Nzag+q7MvqmcIREQGyIpEMJY6eyOatF5EZIDAJQLNRSAicry03RHN7G5gLVBtZgeAW4B8AHe/zcxqgXVABRA3s08AK9y9I10xAZqLQETkBGm7I7r7dcOsbwDmpOv4g+nsjVBWqDYCEZF+gaoaisWd7nBMJQIRkQEClQi6+jS8hIjIiZQIREQCLlCJoLO3fwhqtRGIiPQLVCLQyKMiIicLVCLoVCIQETlJoBJBR7JqSIlAROSYQCWCY43FaiMQEekXqESgSWlERE4WqETQ1Rslx6CkIDfToYiITBiBSgSJ4SXyMLNMhyIiMmEELBFoLgIRkRMFKxFomkoRkZMEKxH0RpQIRC81MnkAAAbySURBVEROEKhE0KVpKkVEThKoRNCp2clERE4SqETQpdnJREROEqhE0NkbpUyJQETkOIFJBL2RGOFYnAq1EYiIHCcwiaB/nCG1EYiIHC8wiUBDUIuInFpgEsGxSWlUNSQiMlDaEoGZ3WFmjWa2aZD1ZmZfNbOdZvaSmZ2brlhg4DSVKhGIiAyUzhLBncCVQ6y/CliSfN0AfDONsdCpietFRE4pbYnA3R8Hjg6xyTXA9zzh90Clmc1MVzzVZQVctaqW6rLCdB1CRCQrZfLr8Wxg/4D3B5LLDp+4oZndQKLUwLx5807rYOfNr+K8+VWnta+IyGSWFY3F7n67u9e7e31NTU2mwxERmVQymQgOAnMHvJ+TXCYiIuMok4ngXuD6ZO+hC4F2dz+pWkhERNIrbW0EZnY3sBaoNrMDwC1APoC73wY8ALwR2AmEgA+kKxYRERlc2hKBu183zHoH/jJdxxcRkdRkRWOxiIikjxKBiEjAKRGIiAScJarqs4eZNQF7T3P3aqB5DMPJtMl0PjqXiUnnMjGdzrnMd/dTPoiVdYlgNMxsnbvXZzqOsTKZzkfnMjHpXCamsT4XVQ2JiAScEoGISMAFLRHcnukAxthkOh+dy8Skc5mYxvRcAtVGICIiJwtaiUBERE6gRCAiEnCBSQRmdqWZbU/Okfz3mY5nJMxsrpk9YmZbzGyzmd2YXF5lZr8xsx3Jf6dmOtZUmVmumb1gZvcl3y8ws2eT1+dHZlaQ6RhTYWaVZvZTM9tmZlvN7KJsvS5m9tfJ369NZna3mRVl03U51Tzpg12L8Z4zfaQGOZcvJH/PXjKzn5tZ5YB1NyXPZbuZXTHS4wUiEZhZLvB1EvMkrwCuM7MVmY1qRKLAJ919BXAh8JfJ+P8eeNjdlwAPJ99nixuBrQPefx74f+6+GGgFPpSRqEbuK8CD7r4cOJvEOWXddTGz2cDHgXp3XwXkAteSXdflTk6eJ32wazGuc6afhjs5+Vx+A6xy97OAl4GbAJL3gmuBlcl9vpG856UsEIkAWAPsdPdd7h4GfkhizuSs4O6H3f355M+dJG42s0mcw13Jze4C/iQzEY6Mmc0Brga+nXxvwOXAT5ObZMW5mNkU4I+A7wC4e9jd28jS60JiNOJiM8sDSkhMG5s112WQedIHuxbjOmf6SJ3qXNz9IXePJt/+nsRkXpA4lx+6e5+77yYxtP+akRwvKIlgsPmRs46Z1QHnAM8CMwZM5tMAzMhQWCP1ZeDvgHjy/TSgbcAvebZcnwVAE/DdZDXXt82slCy8Lu5+EPgisI9EAmgH1pOd12Wgwa5Ftt8TPgj8KvnzqM8lKIlgUjCzMuBnwCfcvWPguuT8DhO+L7CZvQlodPf1mY5lDOQB5wLfdPdzgG5OqAbKousylcQ3ywXALKCUk6smslq2XIvhmNnNJKqLfzBWnxmURJD18yObWT6JJPADd78nufhIf3E2+W9jpuIbgYuBt5jZHhJVdJeTqGevTFZJQPZcnwPAAXd/Nvn+pyQSQzZelz8Gdrt7k7tHgHtIXKtsvC4DDXYtsvKeYGbvB94EvMePPQQ26nMJSiJ4DliS7AFRQKJh5d4Mx5SyZB36d4Ct7v6lAavuBd6X/Pl9wC/HO7aRcveb3H2Ou9eRuA6/c/f3AI8A70huli3n0gDsN7NlyUWvA7aQhdeFRJXQhWZWkvx96z+XrLsuJxjsWmTdnOlmdiWJKtW3uHtowKp7gWvNrNDMFpBoAP/DiD7c3QPxIjE/8svAK8DNmY5nhLFfQqJI+xKwIfl6I4m69YeBHcBvgapMxzrC81oL3Jf8eWHyl3cn8BOgMNPxpXgOq4F1yWvzC2Bqtl4X4LPANmAT8H2gMJuuC3A3ifaNCInS2ocGuxaAkehJ+AqwkURvqYyfwzDnspNEW0D/PeC2AdvfnDyX7cBVIz2ehpgQEQm4oFQNiYjIIJQIREQCTolARCTglAhERAJOiUBEJOCUCEQGYWbTzGxD8tVgZgeTP3eZ2TcyHZ/IWFH3UZEUmNlngC53/2KmYxEZayoRiIyQma0dMI/CZ8zsLjN7wsz2mtnbzOzfzWyjmT2YHBoEMzvPzB4zs/Vm9uuJNNKliBKByOgtIjFm0luA/wIecfczgR7g6mQy+BrwDnc/D7gD+JdMBStyorzhNxGRYfzK3SNmtpHEhC4PJpdvBOqAZcAq4DeJYXzIJTF8gMiEoEQgMnp9AO4eN7OIH2t4i5P4GzNgs7tflKkARYaiqiGR9NsO1JjZRZAYUtzMVmY4JpFXKRGIpJknpkd9B/B5M3uRxMiRr8lsVCLHqPuoiEjAqUQgIhJwSgQiIgGnRCAiEnBKBCIiAadEICIScEoEIiIBp0QgIhJw/x8WZUsBwAICFAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZxcdZnv8c/T+55Opzvp7J09IQECNGGTMegoIDqM2wguOKLDjNdBnXHuOAzeweXOnXF0fLmgMogILoMrKoOIKLKDSoKB7CRkXzq9r9XdtT33j6omHdJLJd3V1dXn+3696pWqc07VeX7p7vPUbzm/n7k7IiISXDmZDkBERDJLiUBEJOCUCEREAk6JQEQk4JQIREQCLi/TAZyq6upqr6ury3QYIiJZZePGjc3uXjPUvqxLBHV1dWzYsCHTYYiIZBUz2z/cPjUNiYgEnBKBiEjAKRGIiAScEoGISMApEYiIBJwSgYhIwCkRiIgEnBKBSEDtbuzi7qf3EQpHMx2KZFjW3VAm6dEXieEOxQW5mQ4lo8LROC8e62LpzDKK8jP3fzGwToiZjcvnPfNSCxv3t1JXXcr86SX8YMNBfvDsQWJx55tP7uXf33omFy+pHpdzZVos7sTdyc8dv++5veEY4WgcxykuyKUw79R+N6KxOHubezjW2U993fQTfrf6IjH2t4TY09RNaWEer1paTU7O+PzcU6VEEHDuzi82H+WT922lLxLnhj9ZzAcuXURJQbB+NZ7e3cwPNxzk4R2NdPVFKS3I5bKVM6lfOJ38vBwK83JZV1fFghklaYvhcHsvP990mGdeamHDvjZyc4w5lUVUlxUSjTnhWJzyojzmTS9m9rRiqkoLqCotYElNGctnlb2cNHrDMQ6399IXiXGss49vPLGH3+1pPeFceTnGey5cyKXLqvnM/dt45zd+z9nzK5lVXsjsaUWsXzGTS5ZWU5CXQzQWp7UnTE154WknpraeML/a2sCmg+28+Zy5XLB4xpj/v4by0NYGPvU/2+jqi/Cx16/gXRcsIG+EhNAXifHoziYe3n6MudOLue6iOqpKCwA40t7LQ1sbeGBzA8/ub2VgDS8zmDe9mCU1ZVy5ppar18496UtDKBzluf3tPPVSM0+/1ML2o52Eo3EAygrzuHx1LVWl+fxhXxtbD3cQjR9fIGzpzDI+8KpFVJUW0NTdT18kTnVZATNKC1lcU8qcyuJx/l8Dy7YVyurr611TTJyacDTOjzYe5OebjtDc1U9LT5iywjyWzSojEovz1O4Wzpo3jdnTivjV1mNUlxVyydIZrKytYOnMMuZWFjO3spiyojxy0/hNJRqL88LhDpq7+mkLhakqLeSMORXMmVY0bt+MIfHH3x9JXFQPt/fymfu38dC2Y1SW5PO6VbO4cPEMNuxv46GtDbT0hE9479r5lVyydAa5OTkYsHxWOZcsnUFRfi6/eOEoP3j2IP2xOEtrylg2q4xVsys4Y3YFNeWFw8bT3N3Prb/dzX///gDhWJzls8q4cPEMcsw40t5LS0+Y/FwjPzeHzt4Ih9t7ae4+Ma4504q4YPEM9jb3sOUVF5aa8kI++OolvPXceRxqD7GnqYez5k1j4YxSIJE4vv7obp470E5TVz8H20KEwjEqivKonVbE3uYeIjHn8tWz+Le3nPXyhTIai5ObY0P+bNp6wvxi81F2NnSxo6GTPx5oJxp3CnJzCMfivGblTD5+xUpW1Jaf7o+Rox29PLmrOZn04mw/2sljLzaxYlY51eUFPLW7heWzyrh4STUzSgsoL8oj5om4D7SG2HWsmy1HOgiFY5QX5dHVF6UoP4fLVsxkZ0MXe5p7AFgxq5zXr55FZUkBBnT0RtjT3MPWwx3sae6hsiSf166cRW5O4m9t57FudjZ0EvdEwl07v5JzF05nZW05lSX5PLilgV9ubqA/Gmft/Erq66azoracxdVl7Gnu5rbH9rD9aOeQZf7rVy/mpitXndb/l5ltdPf6IfcpEUxd7s7PNh3mC79+kYOtvayaXcHimlKqSgro6I3w4rEuWnrC3HDpYt53SR15uTls3N/Gfz32ElsOd3Cko++kz8zNMeZWFnPzVau4fHXtuMXa0x/lr7+zkSd3N5+0rzg/l7xkAirIy6GsKI/i/Fy6+qK0h8LMqSzm7163nCvX1I6YMKKxON/93X7+89cv0tUXJccSTS8FuTn87WuW8oFLF51Q5Y/FnbZQmFjc6eqL8Jvtjdy36QjbXvFHagZlBXl09UdZXF1K7bQidjd209jV//Ixg891zbr5fOS1yyjKz+XOp/by1d/upjcS4+3nzefG1y5l3vTRax390RjtoQitPWGeP9jOb3c08tyBNhZVl1JfV8XK2nJKCvIoKcjl3AXTT6nJrz8a46ndzTywuYH2UJilM8sxgzue2MP0kgL+on4+G/a3snF/otYye1oxC2eUcNmKmVy6rJqHth3jq4/spqsvSnlRHitmlVNfV8Ubz5rNkpoyvvX0Xr7+6Ev09Ee5Zt0C/v51y6kuGzpRPr27mW88sYeDbb0cae8l14wZZQWYGXuTF2qAgtwcKorz+atLF3H9qxaRl2M8tO0YX354FwdaQ3T1ndgPUlGUx/JZ5ayeU8HrV9dywaIq9rX0cPvje3hkZxNnzp3GxUtmsH7FTJbOLBsyNnfnd3taufvpfWw80EauGbk5xuKaUs6ZX8k5C6dzfl0VZYUn164HmpmGamJydzYf7sAwqssLKMrLpaUnTEt3PzXlhSyuGTqe0SgRBND+lh5uunczT7/Uwpq5FXzs9StYv7zmlL5Zd4Qi7G3p4XDyjzAUjhGOxXh4eyM7Grq4fPUs3ntRHfOml1BelMfOY11sO9JJcUEu5y2cztKaMtp7I+xr6aEoL5eVteUvt326J5o6CvNy6QhF+Mu7/sDzB9v5xFVnsG5RFdOK82ns6mfb0U72NvXgOIbRH43R3R99+VtcZXEBT+xqYldjN2fNm8Y71y3gtatmUVNeSDga53B7Ly81drOrsZufbzrMjoYuLl1WzauX19AeiuA4775wIbOnpV7ddnfMjGgszvOHOnhiVxOH23q5eu1cLlk64+X/445QhG1HO9l2tJO2ZM3iSHsvP9t0mLLCPCqK8znU1sufrprFP125ctgLzmSx9UgHH/3+JnY1drNqdgWXLJmBGRzt6GPb0U72NB2/ML9m5Uw+9vrlnDG7Ytgaw5ce3sV3f7efgrwcls4so7KkgKU1ZVx30ULqqku55w8H+MTPtlBbUcSauRXMqSzGHVp6wvRFYqyrq+LS5dUsm1k+ak21LxIjFI6Ra0ZOTqJ5ZjxrmdlAiWCKCYWjbNjXxrzpxSyqLsXMaO7u5/mD7Ww70sn2hk5+u6OR/JwcbnrDKq45f/64dj5FYnG+8cQevvSbXfQn2z2Hkp9rRGLHf7+qywq5YHEVTV39bD/SSVd/lIqiPHJyjFB/jC9fu5Yr1sw+5Xhicefe5w5x6yO72d8SwgxmlhfS1NXPoBYSFleX8r8vX8EVo9Qc0m1nQxeffXAHbaEwf/+65Vy6bMiZgSelWNzp7o8yrTj/pH17mrp5cnczK2aVp9wH8FJTN3c8sZcj7b20hcLsONpFJJ5oMvnjgXbWr6jhK9eeQ3nRyeeTU6NEMAW4O8/ua+OHGw7yy81H6QnHAKgsyaesMI9Dbb0vH7twRgnn11XxD69fQe20orTF1Nzdz4sNXRxq66WjN8LSWWWsnlNBqD/Gxv1t7DzWxczyQhZVl9IeivDYi01s2NdK7bQizphTwczyIlq6+2kLRbhm3fwxj1pxd3Y0dPGrrQ0caAkxr6qE+dOLWTKzjKUzy6jQxWTSa+zs4+5n9vH9PxzkTWfP4RNXrRqxs1dSp0SQRVp7wmw90sHWI51EonGqygoIR+P84NmD7Gjooqwwj6vOnM0Va2o51tnHcwfa6AnHOHveNNbOn84ZcyqGbJMUkWAbKRHoijGJfOupvXz6/m0MlZvPmF3Bv7/lTK5eO/eEjr9r1i2YwAhFZCpSIpgkntzVzGfu38b65TX81aWLOWNOBUX5ubSFwvRH4iycURK4zi0RmRhpSwRmdifwRqDR3dcMc8x64ItAPtDs7q9OVzyT2cHWEDfe8xxLasr4yjvPPaFp51RGs4iInI501gjuAm4Fvj3UTjOrBL4GXOHuB8xsZhpjmXQ6+yL89LnDbDvSyRO7mojGnduvq1f7vohMuLRdddz9cTOrG+GQdwL3uvuB5PGN6YplsnF3PnzPH3l0ZxNVpQWsml3Oja9ZxqLq0kyHJiIBlMmvn8uBfDN7FCgHvuTuw9UebgBuAFiwIPs7Rx/e3sijO5u46cqV3PAni9X2LyIZlckBunnAecBVwOXA/zGz5UMd6O63u3u9u9fX1GTPzTdD6YvE+PT921g6s4zrX7VISUBEMi6TNYJDJDqIe4AeM3scOBt4MYMxpd03n9zLgdYQ33n/unGdJldE5HRl8kr0c+BSM8szsxLgAmB7BuNJux0Nndz62928/oxZWTWtgIhMbekcPnoPsB6oNrNDwC0khoni7re5+3YzexB4AYgDd7j7lnTFk2nHOvu4/lvPUlGcx6euXp3pcEREXpbOUUPXpnDM54DPpSuGyaKnP8r1dz1LR2+EH/7NRbo3QEQmFQ1aT6Pu/ig/3nCQu57ex4HWEN987/msnjMt02GJiJxAiSBNdjd28bbbnqE9FGHt/EpuedNqLlsZqHvmRCRLKBGkQTzu3HTvZgB+8sGLOW/h9AxHJCIyPI1fTIMfbjjIs/va+Oc3rFISEJFJT4lgnDV19fP/HtjOBYuqePt58zIdjojIqJQIxtn//cU2+iJx/vXNZ+quYRHJCkoE4+jJXc38fNMR/mb9kkm/ELmIyAAlgnHSF4nxf36+hboZJfyv9UsyHY6ISMo0amic/Ndje9jb3MN33r+Oovzc0d8gIjJJqEYwDg60hPjqo7t509lzNIeQiGQdJYJx8M0n94DDJ65alelQREROmRLBGHX1RfjxxkO88azZzKooynQ4IiKnTIlgjH76x8P0hGNcd3FdpkMRETktSgRj4O7c/fQ+zp43jbXzKzMdjojIaVEiGIOndrfwUlMP111Ul+lQREROmxLBGNz9zD5mlBZw1VmzMx2KiMhpUyI4Tcc6+3h4+zHeXj9f9w2ISFZTIjhNP954iLjDO86fn+lQRETGRIngNLg7P9pwkHWLqlhUXZrpcERExkSJ4DT8YW8r+1pCvKNetQERyX5KBKfhBxsOUlaYx5Vn1mY6FBGRMVMiOEWdfREe2HyUN509h5ICzdknItkvbYnAzO40s0Yz2zLM/vVm1mFmm5KPf0lXLOPpgReO0heJq5NYRKaMUROBmV1iZqXJ5+82sy+Y2cIUPvsu4IpRjnnC3dcmH59O4TMz7oEtDSycUcLZ86ZlOhQRkXGRSo3g60DIzM4G/hHYD3x7tDe5++NA69jCm1w6eiM8vbuZK1bXahlKEZkyUkkEUXd34GrgS+7+JaB8nM5/kZk9b2a/NLPVwx1kZjeY2QYz29DU1DROpz51j+xoJBp3Ll+jTmIRmTpSSQRdZnYT8B7gF2aWC+SPw7mfAxa6+9nAV4CfDXegu9/u7vXuXl9Tk7mFXx7c0sCsikLWztMEcyIydaSSCN4B9APXu3sDMBf43FhP7O6d7t6dfP4AkG9m1WP93HTpDcd49MVGLl9dS06OmoVEZOoYNREkL/4/AQqTm5qBn471xGZWa8mGdjNbl4ylZayfmy6PvdhEXyTO5avVLCQiU8uoA+HN7K+AG4AqYAmJGsFtwGtHed89wHqg2swOAbeQbFJy99uAtwEfNLMo0Atck+yLmJQe2tpAZUk+6xZVZToUEZFxlcodUR8C1gG/B3D3XWY2c7Q3ufu1o+y/Fbg1lSAzLRZ3frP9GK87o5b8XN2DJyJTSypXtX53Dw+8MLM8YNJ+c0+Hvc3ddPZFuXCxagMiMvWkkggeM7N/BorN7HXAj4D/SW9Yk8vmwx0AnKmbyERkCkolEfwT0ARsBv4aeAD4RDqDmmw2H+qkKD+HpTVlmQ5FRGTcpdJHUAzc6e7fAEjeR1AMhNIZ2GSy5XAHq2ZXkKf+ARGZglK5sj1M4sI/oBj4TXrCmXzicWfrkQ7OnKtmIRGZmlJJBEUDN34BJJ+XpC+kyWVPcw894RhrlAhEZIpKJRH0mNm5Ay/M7DwS4/4DYctAR7ESgYhMUan0EXwE+JGZHUm+nk1i2olA2Hy4g8K8HJbNVEexiExNIyaCZMfwpcBKYAVgwA53j0xAbJPCZnUUi8gUN+LVzd1jwNXuHnH3Le6+OUhJIB53th3pVLOQiExpqTQNPWVmtwI/AHoGNrr7c2mLapLY19JDd39UiUBEprRUEsHFyX8HLyXpwGvGP5zJZeCOYo0YEpGpbNRE4O6XTUQgk9GWwx0U5OWwbJY6ikVk6kplGup/GWp7tiw2PxYvHOpg9ZwKzTgqIlNaSvcRDHrEgCuBujTGNCnE486Wwx2cpWYhEZniUmka+s/Br83s88B9aYtokhi4o/hMrU8sIlPc6bR5lACLxzuQyWbz4XYAztLU0yIyxaXSR7CZ4wvR5AI1nDiCaEp64VAHxfm5LNHU0yIyxaUyfPSNg55HgWPuHk1TPJPGC4c6WDO3gtwcy3QoIiJpNWrTkLvvByqBNwFvBs5Id1CZFo3Fk1NPq39ARKa+UROBmX0E+B4wM/n4npndmO7AMml3Uzd9kbj6B0QkEFJpGno/cIG79wCY2WeBZ4CvpDOwTHrhUOKOYiUCEQmCVEYNGYn7BwbEkttGfpPZnWbWaGZbRjnufDOLmdnbUohlQmw+1EF5YR51M0ozHYqISNqlUiP4FvB7M/spiQRwNfDNFN53F3Ar8O3hDkhOc/1Z4FcpfN6EeeFwB2vmTiNHHcUiEgCpdBZ/AXgf0Jp8vM/dv5jC+x5PHj+SG4GfAI2jhzoxwtE42492qllIRAIjlc7iJcBWd/8y8DxwqZmNeTiNmc0lMQrpthSOvcHMNpjZhqamprGeekQHWnsIR+Osml2R1vOIiEwWqfQR/ASImdlS4A5gEfDf43DuLwIfTy5+MyJ3v93d6929vqamZhxOPbz9LSEAFs4oSet5REQmi1T6COLuHjWztwBfcvevmNkfx+Hc9cD3zQygGniDmUXd/Wfj8Nmn7XgiUEexiARDKokgYmbXAteRuKkMIH+sJ3b3RQPPzewu4P5MJwGA/S09lBfmMb1kzEUUEckKqSSC9wF/A/yru+81s0XAd0d7k5ndA6wHqs3sEHALyQTi7qP2C2TK/tYQC2aUkKypiIhMealMQ73NzD4OLEi+3gv8ewrvuzbVINz9L1M9Nt0OtIRYObs802GIiEyYVEYNvQnYBDyYfL3WzKbkegSxuHOwLcSCKvUPiEhwpDJq6JPAOqAdwN03kRg5NOUc7eglEnONGBKRQEklEUTdveMV23zII7PcgYERQ1VKBCISHKl0Fm8xs3cCuWa2DPgw8HR6w8qM/a2JRLBANQIRCZBUagQ3AquBfhI3knUAH01nUJmyvyVEfq4xe1pxpkMREZkwI9YIkpPC3efufwrcPDEhZc7+lh7mV5VoVTIRCZQRawTJ6R9CZhaIGdj2t4TUPyAigZNKH0EfsNnMfg30DGx09w+nLaoMcHcOtIZYt6gq06GIiEyoVBLBL5KPKa21J0x3f5QFqhGISMCkcmfx3RMRSKYNjBjSPQQiEjSpjBoKhAOaflpEAkqJIGl/SwgzmDddiUBEgiWVuYbensq2bLe/tYfaiiKK8nMzHYqIyIRKpUZwU4rbslpDRx9zKnUjmYgEz7CdxWZ2JfAGYK6ZfXnQrgogmu7AJtqxzj5W1Gr6aREJnpFqBEeADSTuI9g46HEfcHn6Q5tYjZ39zCwvynQYIiITbtgagbs/DzxvZv+dPG6Bu++csMgmUE9/lK7+KLMqlAhEJHhS6SO4gim+MM2xzj4AaqcVZjgSEZGJd7oL09SlL6SJd6yzH4BZahoSkQA63YVpppTGrkSNYKaahkQkgLQwDcebhmZVqGlIRILndBam6QQ+ks6gJtqxzn5KCnIpK0wlL4qITC2pJIJr3f1mdz8/+bgZ+NRobzKzO82s0cy2DLP/ajN7wcw2mdkGM3vVqQY/Xho6+5hVUYSZFqQRkeBJJRG8zczeNfDCzL4K1KTwvrtIjDgazsPA2e6+FrgeuCOFz0yLxs4+NQuJSGCl0hbyFuA+M4sDVwKt7v6h0d7k7o+bWd0I+7sHvSwFPIVY0uJYZz/nLKjM1OlFRDJq2BqBmVWZWRVQDHwA+EcS/QOfTm4fMzN7s5ntILHwzfUjHHdDsvloQ1NT03ic+mXuzrFk05CISBCN1DS0kcQUExuAR4BK4KpB28fM3X/q7iuBPwc+M8Jxt7t7vbvX19Sk0iqVus7eKP3RODPL1TQkIsE00hQTi8wsB7jI3Z9KZxDJZqQlZlbt7s3pPNcrHesaGDqqGoGIBNOIncXuHgc+n44Tm9lSSw7TMbNzgQKgJR3nGklDhxKBiARbKp3FD5nZW4F73T3lDl0zuwdYD1Sb2SHgFiAfwN1vA94KXGdmEaAXeMepfP540c1kIhJ0qSSCvycxqidqZn2AAe7uFSO9yd2vHWX/Z4HPphpoujR2JecZUo1ARAJq1ETg7lN6tZZjnX1MK87XEpUiElgpzalgZtOBZcDLX5vd/fF0BTWRjulmMhEJuFETgZl9gMTcQvNIrEtwIfAM8Jr0hjYxGjr71SwkIoGWyhQTHwHOB/a7+2XAOcD43tWVQY2dfVqiUkQCLZVE0OfufQBmVujuO4AV6Q1rYsTjTmNXv5qGRCTQUukjOGRmlcDPgF+bWRuJhe2zXktPmFjcqZ2mGoGIBFcqo4benHz6STN7BJhGcv3ibDdwD4GmlxCRIEulaQgzm25mZwFdwCFgTVqjmiAtPWEAZpQpEYhIcKUyaugzwF8Ce4B4crMzBUYNtYcSiWB6SX6GIxERyZxU+gj+Alji7uF0BzPR2pI1gsqSggxHIiKSOak0DW0hMQX1lNMWigBQWawagYgEVyo1gn8D/phce7h/YKO7/1naopog7aEwFUV55OWm1FUiIjIlpZII7iYxOdxmjvcRTAltoQjTS9UsJCLBlkoiaHb3L6c9kgxoC4XVPyAigZdKIthoZv8G3MeJTUPPpS2qCdIWClOtoaMiEnCpJIJzkv9eOGjblBg+2tYTYfnMKT3LtojIqFK5s/iyiQgkE9rVNCQiktqdxVNROBqnJxzTzWQiEniBTQQDdxVXatSQiARcYBPBwM1kqhGISNClulTlxUDd4OPd/dtpimlCtPYMzDOkGoGIBFsqk859B1hCYpnKWHKzA1mdCI5POKdEICLBlkqNoB44w939VD7YzO4E3gg0uvtJ01ab2buAjydfdgMfdPfnT+UcY/Fy01CpmoZEJNhSnXSu9jQ++y7gihH27wVe7e5nAZ8Bbj+Nc5y2NtUIRESA1GoE1cA2M/sDpzDpnLs/bmZ1I+x/etDL3wHzUohl3LSHwhTl51CUnzuRpxURmXRSSQSfTHcQwPuBXw6308xuAG4AWLBgwbicsC0UUW1ARITU7ix+LJ0BmNllJBLBq0aI4XaSTUf19fWn1FcxHN1VLCKSMGofgZldaGbPmlm3mYXNLGZmneNx8uQ6yHcAV7t7y3h8Zqpae8JUqaNYRCSlzuJbgWuBXUAx8IHktjExswXAvcB73P3FsX7eqWoPRVQjEBEhxRvK3H23meW6ewz4lpk9Pdp7zOweYD1QbWaHgFuA/OTn3Qb8CzAD+JqZAUTdvf60SnEa2kJh3VUsIkJqiSBkZgXAJjP7D+AoUDram9z92lH2f4BE7WLCxeNOR686i0VEILWmofckj/tboAeYD7w1nUGlW2dfhLijpiEREVIbNbTfzIqB2e7+qQmIKe0G7ipWZ7GISGqjht5EYp6hB5Ov15rZfekOLJ0GJpxTjUBEJLWmoU8C64B2AHffRGIm0qylCedERI5LJRFE3b0j7ZFMIK1FICJyXCqjhraY2TuBXDNbBnwYGHX46GT28upkqhGIiKRUI7gRWE1iwrl7gE7go+kMKt3aQmFyc4yKopRuoxARmdJSGTUUAm5OPqaExIRz+SRvZBMRCbRhE8FoI4NGm4Z6MtOEcyIix41UI7gIOEiiOej3wJT5+tzao+klREQGjJQIaoHXkZhw7p3AL4B73H3rRASWTp29UeZUFmU6DBGRSWHYzmJ3j7n7g+7+XuBCYDfwqJndOGHRpUlXf4TyItUIRERglM5iMysEriJRK6gDvkxi6uis1t0XpaxQI4ZERGDkzuK7gTUklpD8lLtvmbCo0sjd6eqLUq6hoyIiwMg1gveQmG10OfDhQUMtDXB3r0hzbGnRH40TjTtlSgQiIsAIicDdU7nZLOt09iWml1AfgYhIwpS82I+kqy8KQLn6CEREgAAmgu6BRKCmIRERIICJ4OUagZqGRESAACaC7v5EH4GGj4qIJAQuEXSqaUhE5ASBSwTqIxAROVHaEoGZ3WlmjWY25I1oZrbSzJ4xs34z+4d0xfFKA30EahoSEUlIZ43gLuCKEfa3kljt7PNpjOEkXX0RivNzycsNXGVIRGRIabsauvvjJC72w+1vdPdngUi6YhhKd7+mlxARGSwrvhab2Q1mtsHMNjQ1NY3ps7r6oppeQkRkkKxIBO5+u7vXu3t9TU3NmD6rqz+qewhERAbJikQwnrr6Ilq0XkRkkMAlAq1FICJyorRdEc3sHmA9UG1mh4BbgHwAd7/NzGqBDUAFEDezjwJnuHtnumICtBaBiMgrpO2K6O7XjrK/AZiXrvMPp6svQlmh+ghERAYEqmkoFnd6wjHVCEREBglUIuju1/QSIiKvpEQgIhJwgUoEXX0DU1Crj0BEZECgEoFmHhUROVmgEkGXEoGIyEkClQg6k01DSgQiIscFKhEc7yxWH4GIyIBAJQItSiMicrJAJYLuvig5BiUFuZkORURk0ghUIkhML5GHmWU6FBGRSSNgiUBrEYiIvFKwEoGWqRQROUmwEkFfRIlAROQVApUIurVMpYjISXiIg3wAAAajSURBVAKVCLq0OpmIyEkClQi6tTqZiMhJApUIuvqilCkRiIicIDCJoC8SIxyLU6E+AhGREwQmEQzMM6Q+AhGREwUmEWgKahGRoQUmERxflEZNQyIig6UtEZjZnWbWaGZbhtlvZvZlM9ttZi+Y2bnpigUGL1OpGoGIyGDprBHcBVwxwv4rgWXJxw3A19MYC11auF5EZEhpSwTu/jjQOsIhVwPf9oTfAZVmNjtd8VSXFXDlmlqqywrTdQoRkayUya/Hc4GDg14fSm47+soDzewGErUGFixYcFonO29hFectrDqt94qITGWZ7CwealEAH+pAd7/d3evdvb6mpibNYYmIBEsmE8EhYP6g1/OAIxmKRUQksDKZCO4DrkuOHroQ6HD3k5qFREQkvdLWR2Bm9wDrgWozOwTcAuQDuPttwAPAG4DdQAh4X7piERGR4aUtEbj7taPsd+BD6Tq/iIikJjB3FouIyNCUCEREAk6JQEQk4CzRVJ89zKwJ2H+ab68GmscxnEybSuVRWSYnlWVyOp2yLHT3IW/EyrpEMBZmtsHd6zMdx3iZSuVRWSYnlWVyGu+yqGlIRCTglAhERAIuaIng9kwHMM6mUnlUlslJZZmcxrUsgeojEBGRkwWtRiAiIq+gRCAiEnCBSQRmdoWZ7UyukfxPmY7nVJjZfDN7xMy2m9lWM/tIcnuVmf3azHYl/52e6VhTZWa5ZvZHM7s/+Tory2JmlWb2YzPbkfz5XJTFZfm75O/XFjO7x8yKsqksQ62TPlL8ZnZT8nqw08wuz0zUQxumLJ9L/p69YGY/NbPKQfvGVJZAJAIzywW+SmKd5DOAa83sjMxGdUqiwMfcfRVwIfChZPz/BDzs7suAh5Ovs8VHgO2DXmdrWb4EPOjuK4GzSZQp68piZnOBDwP17r4GyAWuIbvKchcnr5M+ZPzJv59rgNXJ93wteZ2YLO7i5LL8Gljj7mcBLwI3wfiUJRCJAFgH7Hb3Pe4eBr5PYs3krODuR939ueTzLhIXm7kkynB38rC7gT/PTISnxszmAVcBdwzanHVlMbMK4E+AbwK4e9jd28nCsiTlAcVmlgeUkFgoKmvKMsw66cPFfzXwfXfvd/e9JKbDXzchgaZgqLK4+0PuHk2+/B2JxbxgHMoSlEQw3PrIWcfM6oBzgN8DswYW80n+OzNzkZ2SLwL/CMQHbcvGsiwGmoBvJZu57jCzUrKwLO5+GPg8cIDEuuEd7v4QWViWVxgu/my/JlwP/DL5fMxlCUoiSHl95MnMzMqAnwAfdffOTMdzOszsjUCju2/MdCzjIA84F/i6u58D9DC5m06GlWw7vxpYBMwBSs3s3ZmNKq2y9ppgZjeTaC7+3sCmIQ47pbIEJRFk/frIZpZPIgl8z93vTW4+Zmazk/tnA42Ziu8UXAL8mZntI9FE9xoz+y7ZWZZDwCF3/33y9Y9JJIZsLMufAnvdvcndI8C9wMVkZ1kGGy7+rLwmmNl7gTcC7/LjN4GNuSxBSQTPAsvMbJGZFZDoWLkvwzGlzMyMRDv0dnf/wqBd9wHvTT5/L/DziY7tVLn7Te4+z93rSPwcfuvu7yY7y9IAHDSzFclNrwW2kYVlIdEkdKGZlSR/315Loi8qG8sy2HDx3wdcY2aFZrYIWAb8IQPxpczMrgA+DvyZu4cG7Rp7Wdw9EA8S6yO/CLwE3JzpeE4x9leRqOq9AGxKPt4AzCAxEmJX8t+qTMd6iuVaD9yffJ6VZQHWAhuSP5ufAdOzuCyfAnYAW4DvAIXZVBbgHhL9GxES35LfP1L8wM3J68FO4MpMx59CWXaT6AsYuAbcNl5l0RQTIiIBF5SmIRERGYYSgYhIwCkRiIgEnBKBiEjAKRGIiAScEoHIMMxshpltSj4azOxw8nm3mX0t0/GJjBcNHxVJgZl9Euh2989nOhaR8aYagcgpMrP1g9ZR+KSZ3W1mD5nZPjN7i5n9h5ltNrMHk1ODYGbnmdljZrbRzH41MO2ByGSgRCAydktITKt9NfBd4BF3PxPoBa5KJoOvAG9z9/OAO4F/zVSwIq+Ul+kARKaAX7p7xMw2k1jQ5cHk9s1AHbACWAP8OjGND7kkpg8QmRSUCETGrh/A3eNmFvHjHW9xEn9jBmx194syFaDISNQ0JJJ+O4EaM7sIElOKm9nqDMck8jIlApE088TyqG8DPmtmz5OYOfLizEYlcpyGj4qIBJxqBCIiAadEICIScEoEIiIBp0QgIhJwSgQiIgGnRCAiEnBKBCIiAff/AdURTvADRwOYAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -488,7 +532,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXwd1Xn/8c8jyZJsybJsSd4kr2ADBtssYk1YQgIBwlIckkBCAm1T2oakzUJbaFJCyK+lTWnSrE1JYgjQhgJpqBMcDCEGkrBZBtvYxsbyLq9arH25uvc+vz9mZF8L2b62dXUl3e/79dKLmTNz5z6jMfPonDNzjrk7IiIivWWlOwARERmclCBERKRPShAiItInJQgREemTEoSIiPQpJ90B9JfS0lKfPn16usMQERlSli9fXufuZX1tGzYJYvr06VRVVaU7DBGRIcXMth5qm5qYRESkT0oQIiLSJyUIERHpkxKEiIj0SQlCRET6pAQhIiJ9UoIQEZE+KUGIyEE6IjEeeXUrtS1d6Q5F0kwJQiTDdXbH9i9vrW9jwX+8zD88tZqP/ecr7GrqSGNkw1vVlgYWrdxJVzR2xH3TNW/PsHmTWlKjszvGvvYIk8aMTHcoadHS2c2za/awdP1eXt5Yz9Rxo/jwmeVcM38yxaNyByyO6r2tVO9tYVNdGx2RGIV5OYzMzaahLcKe5k6ys4xzZ5Rw7oxxNHV0s3ZXM/WtEWZNKOSkCaPZ29LF8q372NbQzvwpxZw3cxzrd7fw499t5sV3apk8Jp95FcX8YWMd2VnGl686hW8/v4GP/ucrfPemM9nXHmFrXRuV08dxWvmY/XG1R6KMHJGNmQ3Y7+JoRaJxnn97D49XbWdrfTtfuGw2V8+blFTMW+vbaOmMHnTOPRrbI/znS5uIxZ1Z4ws5ZVIRcyYVkZV1+OPuaOzgn55+m6ff2gXApDH5/PlFM7ns1IlMHpNPeyTG41XbefiVrexs7KA7Fic3J4v3nljK+0+ZgDu8uqme9btbmFycz+wJo5lbMYar500+tl/QYdhwmVGusrLSNdTG0XttUz2PvLqVutYu2iMxxowcwXWnl/PBUyfwzOrdfOu5d9jZ1MlVcyfytx88memlBWmJc+3OZpas2c3z6/YA8On3zuTqeZMAWLOzmX3tESqnj6MwL4fO7hjPv72X7fvaufm8aRTmHf3fQZ3dMR59dSvfX1rNvvZuykbn8d4TS3l7VzPrdreQZXDq5DGcPX0cp5UXMa1kFGWF+WxraKd6bwuTikdy+ZwJ+29CW+ra2L6vnTOnjqUgIR53P+yNam9zJ3f/3xqeWbN7f5kZJP5vW1qYS2d3nNau6BHPKzc7i0gsnvDZPK4/YzK7m7t4c9s+JheP5N8+Mp8p40axcnsjn1r4Ok0d3Qcd48JZpVw8u4yl6/fyysZ65lYU86NPnsX4ovwjfn887jy7djdmxvSSAlq7unnqzZ38dt1ezptZwlc+dApjC46ceJs7u3ngxU2cMqmIi2aXkj8im6ot+3hlUz0Ao/NyaO2K8sa2fazY1khLV5SJRfkUjxrBut0tfPDUCXzxspM4cXwh2X3c0Js7u/nu8xt46OUtxOLOXVeewqcvnIGZ4e78ctUu7v3lGva1d5OdZUSi8fD3mcvFs8dz0exSzp4+jsnFI4nHnbq2Ll7ZWM/Tq3bxwju1GPCZS05kXsUYfvBCNcu27ANgzMgRxN1p6YxSOW0sZ00by4jsLBo7IixdV8uOxqBGN350HqdOLmJXUyebats4fUoxj//F+Uf8vfXFzJa7e2Wf25QgMtOb2/bxr0vW8/LGekoKcjlhfCEFudlsrmtjS307WQZxh3kVYzh/ZgmPvLqVSDTOpOJ8mjuixOPORbPLuHLuRDoiMRat3Mnyrfu44tSJfOZ9J3Li+MJ+i/WBlzbyT4vXYQZnTh1Lc0c3G/a2MrEon9au6P4b44hsY275GDbsbaWlMyibOm4U3/rY6Zw1bewhj7+7qZOX3qnlxXdq2VjbSmd3jPq2CC2dUS6cVcrnPzCLM6aMJSsruDms3dXMktW7eX1LA29ua6QrGu/zuPMqxvBnF87k2bV7eHrVTuIOOVnGqeVjiMbi1OzroLM7xpzJRcyvKOaGsyr2/6Xq7jy5vIav/2otndE4n3vfibzv5PFMKxlFYV4O7ZHY/oSem5NFNBZn9c5mqrY0MK4glzmTiygpyGPD3hbe2d3C2IJcKqePY8LoPNbsbObVTfWUjc7jQ/MmkZeTfcjfzZa6Nl7bXM+M0kImF+fzy5W7+MnvN1PX2sX0klFcPLuMJ5bXUJQ/gm9+bD7NHVGWbWmgPRKlrDCPScUjuXb+ZArycnB37v6/NTzy6sFD/+TlZHHuzBJerq6jaOQI/uHqU7hufvkh/xJ3dz7zX2/w69W791/3vJxsWruiZBk4QQI1g5MmjOasaWP5wJwJXDSrDHfnx7/fzDefe4dINE5hXg4nji+ksztGY3s33bE42VlGW1eU9u4YHz1rCs2d3fx69W6umT+Z0sJcXlxfy6a6NuZXjOG+BfOYPaGQrQ3trNzeyAvrg39HPUm1pCCX5s5uumPBfXZCUR5XnjaJT184g4qxo/af01s1TayoaWTdrma6onE+fu5Uzpw69l3nXb23lZzsLKaXjNr/h0U0Fqepo5uSwrxDXsfDUYKQ/ToiMe5/dj0L/7CZkoI8/vKSE/jEuVPJHxHcJNydqq37WLJ6N2dMHctVcydiZuxt6eSBFzdR3xahKD+Hzu44z6/bQ11rBIAp40Zy5tSxPLtmD53RGHMmFQFBkikvHsnsCYWcNHE0c8vHML2k4LDV8Nau6P6/+n/44kb++dfr+NC8SXzt2lMpLcwjHnd+8/Ye/mfZdiaOyefcmSWMG5XL76vrgptZSQHXn1lObnYWX3piJbuaOrlm3iTeO6uM808oYfKYfMyM7Q3tfOs37/CLN3fgHvxVNq+imIK8bEbl5nD1vEm858TSw/4+I9E42/e1s62+ndqWLirGjeSEskJ+t6GObz67np1NnRTkZvPJ86dz3sxxLNvSwLIt+yjIzaZi7ChGZGexekcTb+1oIhKL8xcXz+SjlVP46qI1vLC+lrOnj+WfPzyPE8r6L+Eer87uGHuaO5k6LrhJrd3ZzJ89XLX/r9u8nCxG5+dQ3xbBw+v/Twvm8vsNtfzod5u57aKg9re5rg0z49KTx1OYl8O63c3c+fO3WLG9kdPKi7jj8pOYVlLAyu2N7Grq5Pozypk4Jp8H/7CZr/1yLX93xclUTh/Lb9buobUrykWzy3jPiaWMGpFNe3eMLINRuX3XHnc2dvDKxnpW1jRSvbeVgrwcisNkGw9rdTedPZW5FWNwd77322r+7bl3yMvJ4vwTSrjytInccNaUPmsfsbjz9q5mXt/cwLrdzYwryGNycT5zJhVx5tSxR2yCGmhKEMNAZ3eM2pYu6tsijMrNZtb4QsyMeNzDppe9tHZGaYtEgxpBWSFTS0aRk5WFWdBUsWFvKy9tqGV7Qwc3nzeVO6885ZiaX3rE4s4b2/aRm53FvIoxmBn1rV0s/MNmVu9oZkS24Q5bG9rZUtdGNB78WyvIzSY3J4v2SIzcnCwuO2UCV82dxI7GDh6v2s6anc2UFuYyddwo3tjWyDXzJ/Otj84nJ/von6lo7uzmG8+sY/Fbu2loC5LZqNxspo4bxcbaVrLM+NT501hwZgUnTxzdr23pnd0xXt5YxxlTxh6x2aSpvZuvP72WJ5fXADByRDZ/d8VJfOr86YPuhtKXutYunl2zh9kTCplbMYa8nGyisThVW/fx9794i021bQDccv407rn21EP+nmNx5/9W7OCbz71Dzb6DO8hzc7L4o9Mn84s3d3Dx7DJ+9KnKAe372NPcSVH+CEbmHrrGNRQpQQxxL75Ty18+upz2yIGnHWaWFXDpSeNZun4vG2vbKCnIZVxBLqNys6lt6WJnU+e7jlOUn8PJk4r4/AdmccEJh//LuL9FonGq97ayekcTa3c1E4s7o3KzqW+L8Oya3TSHTUKnTi7iA6dMYGdjB+t2t3Dm1GL+4eo5x5QcEsXjzrrdLVRtbQia0eraqBg7itvfdyITxxy57XygLF2/l2fe2s1n3ncC00rS09/T3zq7Y/zopU10x+J8/gOzk0p4kWicRSt3Eo3FOX1qMfk52Xx/aTU/f6OGycUjefpzFzJm1IgBiH74S0uCMLOFwNXAXnc/rY/tBnwbuApoB2519zfCbbcAXwl3/X/u/tMjfd9wTRCvbarnlgdfZ0ZpIX98wXRKCnPZ3dzJr1bu4tXN9Zw8sYjb33cCV5426aDqbltXlF1NHcTi4DhjR+UyfnTeoHzaJBKN89rmekoK8pgzuSjd4cggVrOvnbycbMpGH1t7u7xbuhLERUAr8PAhEsRVwOcIEsS5wLfd/VwzGwdUAZUE/U3LgbPcfd/hvm84JQh3p7a1ize27uOOJ1YxoSiP//nz8ynt1QnVEYmRPyJrUN70RWRoOFyCSNl7EO7+kplNP8wu1xEkDwdeNbNiM5sEXAI85+4NAGb2HHAF8LNUxTqYvFXTxKcfXsae5uAt1injRvLop899V3IAhl1bqIgMLul8Ua4c2J6wXhOWHar8XczsNuA2gKlTp6YmygEUica544mVANxzzRxmTxzN/Irig56bFxEZKEP6zuPuDwAPQNDElOZwjtsPX9zI+j0t/OSWSt5/yoR0hyMiGS6dYzHtAKYkrFeEZYcqH9Y27Gnhu7/dwLXzJys5iMigkM4EsQj4lAXOA5rcfRewBLjczMaa2Vjg8rBs2Gpq7+avH1tBYV4OX71mTrrDEREBUtjEZGY/I+hwLjWzGuCrwAgAd/8hsJjgCaZqgsdc/zjc1mBmXweWhYe6t6fDejhqaItw849fo3pvK//5qbOO+XV5EZH+lsqnmG46wnYHbj/EtoXAwlTENRhEonE21bWyYU8r3/ttNVvq2/jRLZVcPLss3aGJiOw3pDuph6K9LZ0s+MHL+4cRGJ2Xw4O3ns0FRxjzR0RkoClBDKBoLM7n/vtN6lq7+MYN8zht8hhmlhXsHyhPRGQwUYIYQPc/+w6vbW7g3z4ynw+fVZHucEREDktTjg6Q59bu4YcvbuSmc6YqOYjIkKAEMQC21LXxxcdXMLd8jB5jFZEhQwkixToiMf7i0eVkZxk/+MSZ6m8QkSFDfRAp9pWnVrN+TwsP3no2U8aNOvIHREQGCdUgUuiNbfv4+Rs13H7JiVxy0vh0hyMiclSUIFLoRy9toig/h7+85IR0hyIictSUIFJka30bz6zZzc3nTdNw3SIyJClBpMhPfr+ZnCzj1gumpzsUEZFjogSRAvvaIjxetZ0/Or2c8UX56Q5HROSYKEGkwCOvbqWzO86fXTQz3aGIiBwzJYh+1tzZzU9+v5n3nzye2RNGpzscEZFjpgTRz37yu800dXTzhctmpzsUEZHjogTRjxrbIyz8/WauOHUip5WPSXc4IiLHRQmiHz3w0iZaI1HVHkRkWEhpgjCzK8xsvZlVm9mdfWyfZmbPm9kqM3vBzCoStn3DzNaY2dtm9h0zs1TGerz2tUV46OUtXD1vMidNVN+DiAx9KUsQZpYNfB+4EpgD3GRmvYcyvR942N3nAfcC94WfvQB4DzAPOA04G7g4VbH2h6dW7KA9EuP29+mtaREZHlJZgzgHqHb3Te4eAR4Druu1zxzgt+Hy0oTtDuQDuUAeMALYk8JYj9sTVTXMqxjDyROL0h2KiEi/SGWCKAe2J6zXhGWJVgILwuXrgdFmVuLurxAkjF3hzxJ3fzuFsR6XNTubWLurmRs0EZCIDCPp7qS+A7jYzN4kaELaAcTM7ETgFKCCIKlcamYX9v6wmd1mZlVmVlVbWzuQcR/k58t3kJudxTXzJqctBhGR/pbKBLEDmJKwXhGW7efuO919gbufAXw5LGskqE286u6t7t4K/Bo4v/cXuPsD7l7p7pVlZWWpOo/DikTjPLViBx+YM56xBblpiUFEJBVSmSCWAbPMbIaZ5QI3AosSdzCzUjPrieEuYGG4vI2gZpFjZiMIaheDsonphfV7aWiLqHlJRIadlCUId48CnwWWENzcH3f3NWZ2r5ldG+52CbDezN4BJgD/GJY/CWwE3iLop1jp7r9MVazH46kVOygtzOOiWempwYiIpEpKJypw98XA4l5ldycsP0mQDHp/Lgb8eSpj6w/uzrIt+7hoVik52enuzhER6V+6qx2HPc1d1LZ0Ma9Cw2qIyPCjBHEcVtY0AjBvSnGaIxER6X9KEMdhVU0jOVnGnEl6OU5Ehh8liOOwqqaJ2RNGkz8iO92hiIj0OyWIY+TurKppYv4U9T+IyPCkBHGMtjW009TRzdxy9T+IyPCkBHGMVtY0AegJJhEZtpQgjtFbNY3k5mRp7gcRGbaUII7Rypom5kwqYoRekBORYUp3t2MQizurdzQxX81LIjKMKUEcg421rbRHYsyrUAe1iAxfShDHYOX28A1q1SBEZBg7YoIwswVmtsHMmsys2cxazKx5IIIbrFbVNFGYl8MJZYXpDkVEJGWSGc31G8A1g3nKz4G2qqaR08qLyMqydIciIpIyyTQx7VFyOCASjfP2rhbmq/9BRIa5ZGoQVWb2P8BTQFdPobv/b8qiGsTW7W4mEoszXyO4isgwl0yCKALagcsTyhzIyAShN6hFJFMcMUG4+x8PRCBDxcrtjZQU5FJePDLdoYiIpFQyTzFVmNkvzGxv+PNzM6tI5uBmdoWZrTezajO7s4/t08zseTNbZWYvJB7XzKaa2bNm9raZrTWz6UdzYqmyqqaReRVjMFMHtYgMb8l0Uj8ILAImhz+/DMsOy8yyge8DVwJzgJvMbE6v3e4HHnb3ecC9wH0J2x4G/tXdTwHOAfYmEWtKtXVFqd7bqhfkRCQjJJMgytz9QXePhj8PAWVJfO4coNrdN7l7BHgMuK7XPnOA34bLS3u2h4kkx92fA3D3VndvT+I7U2r1jibiDqerg1pEMkAyCaLezG42s+zw52agPonPlQPbE9ZrwrJEK4EF4fL1wGgzKwFmA41m9r9m9qaZ/WtYIzmImd1mZlVmVlVbW5tESMdnlTqoRSSDJJMg/gT4KLAb2AXcAPRXx/UdwMVm9iZwMbADiBF0nl8Ybj8bmAnc2vvD7v6Au1e6e2VZWTKVmuOzsqaR8uKRlBTmpfy7RETSLZmnmLYC1x7DsXcAUxLWK8KyxGPvJKxBmFkh8GF3bzSzGmCFu28Ktz0FnAf85Bji6Ddrdjar9iAiGeOQCcLM/tbdv2Fm3yV47+Eg7v5XRzj2MmCWmc0gSAw3Ah/v9R2lQIO7x4G7gIUJny02szJ3rwUuBaqSPKeUiMbibG9o56q5E9MZhojIgDlcDaJneI1jujG7e9TMPgssAbKBhe6+xszuBarcfRFwCXCfmTnwEnB7+NmYmd0BPG/B86TLgR8dSxz9ZVdTJ9G4M3XcqHSGISIyYA6ZINz9l+Fiu7s/kbjNzD6SzMHdfTGwuFfZ3QnLTwJPHuKzzwHzkvmegbCtIXiIauq4gjRHIiIyMJLppL4rybJhbWt9mCBKVIMQkcxwuD6IK4GrgHIz+07CpiIgmurABputDW3kZmcxsSg/3aGIiAyIw/VB7CTof7iWoA+gRwvwhVQGNRhtb2inYtxIsjUHhIhkiMP1QawEVprZfwMGnEzwNNP68M3ojLK1vl0d1CKSUZLpg7gM2Ah8B/geUB02P2UMd2dbfTvTlCBEJIMkMx/EN4H3uXs1gJmdADwN/DqVgQ0mje3dtHRFmaIEISIZJJkaREtPcghtIuiHyBhbw0dcp5XoEVcRyRzJTjm6GHicoA/iI8AyM1sAmTH16IF3IFSDEJHMkUyCyAf2EAymB1ALjASuIUOmHt1W3wYoQYhIZtGUo0nYWt/O+NF5jMx914jjIiLD1hETRDjY3ueA6Yn7u/uxjPA6JG1r0COuIpJ5kmlieopgmO1fAvHUhjM4bWto5/wTStIdhojIgEomQXS6+3eOvNvw1NkdY3dzp2oQIpJxkkkQ3zazrwLPAl09he7+RsqiGkRq9nXgDtM0SJ+IZJhkEsRc4JMEk/b0NDF5uD7sbWvQE0wikpmSSRAfAWZm4vhLENQgAKaMVYIQkcySzJvUq4HiVAcyWNW2dJFlUFKYl+5QREQGVDIJohhYZ2ZLzGxRz08yBzezK8xsvZlVm9mdfWyfZmbPm9kqM3vBzCp6bS8ysxoz+15yp9P/6lojjCvI1TDfIpJxkmli+uqxHNjMsoHvE4wGW0MwPMcid1+bsNv9wMPu/lMzuxS4j6C/o8fXCeaqTpu61i5KClR7EJHMk8yb1C8e47HPAardfROAmT0GXAckJog5wBfD5aUE71wQ7n8WMAF4Bqg8xhiOW11rF6Wjc9P19SIiaXPEJiYzazGz5vCn08xiZtacxLHLge0J6zVhWaKVwIJw+XpgtJmVmFkW8G/AHUeI7TYzqzKzqtra2iRCOnr1rRFK1f8gIhnoiAnC3Ue7e5G7FxEM0vdh4Af99P13ABeb2ZsEgwHuAGLAZ4DF7l5zhNgecPdKd68sKyvrp5AOVtfapQQhIhkpmT6I/dzdgafCF+fe1encyw5gSsJ6RViWeLydhDUIMysEPuzujWZ2PnChmX0GKARyzazV3Y/0nf2qPRKlPRKjpFBNTCKSeZIZrG9BwmoWQX9AZxLHXgbMCgf72wHcCHy817FLgQZ3jwN3AQsB3P0TCfvcClQOdHKAoHkJUA1CRDJSMjWIaxKWo8AWgs7mw3L3qJl9FlgCZAML3X2Nmd0LVLn7IuAS4D4zc4KnlW4/uvBTq7Y1GFmkTAlCRDJQSueDcPfFwOJeZXcnLD8JPHmEYzwEPHSsMRyPupYgQaiJSUQyUTJPMX0jfGFtRPhSW62Z3TwQwaVbfZuamEQkcyXzJvXl7t4MXE3QvHQi8DepDGqwUA1CRDJZMgmipxnqQ8AT7t6UwngGlbrWLkbn55CXo6lGRSTzJNNJ/SszWwd0AH9pZmUk9xTTkFfXGlEHtYhkrGRelLsTuIDgUdNuoI0knmIaDvSSnIhksmRflDsZmG5mifs/nIJ4BpW61i5Omjg63WGIiKRFMi/KPQKcAKwgGAYDghnlMiBBRLhAI7mKSIZKpgZRCcwJh9nIGJFonKaObjUxiUjGSnZGuYmpDmSwaeh5B0JDfYtIhkqmBlEKrDWz14GunkJ3vzZlUQ0CdeEwG5osSEQyVTIJ4p5UBzEY9SSIMtUgRCRDJTWjnJlNAM4Oi153972pDSv96jSSq4hkuGTGYvoo8DrwEeCjwGtmdkOqA0u3/U1MShAikqGSaWL6MnB2T60hfJP6NxxhFNahrr61i/wRWRTkapgNEclMyTzFlNWrSak+yc8NaXXhXNRmlu5QRETSIpkaxDNmtgT4Wbj+MeDXqQtpcNAwGyKS6ZLppP6bcNrR94ZFD7j7L1IbVvrVtUYoL85PdxgiImmTTCf1DGCxu3/R3b9IUKOYnszBzewKM1tvZtVm9q45pc1sWjgJ0Soze8HMKsLy083sFTNbE2772NGd1vFTDUJEMl0yfQlPAPGE9VhYdlhmlg18H7gSmAPcZGZzeu12P/Cwu88D7gXuC8vbgU+5+6nAFcC/m1lxErH2C3dnX1uEcQV6B0JEMldSEwa5e6RnJVxO5s55DlDt7pvCzzzGu4cJnwP8Nlxe2rPd3d9x9w3h8k5gL1CWxHf2i/ZIjGjcGTNyxEB9pYjIoJNMgqg1s/3DapjZdUBdEp8rB7YnrNeEZYlWAgvC5euB0WZWkriDmZ1DkJA29v4CM7vNzKrMrKq2tjaJkJLT0hkFYHS+EoSIZK5kEsRfAH9vZtvMbBvwd8Bt/fT9dwAXm9mbwMXADg4MKY6ZTQIeAf7Y3eO9P+zuD7h7pbtXlpX1XwWjubMbgKKRyU6XISIy/CTzFNNG4DwzKwzXW5M89g5gSsJ6RViWeOydhDWI8PgfdvfGcL0IeBr4sru/muR39ovmjjBBqAYhIhks6Rfe3L31KJIDwDJglpnNMLNc4EZgUeIOZlZqZj0x3AUsDMtzgV8QdGAP+BvbB2oQShAikrlS9ka0u0eBzwJLgLeBx919jZndm9CncQmw3szeASYA/xiWfxS4CLjVzFaEP6enKtbeDvRBqIlJRDJXSu+A7r4YWNyr7O6E5SfpY0wnd38UeDSVsR2OmphERJJMEGZ2ATA9cX93H7ZzUjerBiEicuQEYWaPACcAKzjwhJEDwzdBdHSTl5NF/giN5CoimSuZP5ErgTnu7qkOZrBo7oyqg1pEMl4yndSrgYmpDmQwae7sVvOSiGS8ZO6CpcBaM3sd6OopdPdrD/2Roa25o1sd1CKS8ZJJEPekOojBprkzqnGYRCTjJfMm9YsDEchg0tLZzZSxI9MdhohIWiUzH8R5ZrbMzFrNLGJmMTNrHojg0qW5I6qB+kQk4yXTSf094CZgAzAS+DTBPA/DVnNntwbqE5GMl9RQG+5eDWS7e8zdHySYxGdY6uyOEYnG1UktIhkvmT+T28PB81aY2TeAXaRwDKd000B9IiKBZG70nwz3+yzQRjCE94dTGVQ69QzUV6T3IEQkwyXzFNNWMxsJTHL3rw1ATGmlgfpERALJPMV0DcE4TM+E66eb2aLDf2ro6hmoT53UIpLpkmliugc4B2gEcPcVwIwUxpRWqkGIiASSSRDd7t7Uq2zYDty3vw9CndQikuGSaUdZY2YfB7LNbBbwV8DLqQ0rfXqeYtJgfSKS6ZKpQXwOOJVgoL6fAc3A55M5uJldYWbrzazazO7sY/s0M3vezFaZ2QtmVpGw7RYz2xD+3JLc6Ry/5o5ucrKMkZoLQkQyXDJPMbUDXw5/kmZm2QRvXF8G1ADLzGyRu69N2O1+4GF3/6mZXQrcB3zSzMYBXyWYi8KB5eFn9x1NDMcieIt6BGaW6q8SERnUDpkgjvSkUhLDfZ8DVLv7pvB4jwHXAYkJYg7wxXB5KfBUuPxB4Dl3bwg/+xzB29s/O8J3HreWzqjegRAR4fA1iPOB7QQ35deAo/2Tujz8fI8a4Nxe+6wEFgDfBtzsNs0AAAxbSURBVK4HRptZySE+W977C8zsNuA2gKlTpx5leH1r7ujWQH0iIhy+D2Ii8PfAaQQ38MuAOnd/sR+HAL8DuNjM3gQuBnZwYN7rI3L3B9y90t0ry8rK+iWgYLpR1SBERA6ZIMKB+Z5x91uA84Bq4AUz+2ySx95BMCxHj4qwLPE7drr7Anc/g7CPw90bk/lsqmg2ORGRwGGfYjKzPDNbADwK3A58B/hFksdeBswysxnhYH83Agf1a5hZqZn1xHAXsDBcXgJcbmZjzWwscHlYlnJBH4QShIjI4TqpHyZoXloMfM3dVx/Ngd09GtY2lgDZwEJ3X2Nm9wJV7r4IuAS4z8wceIkgCeHuDWb2dYIkA3BvT4d1qjV3dusdCBERDt9JfTPB6K1/DfxVwmOfBri7Fx3p4O6+mCDBJJbdnbD8JPDkIT67kAM1igHRHYvTHonpLWoREQ6TINx92M75cCga6ltE5ICMSwKH06LJgkRE9lOCSNDc0VODUIIQEVGCSKCB+kREDlCCSLB/Lgg1MYmIKEEkalYfhIjIfkoQCfQUk4jIAUoQCZo7ujGDglwlCBERJYgEzZ1RRuflkJWluSBERJQgEgTDbKj/QUQElCAO0tIZ1SOuIiIhJYgELZ0a6ltEpIcSRALVIEREDlCCSNDc2a13IEREQkoQCVSDEBE5QAki5O5KECIiCZQgQh3dMWJx12OuIiKhlCYIM7vCzNabWbWZ3dnH9qlmttTM3jSzVWZ2VVg+wsx+amZvmdnbZnZXKuOEA8NsqAYhIhJIWYIws2zg+8CVwBzgJjOb02u3rwCPu/sZwI3AD8LyjwB57j4XOAv4czObnqpY4cBIrqpBiIgEUlmDOAeodvdN7h4BHgOu67WPAz1zW48BdiaUF5hZDjASiADNKYyVZg3UJyJykFQmiHJge8J6TViW6B7gZjOrARYDnwvLnwTagF3ANuB+d2/o/QVmdpuZVZlZVW1t7XEF29KpGoSISKJ0d1LfBDzk7hXAVcAjZpZFUPuIAZOBGcCXzGxm7w+7+wPuXunulWVlZccViIb6FhE5WCoTxA5gSsJ6RViW6E+BxwHc/RUgHygFPg484+7d7r4X+ANQmcJYEzqpVYMQEYHUJohlwCwzm2FmuQSd0It67bMNeD+AmZ1CkCBqw/JLw/IC4DxgXQpj1XzUIiK9pCxBuHsU+CywBHib4GmlNWZ2r5ldG+72JeDPzGwl8DPgVnd3gqefCs1sDUGiedDdV6UqVgj6ILKzjFG52an8GhGRISOlfy67+2KCzufEsrsTltcC7+njc60Ej7oOmJ63qM00WZCICKS/k3rQ0DAbIiIHU4IItXR2MzpPHdQiIj2UIELNHapBiIgkUoIIaS4IEZGDKUGE1AchInIwJYiQ5qMWETmYEgQQjzutXapBiIgkUoIA2iJR4q63qEVEEilBkDhQn5qYRER6KEGggfpERPqiBEHiXBBqYhIR6aEEgeajFhHpixIEiUN9q4lJRKSHEgQJ81GPVA1CRKSHEgQH+iD0FJOIyAFKEAR9ECOyjbwc/TpERHrojkg41Hf+CE0WJCKSIKUJwsyuMLP1ZlZtZnf2sX2qmS01szfNbJWZXZWwbZ6ZvWJma8zsLTPLT1WcGupbROTdUnZXNLNsgrmlLwNqgGVmtiicZrTHVwjmqv4PM5tDMD3pdDPLAR4FPunuK82sBOhOVawaqE9E5N1SWYM4B6h2903uHgEeA67rtY8DReHyGGBnuHw5sMrdVwK4e727x1IVqIb6FhF5t1QmiHJge8J6TViW6B7gZjOrIag9fC4snw24mS0xszfM7G/7+gIzu83Mqsysqra29pgDVYIQEXm3dHdS3wQ85O4VwFXAI2aWRdD09V7gE+F/rzez9/f+sLs/4O6V7l5ZVlZ2zEH0dFKLiMgBqUwQO4ApCesVYVmiPwUeB3D3V4B8oJSgtvGSu9e5eztB7eLMVAWqGoSIyLulMkEsA2aZ2QwzywVuBBb12mcb8H4AMzuFIEHUAkuAuWY2KuywvhhYSwrE4k5LV1Sd1CIivaTsz2Z3j5rZZwlu9tnAQndfY2b3AlXuvgj4EvAjM/sCQYf1re7uwD4z+yZBknFgsbs/nYo4W7s0UJ+ISF9Seld098UEzUOJZXcnLK8F3nOIzz5K8KhrSrk7V8+bxOwJo1P9VSIiQ0rG/9lcPCqX7308Zd0bIiJDVrqfYhIRkUFKCUJERPqkBCEiIn1SghARkT4pQYiISJ+UIEREpE9KECIi0iclCBER6ZMFI1sMfWZWC2w9jkOUAnX9FE666VwGJ53L4DSczgWO/nymuXufw2EPmwRxvMysyt0r0x1Hf9C5DE46l8FpOJ0L9O/5qIlJRET6pAQhIiJ9UoI44IF0B9CPdC6Dk85lcBpO5wL9eD7qgxARkT6pBiEiIn1SghARkT5lfIIwsyvMbL2ZVZvZnemO52iY2RQzW2pma81sjZn9dVg+zsyeM7MN4X/HpjvWZJlZtpm9aWa/CtdnmNlr4fX5n3B+8yHBzIrN7EkzW2dmb5vZ+UP12pjZF8J/Y6vN7Gdmlj9Uro2ZLTSzvWa2OqGsz+tgge+E57TKzAbVbGKHOJd/Df+NrTKzX5hZccK2u8JzWW9mHzza78voBGFm2cD3gSuBOcBNZjYnvVEdlSjwJXefA5wH3B7GfyfwvLvPAp4P14eKvwbeTlj/F+Bb7n4isA/407REdWy+DTzj7icD8wnOa8hdGzMrB/4KqHT30wjmmL+RoXNtHgKu6FV2qOtwJTAr/LkN+I8BijFZD/Huc3kOOM3d5wHvAHcBhPeCG4FTw8/8ILznJS2jEwRwDlDt7pvcPQI8BlyX5piS5u673P2NcLmF4AZUTnAOPw13+ynwR+mJ8OiYWQXwIeDH4boBlwJPhrsMpXMZA1wE/ATA3SPu3sgQvTYE0xOPNLMcYBSwiyFybdz9JaChV/GhrsN1wMMeeBUoNrNJAxPpkfV1Lu7+rLtHw9VXgYpw+TrgMXfvcvfNQDXBPS9pmZ4gyoHtCes1YdmQY2bTgTOA14AJ7r4r3LQbmJCmsI7WvwN/C8TD9RKgMeEf/1C6PjOAWuDBsMnsx2ZWwBC8Nu6+A7gf2EaQGJqA5QzdawOHvg5D/Z7wJ8Cvw+XjPpdMTxDDgpkVAj8HPu/uzYnbPHiOedA/y2xmVwN73X15umPpJznAmcB/uPsZQBu9mpOG0LUZS/DX6AxgMlDAu5s5hqyhch2OxMy+TNDs/F/9dcxMTxA7gCkJ6xVh2ZBhZiMIksN/ufv/hsV7eqrF4X/3piu+o/Ae4Foz20LQ1HcpQRt+cdisAUPr+tQANe7+Wrj+JEHCGIrX5gPAZnevdfdu4H8JrtdQvTZw6OswJO8JZnYrcDXwCT/wcttxn0umJ4hlwKzwaYxcgg6dRWmOKWlhG/1PgLfd/ZsJmxYBt4TLtwD/N9CxHS13v8vdK9x9OsF1+K27fwJYCtwQ7jYkzgXA3XcD283spLDo/cBahuC1IWhaOs/MRoX/5nrOZUhem9ChrsMi4FPh00znAU0JTVGDkpldQdA0e627tydsWgTcaGZ5ZjaDoOP99aM6uLtn9A9wFUHP/0bgy+mO5yhjfy9B1XgVsCL8uYqg7f55YAPwG2BcumM9yvO6BPhVuDwz/EddDTwB5KU7vqM4j9OBqvD6PAWMHarXBvgasA5YDTwC5A2VawP8jKDvpJugZvenh7oOgBE82bgReIvgya20n8MRzqWaoK+h5x7ww4T9vxyey3rgyqP9Pg21ISIifcr0JiYRETkEJQgREemTEoSIiPRJCUJERPqkBCEiIn1SghA5BmZWYmYrwp/dZrYjXG41sx+kOz6R/qDHXEWOk5ndA7S6+/3pjkWkP6kGIdKPzOyShLks7jGzn5rZ78xsq5ktMLNvmNlbZvZMOEwKZnaWmb1oZsvNbMlgGj1UMpsShEhqnUAwrtS1wKPAUnefC3QAHwqTxHeBG9z9LGAh8I/pClYkUc6RdxGR4/Brd+82s7cIJtp5Jix/C5gOnAScBjwXDHNENsFQCiJppwQhklpdAO4eN7NuP9DpFyf4/8+ANe5+froCFDkUNTGJpNd6oMzMzodg+HYzOzXNMYkAShAiaeXBVLc3AP9iZisJRuO8IL1RiQT0mKuIiPRJNQgREemTEoSIiPRJCUJERPqkBCEiIn1SghARkT4pQYiISJ+UIEREpE//H+AcpmWT7SmeAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3ydVZ3v8c8v9+bSJm1CL0npBVpKLS2FWC4yyIAgIIIiKnhED+phmAPo4NwQ5xx15jVnGI4zI47MMIyigzIwAwMKngoooohCSwu9X2joNU1Lc2myc9tJ9t6/88fzpN2ku+1um92dZH/fr1de3c/9t9r0+e211vOsZe6OiIjIUHnZDkBEREYmJQgREUlJCUJERFJSghARkZSUIEREJKWCbAcwnKqrq33mzJnZDkNEZNRYuXJli7vXpNo2phLEzJkzWbFiRbbDEBEZNcxsx+G2qYlJRERSUoIQEZGUlCBERCQlJQgREUlJCUJERFJSghARkZSUIEREJCUlCBF5l1g8wX++vosdrd3ZDkWybEy9KCcixy46EKe4IA8zo6Wrjy8+9ia/e7uV6vIifvSF85g3ZXy2QxyTNjRF2LAnwpULplBefORbsbtjZicpsoNsLE0YVF9f73qTenjF4gn2dESpqxqXlV/QbOuLxfnFhn28tHkfv9nSTOW4Ij56Ti0fXVzL5PElJy2OXW09bNrbyfaWbtp7+ykvLqSsOJ9I7wB7I1Ficad+5kQuOG0SA7EEG/ZEaGrv5bSacs6YUkF3X4wVO/az5Z0uzpxawYWnV7MvEuW7r2zjuXV7qSot5OzpVazb3cH+nn7+6ANz+cHvttEXS/BPnzoHB95u7mLu5ArOmzXxwO9Cb3+QXPLyRu7vRjzhvNLQwhMrdrG6sZ0vXDSbm8+fkVbM+yJRdrT18N6ZEw/Z1tsf57u/2UpbTz9zJ1cwb0oFZ9VOoCD/yA0zbd39/N0Lm3ls+U4SDpWlhXzufbO4dtE0Tp1YSizh/GTVbh7+7Xa2tXQxEHfyDJbMmsgHzpxMRUkhy7a2snZ3BzUVxZx+SjlzJ1dw43unH9f/UTNb6e71KbcpQeS2DU0RvvfKNprae+npj1FckM+HFk7lurOnsXxbG/c9v5mGfV1ceNok7rn6TBbUTshKnNtbunlu/V5+seEd2nsH+OwFM/h4/XSK8vN4a18nu/f3cu6MKipLi4jFE/ymoYX1uzv45HtPpaai+JivF084T73RyLd+sYXd7b1MGFfI782ppqm9lzd2tgMwd3I5S2ZNZGFtJadOKmXahHE0dfTSsK+LsuJ8rlk4jcLwZrG3I8rGvREWT6+ksrTowHWO9s0wEh3g3p9t4t+X7TywLs8gkfTftqq0EAfaewaOWq6i/Dz644kDyxUlBVy/uJauvjhv7tpPcUE+f/fxRcyfNp4drd186l+Xsbu9913nWDS9kmsXTePVt1t5+a1maqvG8a+fqef0U8qPen2AX7/VTHdfjBmTSnGHZ9c08fy6vZx+SgVfv3Y+dVWlRz3HQDzBP730NrVV47h03ilMGFfImsZ2XtnSQn88QXlxAQPxBKt2tbNyx3729wxQWVrIjEllrN7VzpJZE/nKVfNYUDvhwL9RsuhAnO+9so0HXmqgpz/OFy6axd1XzTtw839lSwv3PL2WnW09jCvMp3cgfuDv8+K5Nbx/Tg1LZk1kxqSgLPt7BlixvY2la/fw8w3vEI0luPn8GVwxfzIP/3Ybv9i4D4CyonyKC/Np6+5n3pQKLp5bQ2G+0duf4OUtzTTs6wKCpLKorpK27n4a9nVRVVrI775yWVp//0MpQcghGvZ18s3n3+K59XupKC7gzKnjKS3OZ29HlE17Ow/chGZXl3H1WVN5dNkO9vcMMH3iOLqiMfpiCc6fPYmrFkxhXFE+z65u4pUtLVxw2iTuvHQOi6ZXDlusz6xu4q7/WEU84cyfOp7CgjxW72pnUlkRCXf2hzdGMzirdgJN7VFauvoAmFRWxH03LOSyMycf9vz7u/t5eUszv36rmY17OokOxGnv6Wd/zwAL6ybw5cvnctHp1QduDttaulm6dg/Lt7Wxcsd+uvpiKc87u7qMOy49nZU79vPEikb64wnMYP7U8RTkGY37e4lEBzhjSgUL6yr58MJpXHDapAPH/3LTO9zz1Dr2dUa55X2zuGbhVGZVlzFhXCHRgQRdfTEqSgooKcwnkXDe2tfJsq1tlBTmMX/qBKZVlrCtpZuNezspKcijfuZEZkws5a19nfyuoZWigjw+srj2iM0b+yJRXtq8j7qqUmZWl/HSpn089PJWdrb1MGV8CVe8ZzJL1+6hL5bgmx9fRFFBHsu3tdHW1U91RRGTx5dwzcJpTCwLkuKDv36be3+26V3XKMgzzp89iTd27gfgT644g5svmJHyxj3or//fBv71N9uAIGGWFxcQicYwA+NgAp1dU8a5p1bx+/NO4bIzT6EoP48nVzbylz/dQGc0RnFBHvOmVDAQd9p7+onGEhTkGdGBOJFojCvmT6a6oph/X7aTi06vZmHdBF7a3MzGPRFmV5fx1x89i/NmTWR3ey9rGjv49Vv7eGlzM82dwe9fVWkhPf1x+mJBUq4sLeSD86fwuYtmccaUigPladjXycod+9m4p5O27n5uOLeO35tTfciXhx2t3UQHEsw5pfxADSiRcNp6+qkuP/YvQqAEIUli8QT/8vJW7v/FFooL8vjcRbP43EWzmDCu8MA+65s6+OmaPcyYWMoN59ZRkJ9HJDrA936zjW0t3UwYV4jjvLSp+cC3y5qKYi46vZpfbtpHR+8A86ZUUJBvxOLOlAklzJ1cwdzJFSyoHc/pNeVHrIZ398UoLcrHzPjJqt3c9R+rqJ85kX/45NnUVo7D3XltaxuPvLqdsuICzps1kbqqUpZta+V3Da1MKi/iI4trqa0cx588sZpNezu5fP5kLjmjhgtPq2bGxFLy8oL29gdeauDR13bSH09QWVrI4umVVJQUMq4wn0vOqOHKBVOO+A0/Fk/Q1B5lR1s3e9qjTJlQwumnlLO+KcLfPreJhn1dFOXncUN9HVe+ZwqrdrWzbFsreWbUVZVSXpzPxj2drG5spzMa46Yl07n990/n73/+Fk+9sZu5k8u574ZFnD2MCfdExeIJdrT1MGtSGXl5RuP+Hv7HIyvZuCcCBDf8qrIi2rr7iSeciWVF/O9r5tPe08/Xn93AhxdN4w8uns3Oth56+uNcOu8UJpYV0bi/h7/48Tp+tbmZmZNKuevyuZxzahVrGjvY3trNVQumMLumnBfW7+XWH67k5vNn8In66fx8w172RqK87/RqLp5TQ2VpIb0DceIJp6KkMGUZWrv6+N3braze1c6mvZ2UFOYxYVwRJYV5JNxxh2sWTuOiOdUA/Ofru/iLH68j4c65M6q4fP5kPn3+DEoK8w85t7vzdnMXy7a1sbaxg4qSAqZOGBc0z82eeMTElw1KEGNAfyxBS1cfrV39B76F5uUZ7s5vG1r56ZomItEBuvvilJcUcFpNObOqSynKz8cM9vf0s+WdLl59u5XN73Ry9VlT+Ma1C46r+WWQu7N2dwfRgQTnzqgiP8/o6ovxw1d38NrWVgryDDNjd3svbzd30R9+iyopzKOsqIDu/hiG8f65NVyzaCq9/XGeWNnI8m1tjC8p4IwpFazcsZ/3zpzI9295L6VFx/5MRV8szrdf3MJTb+xmT0cUgOKCPGZMKmX3/l56B+J8/Nzp3LhkOgvrKskfxrb0WDzB795uZc7kcqZOGHfEfaMDcf7h52/xr7/ZSsIhP8+4/ZLTuP3S0ykuOPQmNNJ098V4dnUT0yeWsvjUSkqLCkgknI17I3z16XWs2hU0y10xfzIP/LdzDnuTdHde3LiPb76wmU17O9+1Lc/gurNr+cXGd5g5qYwn//CCk/p309rVR2FBHuMPk3RGKyWIUW7d7g4++/ByWrv7D6ybNqGEDy6Ywhs79rO6sYPxJQWcMr6E0qJ82nsG2LW/h6H/tKVF+cyZXMEfXDybq8+aelLLEIsn2N7azdrdHazbHSE6EKesuIDuvhgvbHjnQJV8VnUZHzprKm09/WzcE6GuqpS//dhZx5Uckrk721q6Wbatja3NXWxv7aGipIDbf/90TqtJr+38ZHhz534eXbaT/37hzKz19wy3eML50Ws72NrcxT0fOjOtm3oi4Ty/fi8tXX0sml5JTUUx3/3NNn742g6KC/JY+sXfY/rEo/dVyNFlJUGY2cPANcA+d1+QYrsB9wNXAz3Af3f3N8JtV4bb8oHvuvu96VxzLCaIhn2dfOJfXqOkII87Lp1DdXkRndEYS9fu4eUtzUydMI4/vOQ0rj+n9l3/8aIDcRr39xJPOE5Q1Z46vmREPm0STzgrtrdRkJ/HOadW5uTTUpKefZ1R+mOJtDqyJT3ZShAXA13AI4dJEFcDdxIkiPOA+939PDPLB94CLgcagdeBm9x9w9GuOZYSxP7uftY3RfjjJ1YRT8ATt13ArOqyd+0THYhTmJ83rM0iIpJbjpQgMvainLu/bGYzj7DLdQTJw4HXzKzSzKYCM4EGd98KYGaPh/seNUGMBY37e/jM95aztSV4i7WytJDHbz3/kOQApOwgExEZLtl8k7oW2JW03BiuS7X+vMOdxMxuBW4FOPXUU4c/ypPI3bnn6XW8E4lyz9XzmDdlPIvqKplQOrY6xURkdMhmgkjVLuJHWJ+Suz8EPARBE9PwhJYdT7+5m5ffauYb176Hz144M9vhiEiOy2aCaASmJy3XAU1A0WHWj2ktXX385U83UD+jipvPn5HtcEREsjqa6zPAZyxwPtDh7nsIOqXnmNksMysCbgz3HbOiA3G+/J+r6emLc+/HFo7IJ41EJPdkrAZhZo8BlwDVZtYIfA0oBHD3B4GlBE8wNRA85npLuC1mZncAzxM85vqwu6/PVJzZ1tsf59YfruA3W1q49/qz0h7PRkQk0zL5FNNNR9nuwO2H2baUIIGMSfGEs721my3vdPLwb7fz+vY27rthIZ+on370g0VEThLNB3GS9fTH+OS/vMba3R1AMLrmP3zibD6yuDbLkYmIvJsSxEnk7nz16XWsa+rgf10zn/fOrOK0mnLKjjJZiIhINujOdBI9umwnT7+5m7s+MJfPXzQr2+GIiBzRyBp3dgxb09jOXz67gffPreHOS0/PdjgiIkelBHES7O/u5w9/9AY1FcV865Nn6zFWERkV1MSUYfGE86X/WEVzZx9P3HYBVWVFRz9IRGQEUILIsG+/uIWX32rm/3z0rGGdhlNEJNPUxJRBTe29PPBSAx9dXMtNS/SOg4iMLkoQGfT9327DgT++Yq4mwRGRUUcJIkMi0QEeW76LD501VbNficiopASRIY8v30lXX4z/8Xuzsx2KiMhxUYLIgP5Ygodf2c4FsydxVt3YmHheRHKPEkQG/HRNE3sjUW69WLUHERm9lCCGWSye4B9/2cC8KRW8f25NtsMRETluShDD7Ok3d7OtpZu7Lp+rN6ZFZFRTghhGA/EE3/7lFs6qncAV8ydnOxwRkROiBDGMnljRyK62Xr58ud57EJHRL6MJwsyuNLPNZtZgZnen2F5lZk+b2RozW25mC5K23WVm681snZk9ZmYlmYz1RA3EE3znl1tYfGoll5yhvgcRGf0yliDMLB94ALgKmA/cZGbzh+x2D7DK3RcCnwHuD4+tBb4I1Lv7AoK5qW/MVKzD4Vebm2nqiHL7Jaer9iAiY0ImaxBLgAZ33+ru/cDjwHVD9pkPvAjg7puAmWY22HhfAIwzswKgFGjKYKwn7IkVu6guL1btQUTGjEwmiFpgV9JyY7gu2WrgegAzWwLMAOrcfTfwTWAnsAfocPcXMhjrCWnt6uOXm/Zx/Tm1FOSrW0dExoZM3s1StbP4kOV7gSozWwXcCbwJxMysiqC2MQuYBpSZ2adTXsTsVjNbYWYrmpubhy/6Y/CTVU3EEs7HzqnLyvVFRDIhkwmiEUge47qOIc1E7h5x91vc/WyCPogaYBvwAWCbuze7+wDwFHBhqou4+0PuXu/u9TU12WneeXJlIwvrJnDGlIqsXF9EJBMymSBeB+aY2SwzKyLoZH4meQczqwy3AXwBeNndIwRNS+ebWakFPb6XARszGOtxW9/UwYY9EW44V7UHERlbMjajnLvHzOwO4HmCp5Aedvf1ZnZbuP1B4EzgETOLAxuAz4fblpnZk8AbQIyg6emhTMV6In6yqonCfOPDC6dlOxQRkWGV0SlH3X0psHTIugeTPr8KzDnMsV8DvpbJ+IbD69vbWDy9SnNNi8iYo0duTsBAPMGGpggLNaS3iIxBShAn4K13OumLJVg4vTLboYiIDDsliBOwprEDgIW1qkGIyNijBHEC1jS2M2FcITMmac5pERl7lCBOwJrGDhbWTdDYSyIyJilBHKfoQJzNezs5S81LIjJGKUEcpw17IsQSzsI6dVCLyNikBHGc1oYd1IumqwYhImOTEsRxWt3YTnV5MVPGj+h5jEREjpsSxHFa09jBInVQi8gYpgRxHLr6Yrzd3KX+BxEZ05QgjsPaxg7c0RAbIjKmHTVBmNn1ZrbFzDrMLGJmnWYWORnBjVRrGtsBWKQhNkRkDEtnNNf7gA+7+4icjyEb1jR2UFc1jokawVVExrB0mpjeUXJ4t9WN7SxS/4OIjHHp1CBWmNl/AD8G+gZXuvtTGYtqBGvt6qNxfy+fuWBGtkMREcmodBLEeKAHuCJpnRPME51z1uwOR3BVDUJExrijJgh3v+VkBDJarN7Vjhks0BhMIjLGpfMUU52ZPW1m+8zsHTP7LzOrS+fkZnalmW02swYzuzvF9qrw3GvMbLmZLUjaVmlmT5rZJjPbaGYXHFvRMmNNYwen15RTXpzR2VpFRLIunU7q7wPPANOAWuDZcN0RmVk+8ABwFTAfuMnM5g/Z7R5glbsvBD4D3J+07X7gOXefBywCst5R7u6saWxX85KI5IR0EkSNu3/f3WPhzw+AmjSOWwI0uPtWd+8HHgeuG7LPfOBFAHffBMw0s8lmNh64GPheuK3f3dvTK1LmNHVEaenq52wN0CciOSCdBNFiZp82s/zw59NAaxrH1QK7kpYbw3XJVgPXA5jZEmAGUAfMBpqB75vZm2b2XTMrS3URM7vVzFaY2Yrm5uY0wjp+a3YFOUo1CBHJBekkiM8BnwD2AnuAG8J1R5NqFDsfsnwvUGVmq4A7gTeBGEHn+TnAP7v7YqAbOKQPA8DdH3L3enevr6lJp2Jz/FY3dlCYb8ybWpHR64iIjATpPMW0E7j2OM7dCExPWq4DmoacOwLcAmDBsKjbwp9SoNHdl4W7PslhEsTJtL6pg3lTxlNckJ/tUEREMu6wCcLM/szd7zOzf+TQb/64+xePcu7XgTlmNgvYDdwIfGrINSqBnrCP4gvAy2HSiJjZLjM7w903A5cBG46lYJmwvbWbc06tynYYIiInxZFqEINPDa04nhO7e8zM7gCeB/KBh919vZndFm5/EDgTeMTM4gQJ4PNJp7gTeNTMioCthDWNbBmIJ2hqj/KRs0uzGYaIyElz2ATh7s+GH3vc/YnkbWb28XRO7u5LgaVD1j2Y9PlVYM5hjl0F1KdznZOhqb2XeMI5daIShIjkhnQ6qb+S5roxbUdrD4AShIjkjCP1QVwFXA3Umtm3kzaNJ3jSKKfsaAsSxIxJKZ+2FREZc47UB9FE0P9wLbAyaX0ncFcmgxqJdrX1UFyQxykVxdkORUTkpDhSH8RqYLWZ/TvBOw3zCJ5m2hw+dZRTdrR2M31iKXl5qV7vEBEZe9IZce5y4F+AtwkSxSwz+wN3/1lGIxthdrb1MkP9DyKSQ9JJEH8P/L67NwCY2WnA/wNyJkG4Oztbuzlv1sRshyIictKk8xTTvsHkENoK7MtQPCNSa3c/3f1xZkxSDUJEckc6NYj1ZrYU+E+CPoiPA6+b2fWQG1OP7mzTI64iknvSSRAlwDvA+8PlZmAi8GFyZOrRna2Dj7gqQYhI7tCUo2kYfEmurkoJQkRyx1ETRDjY3p3AzOT93f14RngdlXa29TBlfAklhRrFVURyRzpNTD8mmNntWSCR2XBGpp1t3Zyq5iURyTHpJIiou3/76LuNXTtae7h4bmYnIxIRGWnSSRD3m9nXgBeAvsGV7v5GxqIaQXr74+zr7NNLciKSc9JJEGcBNwOXcrCJycPlMW/X/vARVzUxiUiOSSdBfBSYnYvjLwE07tcTTCKSm9J5k3o1UJnpQEaq5s6gVU2juIpIrkknQUwGNpnZ82b2zOBPOic3syvNbLOZNZjZ3Sm2V5nZ02a2xsyWm9mCIdvzzexNM/tpesUZfi1dQcWpulwJQkRySzpNTF87nhObWT7wAMFosI0Ew3M84+4bkna7B1jl7h81s3nh/pclbf8SwdzY448nhuHQ0tVHWVE+44r0DoSI5JZ03qT+9XGeewnQ4O5bAczsceA6IDlBzAf+JrzOJjObaWaT3f0dM6sDPgT8NfDl44zhhLV09VOt5iURyUFHbWIys04zi4Q/UTOLm1kkjXPXAruSlhvDdclWA9eH11kCzADqwm3fAv6Mo7ycZ2a3mtkKM1vR3NycRljHprWrT81LIpKTjpog3L3C3ceHPyXAx4DvpHHuVFOv+ZDle4EqM1tFMJzHm0DMzK4hGGZ85dATpIjvIXevd/f6mprhf5mtpauP6vKiYT+viMhIl04n9bu4+49J7x2IRmB60nIdwTzXyeeKuPst7n428BmgBtgGvA+41sy2A48Dl5rZj4411uHQ0tXPJNUgRCQHpTNY3/VJi3lAPYfWBFJ5HZgTDva3G7gR+NSQc1cCPeE7Fl8AXnb3CPCV8AczuwT4E3f/dBrXHFaxeIL9Pf1qYhKRnJTOU0wfTvocA7YTdDYfkbvHzOwO4HkgH3jY3deb2W3h9geBM4FHzCxO0Hn9+WMLP7Paevpxhxo1MYlIDsrofBDuvhRYOmTdg0mfXwXmHOUcvwJ+dbwxnIiWzuAdCDUxiUguSucppvvMbLyZFZrZi2bWYmYnvbknG1q7g7eo1cQkIrkonU7qK8J+gWsIOp7nAn+a0ahGiJauwQShJiYRyT3pJIjC8M+rgcfcvS2D8YwoamISkVyWTif1s2a2CegF/qeZ1QDRzIY1MrR09VGUn8f4knT+mkRExpZ0XpS7G7gAqHf3AaCbNJ5iGgtauvqpLi/CLNU7fyIiY1u6X43PBGaaWfL+j2QgnhGlpatP4zCJSM5K50W5HwKnAauAeLjayZEEoXkgRCRXpVODqAfmu3s6b0+PKa1d/cyfmrWRxkVEsiqdp5jWAVMyHchI4+60dquJSURyVzo1iGpgg5ktB/oGV7r7tRmLagTo6B1gIO5MKtM7ECKSm9JJEF/PdBAj0eBUozWqQYhIjkprRjkzmwy8N1y13N33ZTas7Dv4FrUShIjkpnTGYvoEsBz4OPAJYJmZ3ZDpwLJtMEFM0jAbIpKj0mli+irw3sFaQ/gm9S+AJzMZWLa1hk1MqkGISK5K5ymmvCFNSq1pHjeqtXT1kWdQVaoahIjkpnRqEM+Z2fPAY+HyJ4GfZS6kkaGlq4+JZcXk52mYDRHJTel0Uv9pOO3oRYABD7n70xmPLMsGx2ESEclV6XRSzwKWuvuX3f0ughrFzHRObmZXmtlmM2sws7tTbK8ys6fNbI2ZLTezBeH66Wb2kpltNLP1ZvalYyvWiWvp6lP/g4jktHT6Ep4AEknL8XDdEZlZPvAAcBUwH7jJzOYP2e0eYJW7LwQ+A9wfro8Bf+zuZwLnA7enODaj2rr7maiX5EQkh6WTIArcvX9wIfyczp1zCdDg7lvDYx7n0GHC5wMvhufdRDBi7GR33+Pub4TrO4GNQG0a1xw2kd4BJowrPPqOIiJjVDoJotnMDgyrYWbXAS1pHFcL7EpabuTQm/xq4PrwvEuAGUBd8g5hc9ZiYFmqi5jZrWa2wsxWNDc3pxHW0bk7ndEYFZooSERyWDoJ4jbgHjPbaWY7gT8Hbk3juFSP/wwdEfZeoMrMVgF3Am8SNC8FJzArB/4L+KNwXuxDT+j+kLvXu3t9TU1NGmEdXe9AnFjCGa8ahIjksHSeYnobOD+8WVvY5JOORmB60nId0DTk3BHgFgALpm3bFv5gZoUEyeFRd38qzWsOi0hvkKPGlyhBiEjuSvuFN3fvOobkAPA6MMfMZplZEXAj8EzyDmZWGW4D+ALwsrtHwmTxPWCju//9MVxzWESiAwCMH6cmJhHJXRm7A7p7zMzuAJ4H8oGH3X29md0Wbn+QYCrTR8wsDmwAPh8e/j7gZmBt2PwEcI+7L81UvMk6wwRRoRqEiOSwjH5FDm/oS4esezDp86vAnBTHvULqPoyT4mATk2oQIpK70roDmtmFwMzk/d19zM5JfbCJSTUIEcldR00QZvZD4DRgFcFLchA8jTR2E0RvmCDUxCQiOSydGkQ9MN/dhz6iOmZFokETk96DEJFcls5TTOuAKZkOZCSJRAcoKsijpDA/26GIiGRNOl+Rq4ENZrYc6Btc6e7XHv6Q0S3SG1PzkojkvHQSxNczHcRIE4kO6B0IEcl56bxJ/euTEchI0hlVDUJEJJ35IM43s9fNrMvM+s0sbmYpx0UaKyK9A+qgFpGcl04n9XeAm4AtwDiCITG+k8mgsi1oYlINQkRyW1pfk929wczy3T0OfN/MfpfhuLJKndQiIukliJ5wQL1VZnYfsAcoy2xY2aVOahGR9JqYbg73uwPoJhjC+2OZDCqbogNx+mMJ1SBEJOel8xTTDjMbB0x192+chJiyqjOqgfpERCC9p5g+TDAO03Ph8tlm9syRjxq9NFCfiEggnSamrwNLgHYAd19FMLLrmKSB+kREAukkiJi7d2Q8khHiQBOTOqlFJMelcxdcZ2afAvLNbA7wRWDMPuYa0WxyIiJAejWIO4H3EAzU9xgQAf4onZOb2ZVmttnMGszs7hTbq8zsaTNbY2bLzWxBusdmysHZ5JQgRCS3pfMUUw/w1fAnbWaWDzwAXA40Aq+b2TPuviFpt3uAVe7+UTObF+5/WZrHZsTBTmo1MYlIbjvsXfBoTyqlMQcirBgAAAxGSURBVNz3EqDB3beG53scuA5IvsnPB/4mPN8mM5tpZpOB2WkcmxGd0QEK8oxxmgtCRHLckb4mXwDsImhWWgbYMZ67Njx+UCNw3pB9VgPXA6+Y2RJgBlCX5rEAmNmtwK0Ap5566jGGeKhIb4yKkgLMjrW4IiJjy5H6IKYQNAEtAO4naO5pcfdfpzkEeKo77NBpS+8FqsxsFUFfx5tALM1jg5XuD7l7vbvX19TUpBHWkWmgPhGRwGFrEOHAfM8Bz5lZMcGIrr8ys790939M49yNBMNyDKoDmoZcIwLcAmDBV/Zt4U/p0Y7NlEjvgDqoRUQ4Sid1mBg+RJAcZgLfBp5K89yvA3PMbBawG7gR+NSQ81cCPe7eTzCM+MvuHjGzox6bKZ3RmDqoRUQ4cif1vxE0L/0M+Ia7rzuWE7t7zMzuAJ4H8oGH3X29md0Wbn8QOBN4xMziBB3Qnz/SscdcuuMQiQ4wu7z8ZFxKRGREO9JX5ZsJRm+dC3wxqdPWAHf38Uc7ubsvBZYOWfdg0udXgTnpHnsyRHpVgxARgSP3QaTzEt2YE4mqD0JEBNJ7kzpnxOIJevrjeopJRAQliHfRXBAiIgcpQSTRQH0iIgcpQSQ5MFCfmphERJQgkh0YqE9NTCIiShDJOjXdqIjIAUoQSQabmCpUgxARUYJIFlENQkTkACWIJJFoDDMoL1INQkRECSJJZ3SA8qIC8vI0F4SIiBJEks5oTP0PIiIhJYgkndEBvSQnIhJSgkiikVxFRA5SgkjS2acahIjIICWIJOqDEBE5SAkiiRKEiMhBGU0QZnalmW02swYzuzvF9glm9qyZrTaz9WZ2S9K2u8J168zsMTMryWSs7q5OahGRJBlLEGaWDzwAXAXMB24ys/lDdrsd2ODui4BLgL8zsyIzqwW+CNS7+wKCealvzFSsANGBBANxVw1CRCSUyRrEEqDB3be6ez/wOHDdkH0cqLBgwutyoA2IhdsKgHFmVgCUAk0ZjPXgQH2qQYiIAJlNELXArqTlxnBdsu8AZxLc/NcCX3L3hLvvBr4J7AT2AB3u/kKqi5jZrWa2wsxWNDc3H3ewkagG6hMRSZbJBJFqvAofsvxBYBUwDTgb+I6ZjTezKoLaxqxwW5mZfTrVRdz9IXevd/f6mpqa4w5WNQgRkXfLZIJoBKYnLddxaDPRLcBTHmgAtgHzgA8A29y92d0HgKeACzMY64H5qFWDEBEJZDJBvA7MMbNZZlZE0Mn8zJB9dgKXAZjZZOAMYGu4/nwzKw37Jy4DNmYwVs1HLSIyRMa+Lrt7zMzuAJ4neArpYXdfb2a3hdsfBP4K+IGZrSVokvpzd28BWszsSeANgk7rN4GHMhUrHKxBaKgNEZFARu+G7r4UWDpk3YNJn5uAKw5z7NeAr2UyvmSdqkGIiLyL3qQOdUZj5BmUFeVnOxQRkRFBCSLUGY1RXlxA0OUhIiJKEKFIr4bZEBFJpgQRikRjjB+nBCEiMkgJIhQM1KcnmEREBilBhDqjMcYrQYiIHKAEEdJsciIi76YEEYr0arIgEZFkShAEkwV19cU0UJ+ISBIlCKCnP048ocmCRESSKUGQPJKrahAiIoOUIEgeh0k1CBGRQUoQJA/1rQQhIjJICYKD043qTWoRkYOUIEiaC0I1CBGRA5Qg0FwQIiKpKEGg+ahFRFLJaIIwsyvNbLOZNZjZ3Sm2TzCzZ81stZmtN7NbkrZVmtmTZrbJzDaa2QWZijPSO0B+njGuUJMFiYgMyliCMLN84AHgKmA+cJOZzR+y2+3ABndfBFwC/J2ZFYXb7geec/d5wCJgY6ZiHRyoT5MFiYgclMkaxBKgwd23uns/8Dhw3ZB9HKiw4M5cDrQBMTMbD1wMfA/A3fvdvT1TgQZDfav/QUQkWSYTRC2wK2m5MVyX7DvAmUATsBb4krsngNlAM/B9M3vTzL5rZmWpLmJmt5rZCjNb0dzcfFyBdkY1UJ+IyFCZTBCp2mt8yPIHgVXANOBs4Dth7aEAOAf4Z3dfDHQDh/RhALj7Q+5e7+71NTU1xxWoEoSIyKEymSAagelJy3UENYVktwBPeaAB2AbMC49tdPdl4X5PEiSMjIioiUlE5BCZTBCvA3PMbFbY8Xwj8MyQfXYClwGY2WTgDGCru+8FdpnZGeF+lwEbMhVo0EmtBCEikixj7SruHjOzO4DngXzgYXdfb2a3hdsfBP4K+IGZrSVokvpzd28JT3En8GiYXLYS1DYyIqL5qEVEDpHRu6K7LwWWDln3YNLnJuCKwxy7CqjPZHyDLpt3CoumTzgZlxIRGTX0tRn41o2Lsx2CiMiIo6E2REQkJSUIERFJSQlCRERSUoIQEZGUlCBERCQlJQgREUlJCUJERFJSghARkZTMfegAq6OXmTUDO47z8Gqg5ah7jQ4qy8iksoxcY6k8x1qWGe6ecijsMZUgToSZrXD3kzK0R6apLCOTyjJyjaXyDGdZ1MQkIiIpKUGIiEhKShAHPZTtAIaRyjIyqSwj11gqz7CVRX0QIiKSkmoQIiKSkhKEiIiklPMJwsyuNLPNZtZgZndnO55jYWbTzewlM9toZuvN7Evh+olm9nMz2xL+WZXtWNNlZvlm9qaZ/TRcHs1lqTSzJ81sU/hvdMFoLY+Z3RX+jq0zs8fMrGS0lMXMHjazfWa2LmndYWM3s6+E94PNZvbB7ESd2mHK8n/D37E1Zva0mVUmbTuhsuR0gjCzfOAB4CpgPnCTmc3PblTHJAb8sbufCZwP3B7GfzfworvPAV4Ml0eLLwEbk5ZHc1nuB55z93nAIoJyjbrymFkt8EWg3t0XEMwxfyOjpyw/AK4csi5l7OH/nxuB94TH/FN4nxgpfsChZfk5sMDdFwJvAV+B4SlLTicIYAnQ4O5b3b0feBy4Lssxpc3d97j7G+HnToIbUC1BGf4t3O3fgI9kJ8JjY2Z1wIeA7yatHq1lGQ9cDHwPwN373b2dUVoegumJx5lZAVAKNDFKyuLuLwNtQ1YfLvbrgMfdvc/dtwENBPeJESFVWdz9BXePhYuvAXXh5xMuS64niFpgV9JyY7hu1DGzmcBiYBkw2d33QJBEgFOyF9kx+RbwZ0Aiad1oLctsoBn4fthk9l0zK2MUlsfddwPfBHYCe4AOd3+BUViWJIeLfbTfEz4H/Cz8fMJlyfUEYSnWjbrnfs2sHPgv4I/cPZLteI6HmV0D7HP3ldmOZZgUAOcA/+zui4FuRm4TzBGF7fPXAbOAaUCZmX06u1FlzKi9J5jZVwmanR8dXJVit2MqS64niEZgetJyHUHVedQws0KC5PCouz8Vrn7HzKaG26cC+7IV3zF4H3CtmW0naOq71Mx+xOgsCwS/W43uvixcfpIgYYzG8nwA2Obuze4+ADwFXMjoLMugw8U+Ku8JZvZZ4Brgv/nBl9tOuCy5niBeB+aY2SwzKyLo0HkmyzGlzcyMoI17o7v/fdKmZ4DPhp8/C/zkZMd2rNz9K+5e5+4zCf4dfunun2YUlgXA3fcCu8zsjHDVZcAGRmd5dgLnm1lp+Dt3GUF/12gsy6DDxf4McKOZFZvZLGAOsDwL8aXNzK4E/hy41t17kjadeFncPad/gKsJev7fBr6a7XiOMfaLCKqMa4BV4c/VwCSCJzO2hH9OzHasx1iuS4Cfhp9HbVmAs4EV4b/Pj4Gq0Voe4BvAJmAd8EOgeLSUBXiMoO9kgOBb9eePFDvw1fB+sBm4Ktvxp1GWBoK+hsF7wIPDVRYNtSEiIinlehOTiIgchhKEiIikpAQhIiIpKUGIiEhKShAiIpKSEoTIcTCzSWa2KvzZa2a7w89dZvZP2Y5PZDjoMVeRE2RmXwe63P2b2Y5FZDipBiEyjMzskqS5LL5uZv9mZi+Y2XYzu97M7jOztWb2XDhMCmZ2rpn92sxWmtnzg0NAiGSbEoRIZp1GMIT5dcCPgJfc/SygF/hQmCT+EbjB3c8FHgb+OlvBiiQryHYAImPcz9x9wMzWEky081y4fi0wEzgDWAD8PBjmiHyCoRREsk4JQiSz+gDcPWFmA36w0y9B8P/PgPXufkG2AhQ5HDUxiWTXZqDGzC6AYPh2M3tPlmMSAZQgRLLKg6lubwD+1sxWE4zGeWF2oxIJ6DFXERFJSTUIERFJSQlCRERSUoIQEZGUlCBERCQlJQgREUlJCUJERFJSghARkZT+Pzeb27bhg0+ZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -500,14 +544,14 @@ } ], "source": [ - "plt.plot(np.mean(IndShockExample.history['mNrmNow'],axis=1))\n", - "plt.xlabel('Time')\n", - "plt.ylabel('Mean market resources')\n", + "plt.plot(np.mean(IndShockExample.history[\"mNrmNow\"], axis=1))\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Mean market resources\")\n", "plt.show()\n", "\n", - "plt.plot(np.mean(IndShockExample.history['cNrmNow'],axis=1))\n", - "plt.xlabel('Time')\n", - "plt.ylabel('Mean consumption')\n", + "plt.plot(np.mean(IndShockExample.history[\"cNrmNow\"], axis=1))\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Mean consumption\")\n", "plt.show()" ] }, @@ -525,7 +569,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEHCAYAAACjh0HiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3hb1d2A36NpyXtvx46dvSdJCJCE0STslpYRoNBBKS2lQNktXyntV/buR6FllgJlhBAIJIyQvfdyHM947ylrS+f748grntlpct/n0SP73qurcyXd8zu/LaSUaGhoaGicuehO9gA0NDQ0NE4umiDQ0NDQOMPRBIGGhobGGY4mCDQ0NDTOcDRBoKGhoXGGowkCDQ0NjTMcw/E6sRDideASoFpKObqH/ZcDjwJ+wAv8Vkq5pr/zxsTEyPT09GM8Wg0NDY3Tm61bt9ZKKWN72ieOVx6BEOJcwAa83YsgCAFapZRSCDEW+EBKOby/806ePFlu2bLl2A9YQ0ND4zRGCLFVSjm5p33HzTQkpVwF1Pex3yY7pFAwoGW2aWhoaJwETqqPQAhxpRBiP7AE+Ekfx90ihNgihNhSU1Nz4gaooaGhcQZwUgWBlPKTgDnoCpS/oLfjXpVSTpZSTo6N7dHEpaGhoaFxhJwSUUMBM9JgIUTMyR6LhoaGxpnGSRMEQogsIYQI/D0RMAN1J2s8GhoaGmcqxzN89D1gFhAjhCgF/gcwAkgp/w78ALhRCOEBHMDVUiuFqqGhoXHCOW6CQEp5bT/7HwceP17vr6GhoaExME4JH4GGhsaJQUrJsqJllNvKT/ZQNE4hNEGgoXGG4PP7eHTDo/xu5e94ZuszJ3s4GqcQx800pKGhcerg8rm4b9V9fFv8LXHWONaVrcPr92LQaVOAhqYRaGic9kgp+f2a37O8eDn3T72f+6feT4unhR3VO0720DROETRBoKFxmvPe/vdYWrSUOybewYIRC5ieOB2DzsCqslUne2gapwiaINDQOI3ZXbObJ7c8yXkp53Hz6JsBCDGFMCluEqtLV5/k0WmcKmiCQEPjNMXj83DPqnuIs8Txl5l/QSc6bvdzUs4hrzGPClvFSRyhxqmCJgg0NE5TchtzKbOVcfvE2wk3h3fZd07KOQCsKtXMQxqaINDQOG3JrssGYGzM2G77MsIySAlJYXWZZh7S0ASBhsZpS3Z9NsHGYFJCU7rtE0JwTso5bKzYiNPrHPA515Wv4629b/V7XJOriQ9yPsDn9x3WmDVODpog0NA4Tcmuz2Z41PAuvoHOzE6djdPnZG3Z2gGf87mtz/HS9pforyzYhwc+5NENj/JO9juHNWaNk4MmCDQ0TkN8fh8H6g8wImpEr8dMSZhCVFAUS4uWDuicBU0FZNdn4/Q5qXP2XSh4ffl6AF7a/hIlLSUDH7jGSUETBBoapyFFzUU4fU5GRo/s9RiDzsAFaRewsnQldo+933N+Wfhl+9+lLaW9HufwOthevZ15GfPQ6/Q8su6RfjUIjZOLJgg0NE5D9tXtA+hTIwCYmzEXh9fRb3KZlJIvC78kKTgJoM9V/taqrXj8Hq7IvIK7Jt3FxsqNLMxdeJhXoHEi0QSBhsZpSHZ9NkH6INLD0/s8bmLcRGIsMXxV9FWfx+2r28fB5oPcNPomAEptvWsE68vXY9KZmBg/kauGXsXUhKk8tukxcupzDvcyNE4QmiDQ0DgNya7LZmjk0H6Lyul1ei4cdCGrSlfR6mnt9bglhUsw6ozMz5hPnDWuT9PQ+or1TIifQJAhCJ3Q8fi5jxNqCuXOFXfS7G4+4mvSOH5ogkBD4zRgc+VmLl54MStLVuKXfvbX72dEdN9moTbmps/F5XOxomRFj/t9fh/LCpcxM3km4eZwUkJSehUENfYachtymZ44vX1bjCWGZ2Y9Q4WtggdXP4hf+g/7+jSOL8dNEAghXhdCVAsh9vSyf4EQYpcQYrcQYp0QYtzxGouGxunMlsot/OrbX1HcUswDqx9gffl6bB5bv/6BNsbHjSchOIG39r6Fy+fqtn99xXqqHdVcPPhiAFJCU3o1DW2o2ADA9KTpXbaPjxvPPVPuYWXpSl7b/drhXJ7GCeB4agRvAnP72F8InCelHAM8Crx6HMeioXFasrVqK7d9exuJwYm8O/9ddDodd664E2DAGoFO6Hhw6oNk12fz+Kbu3WPf3/8+0UHRzEmdAyhBUG2v7llolK8nwhzB8Kjh3fZdO/xa5mXM46UdL7ULDI1Tg+MmCKSUq4D6Pvavk1I2BP7dAHRPf9TQ0OiV3IZcfv3tr4m3xvPa915jTOwYHjvnMZxeJwadgayIrAGfa3babH4y+id8eOBDPsv/rH17aUspq0pXcdXQqzDqjQCkhqYCUGYraz9uX90+/rLhL3x98GumJU7rMYlNCMEfp/+R9LB07lt1H1WtVUd66RrHmFPFR/BT4MvedgohbhFCbBFCbKmpqTmBw9LQODWpaq3il9/8EqvByqsXvkqMJQaAmckzuW/qfVw97GpMetNhnfP2CbczOX4yf1r/J3bW7ATgg5wP0AkdPxz6w/bjUkLUmq3NT7AwdyFXf341C3MXMidtDndOurPX97AarTw761kcXgd/WPuHwxqfxvHjpPepE0LMRgmCmb0dI6V8lYDpaPLkyVpmisYZyXNbn2N//X4SghPYUb2DFncLb817i8SQxC7HLRix4IjOb9AZePK8J7nxyxu59etbeXHOiyzMU5N7fHB8+3FttYvacgk+zfuUrIgs3pz7Zrcqpz0xOGIwvxz3S57Z+gz76/f3aEbSOLGcVI1ACDEW+CdwuZSy75x1DY0zmGp7Na/veZ38pny+K/mOGkcNz8569phPojGWGF7/3utEmCP46Vc/pcnVxLXDr+1yTHRQNBaDhdKWUppcTeyo2cH5aecPSAi08f0h38disPBu9rvHdPwaR8ZJ0wiEEGnAQuAGKeWBkzUODY3/Br4s/BKJ5NULXyUjPAMpJUKI4/JeCcEJvP6917l52c2EmcKYHD+5y34hBMkhyZTaSllTtga/9HNeynmH9R7h5nAuGXwJn+Z9yp2T7iQyKPJYXoLGYXI8w0ffA9YDw4QQpUKInwohbhVC3Bo45GEgGvg/IcQOIcSW4zUWDY3jhaPFTen+ekqye42LOCYsKVjCyOiRZIRnABw3IdBGYkgiiy5fxGvfe63H90oJVbkEK0tXEhUUxaiYUYf9HgtGLMDtd/Nx7sfHYsgaR8Fx0wiklNf2s/9nwM+O1/ufKdT+/RVsq1aR9sbr6Mzmkz2cMwafz8+ip7dTWdCkNgj42TPnYrYc+1uqrernPZPvOebn7osgQxBBBPW4LyUkhY0VG6myV3F+2vm9lrrui8yITKYlTuP9/e/z41E/xqgzHu2QNY6QUyVqSOMIafr0UxzbtlHz3PMneyhnFAXba6gsaGLChWmMOS8ZJHicx6cJy5KCJeiEjnkZ847L+Y+ElNAUHF4HLe6WwzYLdeb6EddTZa9iZcnKYzg6jcNFEwT/xXgqKnAXFmKIi6P+zTdp3bTpZA/pjGH3ilLCYi1MvzKTuIwwAHzeYy8IpJR8UfAFUxOmEmuNPebnP1LacgkMOkO3LOLDYWbyTKKDovmi8ItjNTSNI+Cw9FghhA4IkVJqlaNOAVrXqeYfKS88T/l991Nx/wNkLP4UfUjISR7Z6U1NSQsVeU2cfVUWQifQG9R6yuc5ushml8/F8uLllNnKqGytxOv34vQ5KbWV8otxvzgWQz9mtOUSTImfQrAx+IjP01b0blHeIuweO1aj9VgNUeMw6FcjEEK8K4QIE0IEA3uAfUKIE2us1OiR1vXr0cfEEDRuHEmPP4anslIzER0ORWvh+XFgO7wkxd0rSjGYdAyfruL3DcaAIPAeXTG1R9Y9wr2r7uX5bc+ztGgpq0tXs758PVkRWVyQdsFRnftYkxyaTJw1jkszLz3qc83NmIvT52RlqWYeOlkMRCMYKaVsFkIsQGX/3g9sBZ48riPT6JXWJhefv7iTIdvyiJ8+HSEElvHjibj6RzS89x6R116DOTPzZA/z1GfFX6GhCMq2wLCB2d+drR4ObKpi2LQEgoKVc1MfEARez5ELguLmYpYULuG64ddxx8Q7TvmVsVlv5tsffntMzjUhbgJxljiWFi49pfwgZxID8REYhRBG4ApgsZTSA2jZvSeRA5uqqC21UUccwdM77LOxt9+Ozmql6rHuhcPOWA6uB0dD9+3l26Fotfq7Orv/81Tsgu/+l/3PPozP42fsrI7SWO0agefIfQSv7XkNo87Iz8f+/JQXAscandBxUfpFrClbg81tO9nDOSMZiCB4BSgCgoFVQohBgOYjOInkbVHFuhyWGIJndAgCQ1QUMbfdRuvq1dhW9d168IzA2QRvXgwrehCMa18AcxhYY6Bmf48v93p8uJ1eqN4Pr86CVU9SUp9EpKGY6PCOHr96gz5w/JFpBBW2ChbnLeYHQ37QXjPoTON76d/D7XfzXcl3J3soZyT9CgIp5QtSymQp5XypOAjMPgFj0+iBphoH1QdbAHBFD8KYkNBlf9SC6zANGkTV409oDcMrdoL0Qd43Xbc3FMG+RTDpJkgc26tGsPr9A3zy9DbY/E/Q6fH/ZjeV3lEkGbOham/7cXqjSrg6Uh/B63teBwE3j775iF5/OjA2diwJwQl8dOAjDjYf1H67J5iBOIvNQojrhBAPCiEeFkI8DDx4Asam0QN5W5U2ENJahjMssdt+YTIRddOPcefn4yntvZ3gGUH5dvVclwuNxR3bN7wMQg/TfgmxI6D2APi7m3WqipqpLbHRvPUbGPV96lvDcbsh0bQPqve1H9cRNXT4gsDmtrEwdyGXZ15OQnBC/y84TdEJHdcOv5Zt1du45JNLmLdwHlurtp7sYZ00bC7vCRWGAzENfQpcDniB1k4PjZNA3tZqYuMNRNbn0CqtPf5YLBMmAODYsfNED+/UonwHtNnb8wKOTWczbPsXjLkKwpIgbjh4ndB4sMtL/X5JY5UDgGLbUJj6cyryVBZxYngVVHUSBEcRNZTflI/b72ZW6qzDfu3pxk9G/4QvrvyCh856iBp7DcuLl5/sIZ0Uam0upv7lG95ef7D/g48RAxEEKVLKq6WUT0gpn257HPeRaQDQUNnK5iWF1JbaaKyyU1tiIy3SRpCzFp9PYG92d3uNOSsLYbXi2HmGC4KKHZA5B8JSOsxDO98HTytMvUX9Hxvo4lXd1U/QUudon9iLxXmQPInyvEZCIs2EJiVAdYdpyGBUPoIj0QgKmwoB2msInYpIKWlasgS/03l0J7LXw2e/BUdjr4ekhqVyzfBrSA1NbS9zfTpS/sCDVD3Rc+Dlipwa7G4fL3ybi93tbd++Nq8Wm8vb42uOloEIgnVCiDHH5d01esXr9rFxcQHvP7qJTZ8V8p8/b2LxCzsASHTlY3GrSJjm2u43pzAYsIwe/d8rCKSET26FXR8c+TkcjVBfAEkTIGsOFK4Cn0fZ+5MmQvJEdVzsMPVc09VP0FChnMHRhkJK7cPw+SUVuY0kZoYjEkYpwREwJx1N+GhhUyEGnYHkkOQjvNDjj3PnTsrv/h3NS5ce3Yl2/Bu2vgH5/Yedpoam9toX+b+d1vXrafrkE+wbN/a4f0VONRajnrpWd7tWsL24gZvf2Mz/fjGACLcjoFdBEGgqvwvVMGabECKnU7P5XcdlNGcQPq8fn6/niaOqqJn3/7yJLV8UMWRyPNf98SymXpqBx+kjbWQU+tJcwiJUDHtzjb3Hc1jGjcOZnX30q7iTQfk22Pke7DmKqpQVASGYNB4yzwdXM6x5DmpzYEqnWodBYUpjOEQjaKhUn+vY8OV4PDryNlfR2uQmMSsC4kaC16GczoDBcOSmocKmQgaFDsKgO+k9onrFsWs3AJ7Ssn6O7Ie9n6jnyt39HtpW3fR0cxpLn4+qx58AwNfU1G2/1+dndW4t88ckct7QWF5ZmU9hbSu3vrOV+HAz91w07LiMq69f3yXH5R3PYLweH4ue2U5DRStupw9LqJFLbx9PbFoooOzS2786yKbFhVjDTVz22/GkDo8CYMrFGUycOwgkFF1RQHjaYJDQ1INGAGAZPw68Xpz7srFOnHDCrvGYsO1t9dxLWOeAqFDaE4kTQKdXzuGVj0FQBIz+ftdj44Z31wgqW7Hom8kcaWbFWsGmz5UJJzErHMRIdVDVXojORGdQUUNHqhEcTm/hk4FjT0AQlB2FIGgshrKA83eAgsDhdVDnrDutQmqbPl2Ma/9+jCkp+Bq7m8h2lDTS5PAwe3gsKZFWrvjbWi59cQ0+v2ThbTOIDD689qMDpVeNQEp5MBAq+ue2vztvOy6jOc2pLmqhqrCZ1JHRTL00A71Rx6fPbVfRKaUtfPzEVjYsKmDwhFiu/v3UdiHQhl6vQ4cf98FirJmDCIkw01zj6PG9LGPHAvz3mYdcNtj9EeiM0HAQ3D1rPP1Svh3C0yA4GiwRkDIZ/F6YcD0YLV2PjR0OtbldIocayhqJ0h/EnDGBhIwwmmudmIL0RCWFBPwKoj1ySAhVb+hwfQQev4fSltJTzj8g3V39Ts7dewDwlJf3/+J/fR/+cz00HWLW2fepek6boZLz+qGtqF1bX+TTAb/dTs1zzxE0bizhV1yB32ZDejxdjlmRU4NOwDlZsYxPjWDO8DhsLi9P/2gcIxLDjtvYBuIj6NJxQgihByYdn+H8l+J1w/4lyrbdB1WFKg/v3GuGMuXiDK68eyJmq4FFz27ng//dQkudgwt/OpKLfjaqvXzBoXhKS8HjwZQxmLAYC821PQsCQ2wsxuTkHgVB68ZNuHJzD/MiTxD7FoHbBlN/DkgV+nkklO+ApHEd/w/9ntIKJv8En8+P9Hf6ruJGqMihgKlHSklDpZ0IfRmknkXaKCWQEzLD0ekEmKwQlXFILsHhC4KSlhK80tuzIPj2UVj9dM9Z0ccRx5695EyajDNbaUg+mw13odKG+tUIXDZl/8/+DP52Fmz4e8c9sfcTSBwHIy+D1mpoqerzVIf2RT4daF66DG91NXF3340+IgIAX3PX3NwVB6qZmBZJuFXd/8/8aBz/uWUa88d0DxU/lvTlI3hACNECjBVCNAceLUA1KqRUo42cJfD+dZC9uM/DqgqbCIsJwhqm1LuwaAtX3j2R6KRgRkxP4Lo/TmPolIQ+u0+5AjelKSOd8FgLTQFB4HX7WPz8dsoOdEwclnHjugkCV0EhJT/7GTUvvHgkV3r82fY2xAyFiTeq/2tyDv8cjgZoKITE8R3bpv8abtsA0Zl8+NctfP3Gvg77c3vkkJr8HC0eXC5BpKkCEseROjIagMTMiI7zxY3smktg1B22j6DXiKHWWlj9FHz7J3hmFHzzSL+LjGOFY9s2pMdD85IlADj3KGEXNHIknspKpK+PMhoN6nq44BFImw5L74PFt0N9oTILjbwCEgJxJ/2Yh9qc56eTw7h17Vr0MTFYp0zpEASdzEPVLU72lDUze3hc+7YIq4mzBkcf97H1ZRr6q5QyFHhSShkWeIRKKaOllA/0d2IhxOtCiGohxJ5e9g8XQqwXQriEEL87ims4+dTmqedN/+jzsKqiZuIzujb4DokM4qr7JjP7hhG9agGdcReom82ckUFYjAV7kxuP20fBzhpKshso2N5RSdMyfhzeigo8VWr1Jf1+Kh9+GOnx4K0/vq0Vj4jq/VCyUQmBqEzQGY7MT9DuKO7kGzGYIXYoLruHulIbuZurOLCxUu07JHKooUKlyUTFBYHBTNygUObcOJzR53WK7IkfpaKSPEoQG47ANNQmCNLD0rvuKA/4N+Y/BZmzYc0zA7KrHwtc+fkANH/9NVJKnAH/QOhFF4HXi7e6uvcX16nXkjkbFnwI594L2/8FbwQKyY26AuJHq78r+zYPmfVm4qxxp41pSPr9tK5bR8jZM5QpMVzNA50dxitz1L173tAT33diICUmHhBCRAohpgohzm17DODcbwJz+9hfD/wGeGpgQz2FaVsJFa3uFn3Shq3Bha3BRXz60dn5XIUF6KOj0UdEEB6rbN3NtQ5yNqhJra6so2iXZZwyjbRpBY0ffYR9yxZ0YWH4Gk6syWFAbHld+QbGXgMGE0QNPjyNwOOEojWw+TX1f1J3J3ldmZrkg0KMrHr/AM11DjCHKH9CwNTTUK7U9YjByk4thGDEjKSugjpuJEh/u6DSG3V4j0AjiLPGEWI6pH9EW0b02Kth7l/V3yU9hxoea1z5alHjOViMKzcXx569GFNSCBqlHOR9+gnqC9Rz1GAQAuY8BHMfh5YKSBirtlsiIGLQgARbamjqqScI8r/r+H31gbe+nqbFi9u1Tmd2Nr6GBhZHlVBtr+5RI1iXX0dMiJlRScfPF9AbAykx8TNgFbAMeCTw/Mf+XielXIWa7HvbXy2l3Ax4ejvmv4b6AmVe0JtUnHoPVBUpyR8/+Oi+ZHdhEaaMdADCYpQgqMhromRfPTq9oLbU1v7jM48YgTCbKb//AYp/fgvVTz6F9ayzCJs/r0dB4Jd+PjzwIZcvupy1ZWuPapyHjbNJxZmP/gGEBFZEscMGrhHkfg1PDVVF5rI/g2EXgzWq22FtgnLeL8YgJXz7ZrbyFww+D3K+hJZKGgpKMAoHIUPHdXt9O/EB11kgw/hIfASFTYU9+wfKt0N0lgptDU+FsGQoXt++2+nx8fb6IkrqOxzpzU4P3+VUd0lAOlyklLhz8wiZPRuEoOWbb3Du3k3QmNEYk5U21KefoL4AguPAHNqxbdqtcNMX8P1O2nLCmIFFDoWknHqCYO1zsOQuFdDQB40ff0z5vfdhX6++t9a16wB4J2QXv1v5O2SYaubja+zQCHKrWxiRGNqnafh4MRBn8R3AFOCglHI2MAHoPTXwOCCEuEUIsUUIsaWm5vCaiJwQ6gsheRKM+r7KXHW1dDukqrAZnUEQmxLawwkGjrugAHPGYKSU7RrBtqUHkRJGn5eMy+7F1uACQGcykfrKK0RccblayQlB4iN/xBAVha+pqYu9N78xnwVLFvCn9X+i3FbO/avvp7K1ckBj2lvexHX/2ECz8yhk+vZ/KyfxtFs7tsUOV5OL19X3a7e8Du9eDZGD4Jr34L5CuPbdHg+tK7NhthpIzArn7KuyKM9tpGh3LZxzt0o4W/MsDaX1ROpLEalTe3/PqMEQHAvf/BGKN2I4TEEgpVSCIKwXQdCmzQgBadNUOe2AgP9oaykPf7qXWU+t4DfvbeeBhbs46y/fcvMbm/nBy+spbVACwueX7CptxDWQFpp1+fgO7sfX1ETw9GlYxo2j6ZNFeMrKsIwegzEpCRiAIIga3H17+tkqRLeNhLFQl6ecy32QGppKtaMap/cUyoWpDQQvLL69z/LlnmLl5K77p1oYtq5dS/OgaJpCBNurt/Ny4TtAh0YgpaSgppXM2JPTXXAggsAppXSCKkAnpdwPHJ+shl6QUr4qpZwspZwcG3vq9G0FwN0KtkoVRTL15+BuUcLgEKoKm4lJCW3PQj0SvA0N+Boa8KTGcd5/zmNL40ZMQXpa6p3EZ4SROVE5mepKO26w4GlnkfDww2Qu+ZyhGzdgSk9HHxEJfn+XiIUnNj9BcUsxfz3nr3xw6Qe4fC7uW3UfXn//K8zl2dWsy69j2Z6BCY5u+H2w6RVIndbVnBM7XJlf6vJ6/jxqaqi5+0c0Pv8QZJ0PN38Jw+eDJbLXt6orsxGdHIIQguEzEgmOMLN7ZZn6/sZfB1veoKHOT4S1EXoo6teOTg8//gxMwfDWJeidNYeVR1DrqMXmsXXXCFqqoKW86+eQNl1tCxTOW76/muQICz85O53l+6v5ZHsZl45L5LHvj6G0wc5lL63lz5/vY+bjy7nspbV8vLWfaB+fF96Yj+uduwAwZWYSeuGFeErUZBY0ZjS6oCD00dE9moa89fXYt29XgiB6AA2REsYAsouzvSfaIofKbEeZyHascLdCc5lKSDSHwvsLVO2qng4tVZ9d67r12Ddvxr5tGweHRZAamsqCEQt4s+g/SJ2u3UdQ2ezE7vaRGXfqCoJSIUQEsAj4WgjxKXDiqiGd6gRCDonKUFpBwhjY/WGXQ/w+P9UHm0nIOHqzEEBFtI4GVwNPbXmKsIBWMHx6IjHJ6kdU20kQeN2+9lDJNpVTH6kmSl9Dh2J3sPkgM5NncsngS8gIz+Dh6Q+zrXobT25+Erevez2jzuTXqPdbsrviyC7swDL1OXbWBqCTE1eZh0pv/hEHJk/k4I03Uvrb35I3exa1S3ZTsz9OaQLmvm8i6ZfUlbUSnaKO0+t1jD43iZJ99TRW2eHce3D7jNjcYUTGDiDTN24E/Hw5pJ6Fvi4bn6sfzaUTvUYMtSfCdYp4Spumnos34PT4WJdfy4Uj43no4pFseuh8tv7+Qp64ahzXTE1j0a/OJsJq5LW1hQyND0UINcl0prXRhdfdSUsoWAG2Slw5ykdizhpC6IWB1phCEDRSmcGMycndNAJXfj6FV13FwesW4KmsUvdBf7RHDvXtMD7lQkjbFiTpM5Wpqz6/I1v6EDylZQSfdy660FDK7r0PPB52ZqhoqLsn3c3ImFHYLOBrVCba/Grlu8qMOfL+z0fDQJzFV0opG6WUfwT+ALyG6lZ22nJgUyUu+wDNHIc6yAbNhIpdSK+H3C1V2Jvd1JW34nX7iT9qQaDeqyJafW35TfnYLA3oDIKsSXGYLAbCYoKoLW3B7rHj8/j59/9s4L1HN1GS3eGuaRcEgR+h1++lqrWqS72bSwZfwtXDrubd/e9y8ScX80HOB71qB3kBQbAmt5amgX5undn4sirzMPyQ/rfRWSB0UJODN38bLRt2YTQ14S/ajH31t4SntxBxdjreFjc+e8/5FJ1prnPicfnaBSbAyJnJ6PSC3StLIXIQ+XF3AhCVFtfbabpijYJZ96MXbnyOrslvDc7eHfK9CoLy7YBQfRLaiBsJ5nAoXs/6/DqcHn97iKHVZCDY3CG0MmNDWPbbc9n2+wt56ydTCTUbaHZ0fCdup5f3/rSRzUsKO86/6z9qXwPogi0Y4mIxpaVhHjYMc1Ym+hA1ORmTkvCUdWgE9q1bKbpuAdLhBClpLrH0bBo6lC1QRA0AACAASURBVPAUleHdj5/gWCaVObyOAZs6e6XNLBQ9BNKm43MJZEv3c0qvF095OUHDRxB5zTV4KyoQZjPrY5pICU3BqDdyzbBraAry01CthFxBrbqHTmWNACHERCHEb4CxQKmUsu8lonrNe8B6YJgQolQI8VMhxK1CiFsD+xOEEKXAXcDvA8eceHf5ITRW2/n69X1kr+t/ddvkaqK1NhDVEhm4oZMmgNdB2eY9fPXPvfzrD+tZ+TfleD00dPRwcRUUIIxGCoNbMegMjIkZw5KIt5h185D2iBZdjIddOQeYt3AeBbursTW4cDS7Wfz8Dr56bS/SLzsiFgIO4xp7DV7pJSkkqcv7PXTWQ7xywSvEWeN4dMOjLMxd2G1Mfr8kv7qVyYMi8foly/Yd5s1mq1YF4SbdBPpDVuFGC0SmQ81+bK/cB1KQcO9vyLghkaGXFpP4mx8Tcp2KPHYHwh77os1RHN1JEFjDTGROjGP/ugpyt1SxYs9EksLKGXT+QALjAsSPxiDcXTSC9eXrmfXBLPbUdo+etnvsrClfg8VgId4a33Vn+Q6VR9HZ4arTQ+pUKN7At/ursJr0nJXR3RHehlGvay9FEGYx0tRJEBTuqMFl97aX1MZlg/2fw9ircTWbMMda2jXH5KefIumJJzrOm5yEp7wc6ffjbWig+Oe3YIiMJP3DDwjKTKa52KLCfvtDCKUVtIXJ9kKkORKrwXpMNII/b/gzP/zshwMydfZKXR4gIDoTd2UNuZ8m0Ly2u1bjqawCnw9TagpRN96AMJkwT55Ijb+RlBCl5cxJm0OrRVBXVQRAfrWNELOBuFDzkY/vKBhI1NDDwFtANBADvCGE+H1/r5NSXiulTJRSGqWUKVLK16SUf5dS/j2wvzKwPUxKGRH4+6S3wGysUqu6tljyvrjhyxu4oPAdno9NoI6Aqp2kVPrKfcqemzYiiqpGE0Z3M0GtfWdT9oe7oBBT+iDK7ZUkBSdx16S7yNXv5j3nq7y842Vu++Y2vrF9jqU1nObWFnasL8ASauSGv0xn5DlJ5G6uornOiSGya+hamw320AqYQghmJM/gnXnvEB0U3eOkVt7kwOHxccWEZFKjLCzZdZjmoeIN6nnweT3vjx0OB77Ctj0XQ7iVoMtuh599C3fsggv/hDlTTTyugsKeX9+JujIbCIhK6qp+j52dgtvp46t/7iU6JZSLH7kGfcyggV+DJQK9yYS3U8TO9urt+KWf9/a/175NSslHBz7i4k8uZkXJCn4w5AfdI0TKt7f/hgAqmhy8vb4IX+pZUJPNluwCzs6KIShQ+ro/wi3GLhpBTiB3oqakBb9fqggrjx0m3YzLFoTJ2hHoYM7KImjEiPb/jcnJKgeltpaWr79G2u0kPfUUppQUwiam4qw34bZ1hNj6W/u4h1LPUhpBHw5jIUSfVUillPzsrc08+nnfvoYaew1fFH5Bo6uRfXV9H9sntbkqistooXnJEqRf4Mjt7jPxBPwDxpQUDLGxpP79ZVy/WgB0mLvCzeGYIqNx1Nfil34KalsZHBt8UiKGYGAawQJgipTyf6SU/wNMA244vsM6eTRVKxNDQ1XfNW5q7DUUNhUSI3W8Fmxi3sJ57K7ZrcwZphAqDzqITAxm3q1jOOvA3xi3+2WaF392VGNz5eVhysqi3FZOUkgSkxMmMyt1Fp/kfcLLO18mrzGPKaPGokNHvC2D6mwHWRPjMAUZGBTIjnU7vZ18BEoj6E0QtCGEICM8g4Kmgm778mvUzZ4VF8L8MYmszaul0d6vwthB8QYwBKnyAz0ROwy/y0FrpYWQi+YjdDq1oowcBEJgTElBGI24CwagEZTaCI+1YDR3nUTjM8JIzAwnMjGYS28fh8nS3T/g9Pj6rISpDw7rklmcU680xaWFS2l0KoH7ecHnPLL+EVJCUnh73tvcN/W+ridprlCBBwFHcavLy81vbObhT/fyt3wVJJHWsp1rYw/Cxld67Kp2KOGdNAJbg4uS/Q2Ex1rwuv00Vtph1/sQMQhvyFB8dh9mc233OkEBOkcONS/5AtOgQe35BWFZ6jNrXr4agNq//50D06a3JzN2Y9B01Ua0dFOf42+rQtoTi3aU8U12NYu2lymhFsBbU4O7U3e+Dw58wMRsN7/4wsemyr7fr0/qciFGFQhs/vxzAFzl3SuItnUGNKYo01bwjBmUBermtWkEANHxg7DYPeyo3kF+tY3L8tdQ/uBDRz6+o2AggqAcCOr0vxk4Rdz4x57G6jaNoBdBULQW/nUluyq3APBos4dP/SP44UY9931zF43uFmT8WCrrQkjICMNbX09w+T7CbCU0ffop0n9kfW39djuekhLMQ4ZQZisjSMTg90ueOPcJFl+xmM3Xb+arq75iwcwfADC1dD54BUOmqvaHRoua/NwOL8JiQZjNeAOCoNxWjkD02SpxcPhgCpsKu02GedVqRZcVF8IlY5Lw+iVf7T0Mzadkg+oPYOiqEq/Lr2VveRMkjsdebcbvgZDzz+/2cmEwYEofhCu/u5A6lNoyWxf/QPs5hOCyO8Zzze+nYAntXt2xusXJpEe/Ztne3s1ehtAIfD6diiwBchpyGBI5BLffzaK8RdjcNp7Z+gxjYsbw1ry3mBDXQ0XYNkdx0gT8fsldH+zgQFULV4xP4m8HwvFg4P+MzzNn40/gy3uhbFu/1xwW1CEIDmyuBAkzvq8ms5qcEihYCWOvxl2gPj9zmLejm9shmAK5BI6dO7Fv2kTYxRe3r2CNsgJLsonmJV/Qsvw7ap57HunxYN+woeeBpZ6l/D8H1/U5/rakMr/set+0OD387xf7CTLqqGt1k1PVocmU3XsvJbf8AgC3z80HOR9wVU4k5++U5Oxa2ef79YqUKnM6egjOnAO4cnPRmXS4qp3d7gl3SSno9VQFd2iIZS1qymzTCACSk4YT6oDP87+gvMnJiPztStPoq4zHcWIggqAJ2CuEeFMI8QawB2gUQrwghHjh+A7vxNMUEATOVg8OWw8r241/h/zl7D7wKQadgeF1pYiFVVzyVSMjN1XxwJoHaAibgctnJSE9pN12HX7ZpXjKynBsPbI+rG2p/7rB6dQ561i2w8XK3BosBgsZ4RmY9WoiDYtWK9745gyclhYSAgls5sAq1+30qRT3yMj2qKEyWxmx1lhM+t5L3GaEZ9Dsbqbe2TVHMK/aRoTVSHSwidHJYaRGWVjax4TZBbddlYNoi4oJsKmwnuv/uZGLX1jDL7YkUWq9DmGxEDxtWo+nMQ3ObJ/IACoLmtj+VXGXYzwuH001jvaIoUMxmPTo9D3fDmtya2l1+1iXX9frpehDo/FKI1Ttw+a2UWYrY276XCbGTeQ/Of/h5Z0vU+uo5YGpD6ATvdx2FbsAZT9/cXkey/ZW8eD8ETx79XhuPm8E//DOZ615JswOrBrtvY+njXCLkWanByklORsqSRgcRvrYaAwmHdV79gMSxlzV/vsyJ0X32jimTSOof+ttkJKwi+d37KwvIGxiGq7cXMruvpugkSPRhYdj37Kl54GZQ5UW2I8giLHE4Pa72V5awa/e3cZDn+wmt6qF577Jpdbm4pVLYoijof278TY0YN+4CXdBAd76epYWLaXeUUdaqfLfGDbt6jcKrkdaKlSeS8wQVYdJryfqnDR8Ttmt7IantBRXTBiXf34lNXaV91RqKyXUGEqYqcMNGhQVi9kD3+YvA3yENlQjXS48FUcYfXcUDEQQfIJqVv8dsAJ4CFV0bmvgcVrRWO1od7x20wrcrSqDFdhVtY1hoem07A7GkVeNLjyc6/ZFsaZ0Na/XqlVSfERd+w0WPX8iOquVxkWLBjSO8kYH5Y0dkTCuAwfU+FKUw9nviaKmpXu4otCJdmdoTvQmfFKtLkxBAUHg8MKHN6E3uNpNQ+Wt5f12yBocrqJBDjUP5dfYyIxVcflCCGYNjWNDQR3ugZRbKNuqSkN3EgSNdje/fX87qVFW7jh/COsK6qlasZHWMRPRBQX1eBpz5mDcJSX43aru0rJ/7GHdwjwO7u2YKOvLW0F2dRQPlDV5tQDsKetuBmhDHx6HDzOyYhcHGtR3NSxyGNcMv4ZSWylv73ubK7OuZExsH83+moohJJ7sOh/Pf3uAKyck89OZGQghuG/uMCzz/oThR2+ofsswoMqk4ValEdSW2Kgvb2XYtER0eh0xKaHUVPjAGAzRQ3Dl5qELDsYwdrYKJ/V1d6rqgoPRR0TgrajAPHx4u38GjwOaywg7ZzLodOgsFlJeehHrpEnYN/ciCAAGnQ2lW1RpkN7wq+/8R69+x+oDNXy4tZQLn13F62sLWTApnvPW/pgXg19jfb76jmzLl0NA63bs2Mk7+95hsj8NXZPSXEfnedhdewR1mwIRQzIqk+YlSwiePh3rqHQAXDldy6C4S0uojzLg8XvaTVGlLaUkhyZ38QHoI9S9LJsaMFmzMdYpgTKQwIdjzUDCR9/q63EiBnmi8Hn82OqdDBqt7OkNlYc4u3K/Aq8DX9p09vpbmV0kqd0XQvgFM4j73d1YDlYxrWQ8BZUSr85BZfM3SoU0gmn5LYSOS6Rl6TL8jp5DHX1NTdgDGsNNb2zi7MeXc/0/N7J0TyWuA7mIoCAqw9SPXHoiae2lf2lMYNW7P3pT+8TdZvd2O7yQtxyD0dMhCAI+h0N5bU0h17yqMlXbwhzbwh7byK+2kdUpG3LmkBjsbh/bigdQy6jNURzI4JVScv/Hu6lucfHitRO488KhfHdFMnGORv7pT2VDQc8rYFPGYPD7cRcVsX3ZQWwNLiyhRtZ+lIc/0AWuNEdpMocrCKSUrA0Ign0Vzfj8PfsJ9CHKAe+v2ENOg5oYhkUN44K0C4gKiiLUGModE+/o+82aK5BhifxlSTahQUb+59KR7ROHEIKbz87g7KwYsAQihhz9Fw4MCzLg9PjJ21GNEJA1SYWdxg4KpaYxGH/0ENDpcOXnY8rKRGTNUeU+OvVk7kxbqYmu2oD6TRgyRpH87LOkvfEGxqQkrJMn4y4qwtNbobpBM8DnUh3pgKbPl3Dw+huof/ttqorK+cuSfTy2pAiAyydGs+re2ay/fw6/u2gos4fF8UDiNmguYwx5bCyow+vz0/L1Nxji45VpZvNqsuuz+aFPOd/1E8Yx+qBkS3HfWkiPBMqhOyq9eMrKCLv4YoIy1T3h2tdVsHhKSikNVfdmmyAos5V18Q8A7dF78e4YkoO+bBdgAwl8ONYceZrraUhTrQMpIWV4JAajrr1dYTv7PoXgWPLPuxu7TsdZH+ZgCvGR8PAfCL/kEnRhYcxcC3H1E6gLKWJB/tvs3bgYf7gHkXYW4UEb8be20vhxp4QzKZGf3EbTq38lf958Di64nuY1aymoaWV0Unh7m7ra3fswZ2VR5lBqo98Tic3ZsyAYMzuFEZdF0WCtbI+SMAUFfAQtLeBqQh8k8TU04PV7qWxVUUidqbO5ePqrHDYU1HP5S2sprjFiMVi6CIKGVjd1rW6yOsU+T8+MRq8TrMmt7f8DL9mgYuQDmcBf7K5k6d5K7p07jLEp6ibR56jx1w4Zw8/f2sK+8u6BZeZMpa3U7ylg21fFDJkcx6wFw2moaGXv6nIKdtSwcXEhKcMjCYvpWavofN1/X5lPS6BcRn6NjapmF1PTo3B6/BTU9BzlYjAFGthX7CenPodwczjx1niMeiNPn/c0z895nmhLP+WEWyqpFdGsyavljvOHEGHtxVRnDlP29U4agZQSn6372MItAe221oElzNSu7calheL1m2i0qN7NnpISTGmDVIw/9Gp2ajMPhc/vahYCIGowYd+7iKBhQwGwTpkM0Ls5NG26eg6Yh1qWLcO+bRtV//tXauZdSMk77zN1kHq/62fEE2E1ER1i5tdzhvD6DeMJ3vQiCD1WXzNhrkp255bTunYtYXPnEjRsGI4dyueSfNCOz2jihZgZmLxQtWZ5z+Ppi9o8MFppXr4BYTIReuEF6ONTMFh8OLM7hKa/tRVffT35geirjRUb8Uu/EgTBiUrbCkz4bRVIMxznkmjvKJ3T2cx5otAEQSeaAt2+IuKtRCRYuwoCt11lwI64lF2+JpASc4MkJNWHLnYQOouFsCuuYGzpPqI9FqYaqrjeY8RSaeO7RBN/HD4D69X3YI1zUf34Ezj3qQnOm7+Nkue/pPyZtzGmpGBMSqLiscfw+3xcPSWV929RZhNffj7mIUMot5WD1CO9odh60QiiEoOZNW8sVoO1XRB8Xfo1fuGjtlY5rfQmP97GRqrt1fikr5tp6NVVBTg9Pv5x42TCLEau/+cmokwpXQRBWyJZZ0EQFmRkXEo4q/P6EQR+H5RsUk7DANuKG7AY9fxsZkdSkqesDIxGnvv1RRgNOp7/9kC3U5ky1Mpsy0YnAph26SBSU3UkD41g4+IClv1zD3GDQpl365g+w/N2lDRyyYtreOzL/bz0ncoibRNot5yrxrS3B0EEoA/0LfZW5XOgPodhkcPa32tywmSmJEzp+/MAZEs566qNZMQEc/20PsJXdTqVkOVowLZ6NSW3/Yrcc87lwOQp2Fat6nJoWEAQtDS42vtgAMQmqu01chRSSry1tRjiYjvyF3qolwUQfuWVRN/6i3bNQJ0kUHPnkGSyoBEj0FmtvZuHrFGqWGNAELgLcgmZPJrgdz9kb1Q6v973GXePVGU+bJ5DhNzO95Up7VyVRzJaV0Te518jPR5CL7wAy/hx6PbnI/ySoNxSiqJSWBaUhs+kJ2xr7uHXL6rLxWvNoHHRp4TNm4s+JASsMZgjPLjyOkw57kBf54pwP+Nix1FmK2NnzU5cPhcp9mZ4+3JYcif4/e0agayOJq1B5ZPokxJxFWqC4KTS5iiOiLMSGW+lsaqTaSjvGxVvPfIKdtfuJtETBH6BMSZShTMC7ouvxB6Sig5BjXRxZ0E+kTYIT0/j47yPqZpyI8mXxqAPEpTe/htaN22i6KbbsFebib8si/T33iXu3nvw5+Vx4cHNJEdaSI6wkCAdGJvqOwSBNwLQdRUErbXw2vfUigPQCR3Do4aTXZeNy+fi6a1P4dI72Fqhblq9yYu/qYmyQP2azqahmhYXb68/yOXjk7lwZDyLbjubUUnhlFSFkFPf8aPPD0QMHVooa+aQWHaXNvadZVy9TzWUb1sVAmUNDpIjLaoLWABPWSnGxESSo0MYGh9CQ2v3c+osFhwZEyhpCmPCRWm0PP0oRT/8IVO+Pwin3YMpSnLJr8e1+0l64vNd5fzo7+vRCcGMzGjeXneQOpuLNXl1pEVZmTUsFrNB16ufoK2GlNvrI7fhAEO9El6aor6XASA9DoSjgQP2UB6YNxyToZ9b0xoF9npqXngRx9athJx9NvqICBoXdi150CYI7M1ugsM7IrMijeUYcFHjSFItE10uDDH9C4LQObOJ++1vOzb4/bDjXUiZokpMd0IYDFgmTsS+eXPv1zFoBpRsRG55A/fBQoxNm6gPj+SpSdcidDoMT75GkDsYm7uTIPB5VY+GxHEw804Qes4LLUesXoE+OhrLhAlYxo9H53CTXgX+/XnsCknGozfiHDuccXk+dtT0nczWjdpcGnKDkXY7UT/9qdpmjSYo3IPrYFl7y0lPmQodrY4Q3DBSRdm3JWImt0UDbX0TltyFPlR91o7aesY5h+HRw8EhYe09R04kA0koGyqE+IcQ4ishxPK2x4kY3ImmsdqB2WogKMRIZGIwzXXOjpos+xaBNRoGnc2uml1MNQwBUPbIABWhsWQnqZXfLp8JV7OaeKbP+gmgYsoN4y4iZXoN3upqim/8MdJpZ9D5tUSNtyL0ekK/9z0cQ0dxY/ZSUsx+dDrBdJ2afMxDh1LcUorXrUwp7YJASlUNsWQD7OvokjYyeiQ5DTm8m/0uVfYq9GZBld3OVrMZvVH9cKsq1cTeWSN4ZWU+Lq+P2+eoMMNwq5FXb5xEkEygpaWZPdnKPJVXbcNs0JEc2bUH8DlDYvBLFQLaG76clXjsOkjr0AhKG+0kR3Q9l7usDGOyElIhZkOvWlBp6hz00sPQhGaaF3+Gt7KKr1sW8/GYpyg/f32/TX/+77t80mOsfH77TB69YjQur4//W5HPhoI6zs6KwaDXMSIxjD09xI0DGAKCoERvwel3Myx7KdQe6GjW0gc+v+TZhWoln5KWwYUj4/t5Bcqc5mjAXVxM6Px5JD3+GGHz52H77jt8to4FTJtpyN3iwRreoRHoGvKIMRZS3RCKN1DR1xAT068g6EbuV8o0dNatPe62Tp6MKze3PVS5G4NmgNuG76O7kF6BKdiFL28FNdZIuPV2yspDuWHrH2hp7fS57/i3es9z71HZ57HDmaw/yOD8nRQOm8j5z67mkXz1fczfYwKXi5zINACCZlxAQiNk7+h7CvP7JS8tz2XhtlLwOPHXltCwsYaQWbMIGqpMXwRHY47wgteHu6gIoL1QX0OUiTlpc4gOimZZ0TIAUtwu1W/j7N/C1jfQr/mjGpOzlUF2H7YYK1us1fjq63v8vHK3VLUnvB5rBqIRfAhsA34P3NPpcdrRVG0nPM4KKPMQMpBX4HUps9DwS7D5nOQ35jNap1R3wzk3tb++rMFBZfQorK0V6BuNlLcqe2vKuBmMjh7Nl0VfwpCLsEQ5SLz9R4TMmU363EYs0R7loEM5Bfdc+ROiXC1YP3oXj8/DIKdaUZmHDKGspRy/R6282p3FW9+AnC/AaFWROAFGRo/E4XXw0vaXmJE0g4TIWEJ9wTwZHYHOoFTj2srCLjkE1c1O3tl4kCsmJDO400o/LjSIXySdyzU7HmT5C/v4cmc5+ytbGBwbgl7X1dwyPjWCELOhV/NQy3ffkf+7f1D4VTyyk2+ixLWe/YYHcXg7nOmesnJMKepzDDYbaO2h3r7T5qFMn05C9WYan31SbfT7eXP7q9SGlFLo7H8yrrG5mJgWSWSwiczYEC4fn8zrawuxubzMzFLZQKOTw9hb1twleamNNtNQgVFNpMMisgKD6z3SCJRt//b3trFuh8ravnrOWQPLLrVE4muow9/UhClVTXJhF1+MdLmwLe8I/wy3GBESvA5vF42A2lxijQXUVvmwlQQEQWwMmA5TEGx8GUKTYOTlPe7u108weBbEDMWddRMApggjIcVq/HHXXYMrIRU9Flq3qUQ1Wqrg6z9A2gzVcwIgcRxRuQVYvC5eJR0JLKyE1mAD03eqyLo2QeCaOBMA34beAx69Pj/3fLSLp746wN++y4OGQhoLLPhaXUTf8vNOFxeDOVwtqJyBqD53aRkus574xEyMOiNTE6fi8DoQCJLsLRCaABf8EWY9iMj+CPSQ6S4jvLEaV3wEJZFq4dlWYLINj8vHN2/sY9/aPhoDHQUDEQReKeXLUspNUsqtbY/jMpqTTGO1nYg4tSKNTFBlCBoq7FC4WsUQD7+EvXV7kUgyvWpVbhg5o/31ZbkNROrDSWzdz6WV+/iw5iwwB2FMSmJuxlz21e3jYHgSmEIIT6wh9f4bMRqawWDpMmFkh6eyNn0SLf96my83vYOuchXNJhPVZjON7jqkO5Jwi5EWpxdqDsDSB2HwbFUGu2pvezjeiChVHsDtd/Obib8hyGIi3RfCXrOZLcG+wDWXdMkhePqrA/j8kjvOH9I+Hikly/+VjedrKwa/Cb0U3P3v7azJq+3iH2jDqNcxbXBUN4ex3+2m/KGHKP3lbeD34XMK7NtUNy6724tTX4BdVrGxQnXj8jud+Gpr2+3RwWZDj5FS+9aW45c6kou/w7FtG+aR6rp9NhtjY8ZS1FTU5/fu80tarIvY4XmaJQVLcHgd3D4nC4Gy+k3PVE7e0UnhtLi8lDR0X5W1mYYOJk3EgCDzkpfVDlffVVPKGh18sbuS60epz1/XV+nrzlgicVepVaNpkJrkLBMmYEhMpHnJF4ByXOqee4KhzdUg6eIjoPYAgyKL8bj8/Od9GzvH3EaTP0zVezJY+h03oOrxF6yAKT8Ffc8aV9CYMQizuXfzUHAM/Hoz7hhVYsQ4agpJNasw6CBatOJvS/DbWQLFG1UfZI8DLntB+UoAGTeaph3gTRvE/z1zK4t+dTZBJj0HkoyYPH5azMFEDFYLt/qwWHx6gbuq51h9p8fHHf/ZwcfbSsmKC6GgthV79UHq9gdjGTUEy4QJ7ZFomIIxRepBJ3DlBARBSQk1EYJh0ar/wlkJSuOND47H1FqtBIEQMOs+xE2foTNJLvOtw1BRgis+gsJIJVjch/gJyvMa8fskqcN7rzF1NAxEEHwmhLhNCJEohIhqexyX0ZxEvB4ftgZXJ43AAiIQQnrgS7Xazji3vXRAvF398A2B/gjSL/Fua6BVLxk3J4m4AzuZVJlNc1wyQqdjbvpcBIIvSr5Wq6Dcb1TbO4Sqpe/oKAld1uhg1Tk/UD0D/vFvUqslJbGCjSVqZev3RDEyMUytjte/qHr7XvEyJE8Gvweq1OoyIzyDMFMYc9PnMip6FKYgPaFuA6NcLv4VqwSdvbayPawtu6KZD7aW8OPp6QyK7qjHY2twkb22guFnx7Nm8McAPHvlWK6dmsp1U9N6/DxnZsVQXG+nuE5NmtLjoeyuu2j6eCHRv/gFmQtCEHqB7bvv1DU3OBAG9RmsKFkBdLRFbBMEPZmG/H7JnpVlJCToCWktVyGQP7wEgEsTzmd22mxqHDVdbcyHsLViH8aolVS793H/6vu54MMLMJobuHF6OnOGxREVKOA2OllFeewpU5Nk4yeLcB9UFdnbBEGJJZr0iExMwYGaAs6+ezhVNasV66jQgHAZsCCIwh0o72FMDbTU1OmUeWjtWrz19ZT97h6cH3/IpHplruhsGqIul0HpXq75w1SGJ7bQFJbOhjWBz8gcCq4WvD5/r+GyAGx4WZUHmXRzr4foTCaskyZiW9N3xztPcQnodBinXEKou4azgyvQ7f0Yl0F95obmZHjvalX2+dx7IUYtVLZ9dZDPP0+gr5oX/QAAIABJREFUIHQOEVfOIz7CSrjFyGVjk8hOVL+V/RGpXDpe/YYa7G58FhPulqYuiWUOt49/ri7gnCe+Y8muCh6cP5yH5o9ASihdtxm3w0TDudfz74c38I/fruKzF3eya0UZhMZhjrW25/k4i4soD/cxLFKVUJ+aqEKjk0OSoaUSQjrMfjJ9JqXmRFw2E36bHU9CFGUhboTJhOuQyKHS7Hp0BkFC1tEVruyNgQiCH/8/de8dJslVnn3/qqqrq3OYnMPOzOYgaaVFQlkCJLEIkACRs5HxRzDGJhhsMDL4Bfwav2CDSQIMCIEASSAhCeUsrbTa1ea8szs5ds5dVef741T3TE/YXQcZ81xXX9L2TE9Xd51z7ud+wv0gQ0FPM9dEdooukT9OS07nQVBlBC5dI1TvkZVDh+6THrfuYaYwg67q6LNptHAY1ZB0+/Dzkxgpk+OtOg03vAFcLjoz0+xx1VEybZr9zWxu3sy9g/ci+l8BqRHY8e9SVybaU8MIRuI5fF1dhN/2VlY+PUrfBIw0l6qxxoi7kcagIctHk6NyU4RaoV2WAlakBzRV4xev+QU3XXgTIHsJSqbGJ+JpTgRluWNxdoa2QBtCCL70uwOEvTofuWKODQDEHAG+Nee3EXDUETc1h/g/12+sessL7dwe6SvsGU0ibJuxz3yWzIMP0fzZz9L0Fx9DK0/g668n8+ij8jMn8qj6HBDYwq5q31eAwOfWKJRtTGuuWe3E7hnSsQIbr1qB96yzaPnbz/FATI4HfFvX9dUJYCfTy4/Q+N6e7yAsg0+v/wnfuvJbpEopHht5jL977Tpufs9ctc9AcwBdU9g7lkSUy4x/5jPMfOe7cr04oaHx1CQD0QHwOBv2NKGhKWdWQJ01Iw9VT+SUv181b5RyQh5kbgcIAMJbt4JpMvTud1dBNuhs82poSAhZDtmwkvr2AOv9x2idfp6p4ZzUSzKCmPkUN3znGT7w42W2eikLu2+DDW8C/6nLYgNXXEnp2LFT1seXhofRW1pQ18hB969y74JdPyOnyoNTL7TI77JpLVwo+zGELdhx70mGY0EOr3wzd+1ez9gRuYauP7eeIx2S9R6KdPKajRJgE7kSis+HURKcSJ1wvg7BW777DF/83QH6GwP8/MbzufGSvirwx05M8Py5f83TBxrQPRqrX95KaibPE784zJ7sNRgNLrLPPMPRK67EOn6CyYjsIQGpLdQf6ZfsPD0hGYFjgzNZZjUfhYS8L6IhgFAVtO4uSgskU0YOxZkNj3DrkVtO+V3/Z+1MGsp6l3icgej4H5dVxOYqjAAg2uonPhKTh/aqqwGYzc9S56nDnJ6uJorLJYtn7zxG3ACtx4/e1ETQ0cU54mng7t3Ss72m9xoGk4McbnLix+lx6LtcHhrlLFhSCmAskacj6mX4+peR84BuwVCDm20x6Y13BTsIeFxkihZkp+TIRJCzbQPNNXmCjmAHXpcEN7fLpGR52BzsZYuQn1ckk7QF2nj00DRPHp3ho1cMEPbV0vyKEmu0xU9DVB7whSWqd+ZbX4OPi8Z2o37765x481tI3XUXjR/7GHXvfIek9vk4gc0DlE6epHh8UDICPUnIHWa2MMuemT2LgCDg6O5n5w1VObxtAl/YTd+Wdnp+fiulTQM8GZOHV9T20B2SIYH54aGnR59m1/Qu+fr4YZ6dfIRS/EK6I41c3HExTd4m9s0ubqgyXBorm4PsHU1K5VYhyD77DEKIKiPI5vNSWlr3yBnWy0ywqtikAwSB0gwEW6sVaKc1b5RSxoWrsQHVO5dgN9aswd3bS/HIUere/S7UYBC/Ku9nNTSUGpPrzRFQM6dnqGMGq2wzPZRGGEEOnBhlx1CCZ47N1gBvxUqDT4GZZ1f4itNeavBK+TvzcxeL/t7QSfSuLgg2c1Ad4Jrifdiju8iaUpJBKQYR7/wtvP1X4JKfIzaepZg3WX3wFq4zvoiuljnwtNxr0XCWQ+0K9/f1M3ruJXTV+XCpCvFcGd0fxFuS41kBjs9k2TWS5FNXr+bWG8/n/BUS2BqDBq1hD4lphay/jQu3tnLDX5/HpW9dxdu/cD7RFh9DuTWEV2v4zjsP77mbGX3dedy3WWVlVCaUFUXhllffwsc3fUiyw3lA8OTRGVJuH4qznhUhK46U7vaaEtJ8usTMcIbDvp3kzD9QslhRFF1RlI8qivIr5/FhRVFOXYLxv9ws0140XzZRLR2d21TRFj+J6RKW0GDgVQDECjHqvfWYU1O4mmSX5vGd02TiRR4xSrTXSSCJvv1tAGR7+rn5SSnW9sruV+LRPHz98K2IJqnayIrLa7zH2WyJQtmmPerlifROfvtyefjFGs/CoghCpb+u3QmTlGV5YmXYu6JIAbexpcXI3GQoCR+icQ0fTcUp6BDI2UzH/Xz01p3L1q/HJ3J4/DreoJv2ermQt5/ccUo1ztytt/DZ535Mx+P3gKrQ/Jm/puGDUgiMlNyswfM3A5B55BFOxhOorgyv738dmqLx6PCj1R6CSvitMoBlfp5geiRDa1+4qhP06yO/JuWSIGVns3SFulBQqt5f2SrzsUc/xjvveSf/tP2f+Ned/4qheinNXkSjw3bWNaxbUnIbZJ5gz2iS/LSjbTM2Tnl4uAoEtiWo8ziRU0/49IwgXUTXFNy5CQkES9iS37OvjlJaQ2+rHaCjKApNf/WX1P/J+2n65CdRAwE8znathoZmnF6MBnlYmdPTNHjl+h8/muRkViOXSfKy3jryZauqMDvfZvY8SElo/Hqmc9HPFpre2opn3TrSDy4PBOWhYdxdMsz4kH0WdeYUeRFFCKc0W6+jkKuD8Fx12/hR6f031QtaL+pmhX8Hx3ZOY5YsJnOTmC6Fr5/3atactx5FUYj43CRyJYxQBE8JjiZkr8gjB6dAKfPqDYvH4G5oD1POyrOi85wOlHmFEe2rooyl2/E25uj6/vdo/+pXeWBrK1p7K2FjLoTj033oOSdfFpD7Z8fvT3Lo0VGs4Jz2kCstS1rtrlbKwyPYJcn4Rg45KsHhw0SN5cew/lfsTEJD/wZsBr7lPDY7z/3R2n3f3csDP6zVJZ987AXcolAjQdzUFcSyVWLRq6pIXmUEk5NVIBg5GMPtc3FMsarlj/4tW+j7/X28/M1b2TeW4rnBGFFPlI9t/hhPjD7BnV0bwNcg5RUq4YBCktG49NTbI16eGHmCidduoevH/05kzdsQQsEuR+htDBIwXBTLJiI7Df55h0H7OXKjL3EAuUUKGx2rcR2dpoUd9BLKwS1PpulvDvDj921Zsn49Pp4l2ioB7rp1rwXg13vv5M8f+XMml5ixUB4bY/ob/8Lxvk186n1fp/cXv6DuXe+a+4W0TNTpfWswVq0i88gjDMYlOKyqW8Xm5s08OvwopZER9LZWKT3NYiAoFy1SM/mqbETZLvPzgz9nZYeUtLazOdyam7ZAW5UR7JvdR97Ms7FxIz/a9yMeGX6EjaFrwfbRUAGC+nWcSJ1YMq+wdWMriVyZx56fa2zLPvNstXxUs11zHcSe8GmTrpOpIk1BD0pmYsn8wPEXp7n5r54gl1oglOaNUM64cLcsDssEr7ySpr/6KxRNQ/X7cKluTE2GO4HaSVuAOTODv95PuNHLob3THI5Dl8/kS9dJXaRdI3N5DiGEZEAnnmCnGODFiTMbzxm48gryu3YtKTdhpdNY8Tjurk5yJZN7i/L+Zdtl97LlzlPw1JF/oTZMNXYkgVFK0nDuWpS2s1ip3UO5YHFizyzjGbnGrt+4jreeJwGmzq8TyxRJlFUCdpDjCel1P3xoksjAv/Cd/V9edG0b2sNgynXnCxn88wOH+fht8sDuWB3FtHSm4nPhvMPxw9X8QI2lnX3igP3+p8bQxvJEm2UuSQsH8dqyUqvc0QS2TdnJP40cjOPyKEwHhomcaejwP2hnAgTnCSHeLYR42Hm8Fzh9m+T/YkueGGZkzyhiHuWdnbHxJYbIPvFE9bmmRrn5poKv5Gfbhjg+nSGTLNA5tJ7yzAyu5iaEEIwcihPoDIBCTR28u7ub687pIOLT+eFTJwB46+q3cl7LeXw1tYfx99/DU5Pb+dTw73jOY0AhwYgDBG5PkmPJY1zUeQn+LVvY3L4SM3k2ZraPnnoffsNFmCyKbUJgARDAktOf3Jb0YkthWVVj+CP4Es2855wruO1PL6CzzrfoNUIIYhNZoq0yedzZKD2yy5tewdNjT/P637yeXx7+ZY1M8MSX/gGE4Ohb/4yjscLi0ELKqdgItRO4/DJyO3cSn5abstXfymWdl3E0cZTs0GBV+hgg4MwRqISGYuNSSK4yaOahoYeYzE3ymvVvAsB2JBd6wj2cTMlN9cKkDJt9/fKv880rv8nWFVvp1q7G7VIJOkCzvmE9wJJDTC4eaGBDe5iHtzmHqaaR2/Ysmktem8vW5xiBEToDRlCgMeCW38kSjGD0cJxi1uTYjtoD1MaLWdBwNwQXvWa+af4AqmJQ1ISsuhFC6ua4g1XnxpyZwdXYSOtAhPhQhpTwUq+XWNHgJ2i42D0PCJ67e5AffvIJ4tMNPG2u4+B4mvISoaOFFrzyFSAEmUceXfSz0pBsatQ7u5hKFdknejjS+06yA7Ihq9icpOwOknq+dk2PH44RThzFs7IfWs+i3b0Pn9/m8HMTjGfHcakuvnrdRXTVOwUgPjeFTIpnG99LNnQNRxNHyRRNto/txtKmuOv4Xeyc2lnzHhs6wgjbAGGTE4LvPH6Me/aMY9uC9pVRQDCS7QOzSN7MM5gcrOYHasxxfgg2Y1s2qZkCLgvaupwcSHcv/rBkV/n2egpGhMwuyUpHDsYIdKsIxf6DMgJLUZTq/DlFUVYA1il+v/J7P1AUZUpRlCU5tiLtG4qiHFUUZbeiKOec+WX/16yYK1Ms6yTu/AoIIT1LIoRTx5j55reqVDw0cjuGkmYw389n7tjDbduH6RjcSPi5NaQCXehNTaRm8mRiRUST9CYXNld53RpXrGqqbiZVUbnp5TdhCYtr7307H3zwg9wzu5PfBPyQTzCakBT9ZE6Gdy7uuBiAlc1BCuM3UJx4Az3OBm1QnEPGP4/StlUSxosrfN1lR91Qd3IbHoNgVudDl69CX0aCOZ8uU8ya1DnltJqmohsaawMbuOO1d7C2fi03PXMTN9x1A++85518+ktXkHnoIRo//CHaVq+gZNoMxxeI7KWdWuhgK8HLLgPLovWw3OQt/hYu67hM3qeR4RopA7+7lhFUR0+2SUZwy/5b6Ax28vIBmZ+pTMjqDfVyInUCIQQ7pnbQG+6l3lvPJR2X8OWLv0wyq9MYMKr1+2vrZdhuqTyBoih86PI+ijMSVP0vexnZZ7ehanLNaLbrPxQamkwV6AmYYOaXBILYmPwMR7bXMq9SXHri7vpTayepgQC26iWsjMMPXgW3vAmGt8kCA0VBmCZWLIaroYHWvjB2wSJttuIqZ1BVhfXtYfaMzH2GE7tnyKfLPJT8CwrZ1+EpCY5MLl+RVTFj5QB6Zyfphx5c9LPdz8nv2d3dxUSqgEBl8uV/R1Zz7n2LXD+xfSeqezMdK5BJmYSTx3D39UH3haiRdgaCOzm5b5bJ+AzNvuYaye+oT0dJJxCKi3RgLcOpYR49NAb+vaioNHgb+MpzX6lxaja0h7Hxodt5frFjmELZplC2GY7LcGljfYmR4kbIzbJvZh+WsNjYMG/edMUyzv0LtJCJFxG2wBAKvb2yj8bd2YnP2bvxSIRnzv8Cv/1tnu1fvU2CRpd0SqOePxwQfAJ4RFGURxVFeQx4GPjLM3jdj4CrT/Hza4AB53Ej/4PhppIlD+2Jbc/Bk19j6kQKoahE8iNy6Mb9d8Ktb0V58HM0BWc4OSIPiFQxRWtCJtgmmrfgampi5KCM3yVD0iNcCAQAQU9t2WNHsIPPX/B5NjVu4h8u+gfOq1vHUbdeDQ0FDRfbp56mPdBerXpZ2Tzn+XXX+wh4XDQoTthhPhD46uT85CXyBO7iuPP55eFR1DUipRxR3/Ipn2qiuHWOLRh+F8Vcmc5QJ99/1ff5uwv+DsNlYGhurr5nislWD3Xvele1x+DI5ILmpNQ4uAPgCeHZuBHF66VzUpY4Nvua6Qx10qLWoSdztUDgeOyV7zI2lsWlq4QavUxkJ3hx+kXeuPKNaD4JWhUg6A51V4eX75zcyebmzTWXM50pVsNCIDdbe6B92TzBq9a20ON0ZgevugorFsM6eQIATbio91RCQ6EzSBYX6fM4vxNcPBhodiyLqimMH02Sjs3p45Sm5Gv0yKlHVqp+P5bmpVEZhUgXDD0jZ0A45ZdmLAZC4GpsoK1fhh1yZhdKKQ1CsLEjzIHxNCXTply0mB3JsLr7CC8L/pCQGeJ9aYNtvzuOWT61b6goCsErryT3zLM1nc8HJ1L86i7ZN6J3dFaT580hg2yyhKKA7pSBZkuuaqPV+DHpWEWSx6QctuaCLTeysnwrtikoH/UsGrQU9bnRcnItFo0GgrkG7jm4GyO0n80t5/LxzR9n3+w+7j5+d/U19QEDU/GjiTw/eeZkdabwoQn5d9q7FSbKqygnpmUBgoCNjUsAQXpclnn76quaZl4Ugs1yreidHXhDsow7MZJDKC7Kvjq2HZehI7NVgvEfDAiEEA8hD+uPAh8BVgkhHjmD1z0OnEon93XAj4W0Z4GIoihnWET9nzfLtDGFAwTBq+Ghmxh/1GkBv2AlrvoIM1/6pGyUecUXaDr/YuxEGZeAbC5OY7YDFJupps0o9U2MHorjD7sZM8uEPC5CnsWHquyIrR11uHXFVm6+6mau7buWVdGVDOo6dj7BaCJPW9TDC5MvcH7r+VUvNep30xQ0aA4Z+Nwu/IaLBhxPLVCbMKT9nCWnV7nz8rAtWTJpWHCphMvZU3ayVqS4Kw12AIZPp5CTm1NRFN6w8g3c8upb+Ebjh2metbj7PAVcrioQHF2o2Jkeq3q/iqpCeydtqSQBV7Ta2NaZk/dIb5+T7g0YixlBtNWPqiokivJg6Ap2oagqqs9XBYKecA8A95+8n3Q5vRgI0kUZnpln6+rXLckIACn7Ue8i4/LwYotsHCq+IA8zbX5o6DSMoFC2SObLdOvO74RqFWDzmRL5VIm1F8nnj26fCw+VxyUjcYdOUecPKP4ApitAszqKfd6N8KFtcO774RyZs7FmZBLT1dBAuMmL7VaxzHYUuwxmkY0dEUqWzaGJtHSYBDQVHyfnGWTrp8/hpGGTeyHGL//PdsqlU4NB8KpXIcplErfdVn3uxaEErdlZ8v4wWsDPlNNX0RTykElIoTx/vdxTeU89OSdPMH40iQuTsK+MFnISrue8k0bvBBFfmsBQ2yIgiPjc6IU5EOpOrOWZyUfBPcUruq5k64qtbGjYwNe2f43v7f4ejw0/RqaQoqQGwM4znizw2a0yrHrYcW46+v3Y6EwcmeXA0eO8a9dNjL+Qh8n9cPfH5+Y6pCdlRZ+qcmxQrlVNgPDLa3d3duKLyEKNzEgORYF3fPVyVnoGaZ58npRXdn/PT0L/d9qyQKAoyhXOf68HtgL9zmOr89x/1dqB4Xn/HnGeW+pablQUZbuiKNunp6eX+pUztlJmzqua5CxY+zom9g3hy47j02LU946Qm3KRu/BmuOhjqE0+VKDJUlGmcyiotDeNU9YDjCe9jByK0746ymiyQHt0cYwdJBBYtqC4zLCW/vo15FWV0cwwI/E8DZEM6XKadQ3ran5vS28dZ3VKry2wXGgIZDVIahRsi0/9ajcP7J8EIXDnTsjvwHQ2libwlgqI0vITm2LjOXRDIxCd85g9PskIFlryzjuxDJ3H+kvMFmYJenRawx6OLgwdpMZrEqPF1g7ak1kaPHPNNi0puTSXYgTZeYyg3skPpEtyY/p1+W/V78fOOUAQ6gFkRRHAuc3n1lzOTKZUrRiq2LqGdYxmRokXltbI6XaVyPmCfHlHAr2ri/y2bQhF4FP86JUu29MkiyuDhVpUJwa/IDRUCQv1bmqgqTtYEx4qDQ+jGQKNUwyIB2xfCFvV8WlxMh2XSJnp13wNeqTUwnydIUVRyIddKGXHsSim2egMQto1kmBiUK63AftxDvnOoaczzOiaALt7dGJjWXY9OLz4AuaZ7+yz8V90ETPf+Q5WUv6tPaNJ2rIzTASk5zuZKuDVNUIeF9lEEX/EwB/yUlaLFCLt1Q7l8aNJIqUxvP19c2/gjaKc/TYaxYsY2SCt/trvM+rT8Vty3Sq2SXdsHWW/1Hi6ousKVEXlb8//WwLuAN/Y+Q0+/PCH+cCv3kJZD2BRoqfex7Ub2+iIetk7McknHvsEmdYcKiZ7thdpffh8fPkwY4cTUpts+81zcx3S41XGt+vAXMe92jOA/5KL8V9wAf6orMovTmhEW/34QgZnr7VZd+BHpLOzBPUguvrSFGyeihFc6vz32iUer3lJrmYZE0J8VwhxrhDi3MbGxSVe/xErOgswFCwRG8tSevV3mbA3EE4dRzt6O5ELVoCqkt0jk5c7HRrbq7rwzQpKWoEB4zh6Kc0Lj8+ST5fpWBWVypmRxWEhWOzJLrS+eullHMuMMhrP4/HLUY9r69bW/N7/e/NZfPNt51T/Zr2Swla0uUElFdMlIE3F4vxi+zD37Z2A3CxuSx5qJacKIq9IYKpsyqUsPpEl2uKrYQ2GT6eYW9DhWyiQuvdezEvOpWAoVbnq/qYAR6YWAsGY1KepvEd9K02pMl2eOQ+uybkkvb2dbLLI9HCa1Mk0fhsyRYt8pkQuVaLOqRjKluV9CjpaOarfX9Xnb/I1VWcptAfaazxFyxbEskUaArVAsL5eJoyXYwUiESfU3MihyTTjfevJPf88QrXwq/MkN4ywVKw1lwbaShikUTjEeUFoqAIE9W0BBs5rZnooXRUdKw8PoYe1004pKzoeZFkpkfD3L/q56TACrUHuq7hPQbX8ZK0oFFN0RL1EfTp7RpJMHE8Rjlh41DRmtwSStW0hHs9m6d3UwI7fn2RoLEXhFGGipr/6S+xUipnvyka8PaNJWrOzHHdHyJVMJlIFmkMyX1MBgqA7QNqIUWzqJvfMsxSyJWbHMoSmDuCeDwQAL/sgQk1jmF5afItDQyEnvVkf20dLZgWGEKyKrKmuiTX1a7j7urt55q3P8H8v/b+kJ4Yp635KqsW7X96DqioMNAfYkb2Z+07cxy0T99OsH2Zw0MBUSmj1pixFj5+Qb1ph5plJCLRg24Lx0bn9YGkeur77XfS2NrzRfhBgzQZo6nbWsdMjkknOvGQVQ3AKIBBCfN7535uEEO+d/wD+/r/hvUeB+UXIHc5zL6kVk9L76u4qIwQcfmGGomkQTg6ida1Dff9duLu6KB6WUhL3Hpuh4IIeVSeS9DIaOoIvmaYlc4DZUblR21dGGXWawJayOU926Q3SF5GL+VB2knTRxNKHcSku+qO1G9elqbicpG7AI0NDRXe0qrlSNbcEgj2DMik7lshD4iRuVV5vqWgjXF6EWwJBpXFrKZOlo/6a5wy/i+KChrLMww9jp9PUvf46gGrdfn9TgGPTmTmhNtuGzERNGGQi2IQmYG1x7hCtT9iYmsLxQYsfffopbvvS89z3r7u5LmuQLZSJjVYOyVpGENDl31ADgWpoSFXUamPZwrBQLFvCFixiBGsccN43szQQmPEE9e1NnNsd5XvaCuxMBtUq4VPmAUGlP2QZVlCRl4hYM1JNVK9dP7NjWQyfC1/YTf/mZlDmksalk0O464zTAkHJJa/nmB0hucQgI3PaCQ01So98yi3v02R5AIppFEVhQ0eEXcNxJgeTRD2jpIWXzjVyTsb69jD5skX7pa2YZZsv/+M2/t+DR5a9Hs/q1YRf9zriP/kpmaFhJo6P0JBPMuavZ+9oiqlUkaaQzGHNAUGQtBEj563HnJ5m6MmDICA8cwCjbwG4NfRTjIYxLN8iIIj4dPxOIrhl8nlUodGRXM1Vva9cdJ0Bd4Creq7ifaFLKOsBlMZitcdGD+0k795OvaeeB0cfZ4X/UdyhGL9Z9y80rggSn8ghZp0u6krRRnoCgs08dyKGp2CD048w36FyBZupK4Sh5KWpW4aMVJ9cE9l07CWrGIIzSxb/eonnfvXf8N6/Bd7lVA+dDySFEC/51OZSUh4YnSskxXrxIUlnw6njqK/8BHhCGKtWUTh8mNFEnheHE3iavDSmbfxFD2ORw6izSTpV+bpQgwfhk8ng5RmBTOgtJ6EcdAdptuFIUW7qtH2SvkhfdSD9kn/TLUNDOX0J2ScnPHJwSDKL0UQe4idxKzJJVcpbmC4fVkTDdhsMvf9PiP3sZwi7NnRVzJtkkyXqFgLBvBxBxRK/+Q2ulhbaL70aQzOqdfv9TQHKgYf568c/L3Mk2Wk5p3geEBzxSeDqSs4lPutiZWbr/Tx9+zGauoJc/afrOefqblotlcJEntmKt+wwgsrgkoDbAQK/Hzs714VZCQ8tBIKZjDyMFzKCoDtIT6iHvbNLJ4yteBxXNMpnt67h8UAPExu24C4WCZbm/R2PE7teJk9QYQT+4vQyFUMZ6tr8KIpCIGrQ2hfm2M5pRKlEeXwcvSFw2nGVxaJ8j/3lJpL5xeE8c2YGNRSqSqWMChOBYLrcJ4UWgU0dYaYmcuTTZTz2QU6KZrb0y/DR+nb5GQeLJVLtBmvyKuNHE6dsNmz8848CMPS61/Pv93wBFcHJYAu7hhNMpgs0hzyYJYtizpShId1P2pglb0qA2PfoMB4DQqlBjIWMAMiH5D6sE7V7I+p343Wuqy62n7Jaoiu+liu6lu+OvtjswFZ19mvH+fhjf85P9/+UHdmbMXM9fGzjTeStAkNtu5k+52bMQI47D6cp5U0Ks074Z3SHVC/OxyDYyq+3DxOxleo42eL8e6IotGUl2DR2SUagOHO6C5nEH4YRKIqyWlGUNwBhRVGun/d4D3DqmjX5+luBZ4BViqKMKIryfkVRPqhRHqxiAAAgAElEQVQoSkW4/B7gOHAU+B7w//1XP8yZWDEtD5BQk59Is4/kVB7DAF9uqjo6zlg5QHlomAdeOAHAwJo6dMeZTzdOYE1NUR+Fpu4gfec0MeKUfC5VMQTgq5Q9LiGhXLF+dI7bWUAwXjhaLWFczvyGRqOSJONawktwPMujozL+O57MY2dn0RQTzaVQKpiUVC+uoED/0a14N21k8qa/Z/xzn6v5M3PSErW5D8Pnwirb1UoRc3qa7JNPEX7ta9FcOl2hriojGGgK4o5u456Td3Dv4L01paMV26tLAGqcntsUoViRk+2vIJcqcfFbVtJ3dhPnXtNDURW4j2WZHctUvWWg2vw1PzRUYQQwlzA+p6m2Snk5IABYXbeaI/HF3q0QcsynVhfl7K4o125q4/Odr0S1TZqG5kkAnEZvaCpdxK2p6LnJRUAghCA2lqWubY5h9G5qZHYkw+y+E2DbuFuip2UEhYxkI3vKzaQKSwOBq6Gh+u/Zogk+i2lzRVWKekN7mOay9GCD5Z0Ufa00BeUR0N8YwHCp/PKFYX6cilNUYOW+HD/81FM8/OMDc/M8gGy+zPd/sodytJHmz36WxPrNfH/da/B+5wecWLuFXSMJJlMFWkIG2aS8L4EKI/DEsEoKuYEtjMW99NUn0GxTVgwtsLTPKbBI1pYtR31uDKGgihIuq0hCzbMisZkVoeUVc3KTMoIw0NXL4dhhvvL8V9BUjcLom9FKfXQEOvit38uu0ixd/tWMmI6qb8otezWmD1RHeZa8jTy6awIdheYeCaClfG2UoCnXhcCqAoXq9Tn3MfkHYwSrkLmACLX5gXOAD5zidQAIId4qhGgVQuhCiA4hxM1CiG8LIb7t/FwIIT4khOgTQmwQQvyPCNkV03KjGqEQLb3yZjREbBTEPCBYCUIwvecADQGD1WvlRsnqWdz1YE5Nobc08cZPn8vLr+9nOCYX3OlCQ8sxAoA+1c9JpYTiSpAuJ6qhieXMpak0KClS2hKLwy09+JGpWYIeF2VLkMvIw8jt1SjlTfKKBx9FOtevpPPmmwlec/WiZp+lKoZAJothjtZmnngSLIvQVqkP3xPqqTKCSDCH6o6h4uLLz32ZmDMEfH6y+KSVIO6HoFOSJywLd0InE7qMgfOaaemV90U3NE6EVXzTJYb3x6hvD1RzF+lyGl3VqyxqIRC8aeWbuOnlN1VDRBWrJGwXhoZAKkZO5iax7NrNKnI5OdErKr/7d57fzZA7RMZj4p0tkn3uOeeLktc9+a8/YPLLX1n096dSBRqDBkp6cTNZLlmimDNr2FjvJrkO9333dwAY7c2UsnlKC0M+J5+Bh78IRx6gkM2iWiVylrYMI5iuAoEQgmS+jBpRmS7PAcHLeuvZ5PVga7ApcJhz1s8VMbg0ldWtIZ46Oos34Gb8/AiPhy06VkU58PQ4O34/J/Z3z60HKT41zU9/c5Dom2/grus+zEObXkn3JeezqSvC08dmKZRtmkMesgl5X/xhg4AeIGVI5nOk5/UotklnagdaY0N13ON8S3jl9+Garu29iPp0dKFhKHJdxIsZ3GUXxfzy+zIXk+fF6865jvvecB93vPYOfnL1LShWlCOTGa7tu5bnNJtDdh7d7CGuSsYRN9thzWtA2HD4PoSA+4cU3EX580oOYGHRRX22m6J3vDoDuxIaKmVSL1npKJw6R/AbJx/wmgU5go8KIZ5+ya7oJbZi1mnEiUZpXiE3akNA0ucKEFQmECknjtEW8VTjdaOhEzS5oliJBHpTU/UQ2j+eQlVYUpsfTp8sBuhzRygp0NcrvYfKLIFlTQgalCRxZQm66CSLdTvP1etknDSddoDAo1MqWGRtDxFXCa9bQ1EUvJs2Yc3OYs7ODS2fHcuiudRFA98Np++gmHWkHiZkRM/d2wNIIBjNjFK2yhxPy9DKu3MtpMtpvnLUKR10ksWWLUiUphirB7fDYAr7DzDc+mpsBS64rtbjm2jWEQqkZwvVjmKAbClbzQ8AqAF/tbMYZML4uoHrFpXKzjGCxYPiW/2tmLbJbKF2kLsZd8r/HCA4uytCwFck4TexPF5iP/ih80WFEDYk7n2C2C23LJo6NZku0Bp0yUTiAnmJ2bFKs9zcZ7TvvwN/bpyRhJ/Gj/05xqoV/GbiE/z+u3vmXmjbclrd4/8It7yRQsHGXUrhNYtLA8H0HBAUyjYl00av95Cz68jG5YEZ9umc4/fTuSKEUY6hhGvLXNe3yf3xiatW0dcdZptS4sJ3rGLgvGZ2/H6I5HSOmZE0U8/L+7tt1xSWLdg9kmRDexhFUdjYESGWlUn1ppCHrKOs6o9IIEgb8h7MlsM0T22n/PC9i/MDjo0p8nsuTtcOcQl7dTThwu0Ageok8cvL5O4A8mm5xr1ReZ390X5W1q+gp97P4ckM1664FqGApcDUdCtFQ8HGJmm1wfo3APDrO+p5Kv0evrMzy6Vtcr9WQj/zQUgIQSjTQdY7KIUZmUsWK8USEeMPEBqaZ5OKotylKMq00yn8G6e7+I/SSrkSChZ6KELnmjq8QZ0Wx9uo1CPrnZ0oXi/+kRO0hj14AjrxdQFeaHuY9qIjU900V7u/fyzJisZANQS00PwVaYRTAEGD7YQRAi+gKnPqhct/kAweSsSWAgInWeyjyGs2yU2by6RA90sp6rxJ0nYT0eaqWYwB2WBUPCKFuGxbcOyFKVr75wTdqr/rrzACebCYU1NokQiqWx6mveFeLGExnB5mx9QOPDZ8dPJpbhy4gXtSh9ju8VZ7HwZnMthqgvE6DTEkk9ajDz7PZPN5HGh8BF+ktlzO5XcxFZbXU8kPgGQElfwAgLaAESxnM5kShkutgvV8aw3Iw3ksU3ugWM6BXgECXVPZ2K1hamXMaJTstm1SMMwTJj/rxi6UoFwmdddco1J+7z6adm+jz1+QXuMyFUMVsDNnZ5n8yldoM2ZIRvoJvOP9HJ3sYqo8wPTwvIa9Yw+xY2gdt3MrpbfcST6yDncpRdBaGgis6ZmqqF8iL9eD14n7T4/LA7JcspgZydBcwapQbZX3W87r4gMX9/KmczurebLxZJ4L39CPqik8/vMjPPLTQ2gejYIi0DImd+0a49DEXHlq5b8AzUGDTIURRA38bj9pYy4X0jn6KCKXWzIslCwm2ZGWMhHFmdpSc5emogp3lRFolnQAzVP0P+Rz0nHwBGsdhZXNQQ5PpukMdXK2MzPh+Gg977igG6FlSJht0L6ZrH8DE9kO9udfhepr5aruBhRVoa7Vj6IqlObl2tKzBXTTR8I/BElHidQBAqP80jWTwZkBwc+A24BWoA05uvLWl+yKXmIr5U0MJYtiBAk3ennfP15MqDwDul790hVVxRgYoGFqmNawfE70+En4TtKSlyEEV9Nczfu+sRTr2kKL38yxwGmqhgDyCXl4TxaO0xvqxacv3ZNQtaxc5DNiifd1XtvmF5zdJYGimEuD2ydDQwWTeFknpM0Jhs0BgQzdnNwzQyZeZP2li1s7KoygkjA2p6ZrgLGSmB1MDbJjcgfrSzYu4G1OcvTFUB2oEhz3jqZQ9QTplhBWPI6VSLB7n0CzCzzX/UjN2EqQYbZDEQVfyE3bQAQhBGXLJlPKVBmBEALF50eUStWh4svZdLoowzNLNNVVSgonshM1z1uJWiAAWNOuYComZX8Ikc/L0YyeMNlJNyjg7u0lcYccLG9lsoz82Z/xvge+y9q8EzoJLmQEWbwhN17nAErcfjuUy6x9z6sQQorRbdspD/B82qRU8Syf+SZD5gWMT3h4+LEG8lozRilJvWKSWgAEdjaLnctVK4YSDrBHO6KAzfS0vEfD+2MIW9De7DCsBY1vGzrCfHbrWjRVoc0BgtFEAX/EYMu1vQztm2XqRIrohc3MqDYNtsoXf7cf0xZS1A0cZuB872EZGnK5VdweDV3VUQwb4TZpG4jQ2CPX9FKJ4gdPPkhWk3mRQmLxUCAhDAynes6w5NoyS8trJRVKcq17A7UOycrmACdmsxTKFh9pvogPxpPUmyav3tBKwB0nZrWDN8qoR1YklYWXD25YTzFeJFhnoLlUDMcpq9jUSQnoM/4hSMpiFNUppDDK/MEZgU8I8RMhhOk8fsoZJIv/t1qxIHBr+RrddyuZRAuHaw4Dra+fzsQYLSGnw1Uvo6hlGrLyK6scfLFsifFk4ZRAsJR8cs01mRb7pzVaTfnz0+UHAMhIIJi0lgeCVXUqIY9O0HBh5tNytJ5HxkRjZTc+5prrXI2NaOFwFQj2PjaKP+ymd2OD7I78yfVwTA78NnyLGUFlNgPMJWb3zuzlcPww5zndnJ5dt9GMxqBnLtyxdzSJ5k5gd8rXjz65h3FXD/W+IxT13CL99YDhYly1eO9XL6Ku1c/f3LmXN/zb06RLmWqi+J/uP8z3tsvD+3SsYCazuIegYm3OPOXxbG0xmxWT3qlrHhB0NlpYapmc6kXRdZk3cQfITnjwdNUTfcfbKR44wMRTe5j+9ncwp6cRKKx+4gH5BxYygtFMNT8gbJvEL27Dt2UL7Resxh8xeOpXR0ilNNZ67wccGfWpA3D8EeKiF29Q59jOaRKzZdylFBGlvIgRVMKAWsMCIIh6ibgmmZ515BSencAbctMRnRMLXM4qQDCWkIfshss7aOoJ0bupAaMvwKwmaFE1ZjKSfWzokIdb0KPT58zIbgp6yCZl6WhlTwaMAMnL9nHlu9fgv+ACAIz+xaGhe0/cS3NEfp5iKidDZfPMsj0YmlNY4MzkOFVoqGh5UIRVo0oMsLIliC3g6FSG81Zex4cSSS7yHGNjR4RmzwRJs4VcyeJwejVuJUvQNUn+cJrkdJ5wozMfxKvVhIamh9IIxWbaNwEJBwgc59Tzv4AR3KsoyqcVRelRFKVbUZRPAvf8sY6sLBbBcNU2+Fip1FybumP5jh7CpSwdyMViqxKtwwm5aPRmCQT7xmTsfX3b8q3fuqbidqlklqkaevjAFNNlL30luRFPmx8AOZAGGDcXq09OFqQn1+eEUNoiXqxithoaymfLZIUbj5gDAkVRMAYGKB45QnI6x9D+GGsvbpdhocRJOPYQPP0vAHgW5AikJPdco1/QHaTeU89dx+5CINicz7HdXomRHaM3n2VwntT13rEkbiOFq0dKBW//3Uk0M09IlqkvwQi0GmZ1aCLN7pEk4+k4AT3AVKrA9544zgnnZacDggojWMoC7gBBPbgICMz4YkaguLJYqkm+qOA9dzPZJ57AyuXIz+r4B+oIb91KLtTBr38yzb27W4m98r38rvflBF/cSymtVRmBVbbZfu8JZoYz1cqR7FNPUx4ZIfLmG1BUhd6NDZQKFu09Ght9MnGcnMrDs9+iqNaRK+ic9YouVr5Mgqu7lCIiaoHAsgXPvSBBv5IjSDqhoYjXTaN3jOlEkEKmzIk9M6zc0oyacfpNFjCC+dYcNFCVOSDQNJU3fOIcrvngBkwbYqpAKwkadBf1fjdt4Tmf8pyuCA0BN163RjZRJBCZuy8BPUC8fpRQg5fI9dcRvOZqPOvX17z3TH6G5yee56q+V6HrNkXTPVelBmDblGwfaCYogjpNrv/lpDFEuUxR8WMo+UWMcZWj/XXXrjFE6yaK6GwNn5SsSD+BQOf5fVMcn4jQ5t7H2sY9jB9NMjOaIdzoePk+vQYI4hNZ7FCejMuaYwTzQ0N/4D6CG4A/BR4BHgX+DHgLf6QjK0slFbdeeyBbyUQ1UVyxeIusLmmZkbG6ChD4p7Ky7jpcO7927SkYAYDfrS3LCH69YxQ8YfodIDhd6SgAGQkEY+XFCeoXxmXIp8u5pPaoF1HKVRlBqWCRxYNu1XrbxkoJBHsfG0VRFdY5GjfMyklOHH8MMlO45zECYZqYs7M1oSGQrGAyN4lL0dhQLPGQbytpNURvqcwgJYQQ2LZg32gcU00Q6F5BOtzNuGija+IJXJullG+uXHuN/gVziyvJ3plsEr/u59uPHado2uRc8hCZL3C2lJ2KEQC0BFpqgMAWNqXYLGgaanAOhGOFGLZiUSrZeF9+EcUjR0jdfTcIBX+PV1a3nH85AGU9wIvlc5nseR2KqjCzLwj+JmZHM/z8i8+x7TfH6dnUwOar5RqM/+LnaHV1BF8pwwwrX9aCy9B4+aubCbsk80mMzsDu24j3vBuQJb+Xv301G6/ooCm+l5BdJFUwEULwgycHueSrj/Bvt8vqpnFNMo8KI4j4dBoDU2QKfnY/MoxtCVaf3yo7wr11ixrf5ptLU2kJeWTvimOqpqIoCmXLZlaTHvrHz1/BR67orzlgP3X1an7yfjnsPZso4gvXAkGlRNjd00PHP/9zzWQ2gPtP3I8tbK7puQbDq1KwgzB9qPpzUUhQEj7KqkB1CaIOIzaXYQRmLEZZ92PMC6FWrL8pwOvPauM7jx/nw7ftZ7fdy1kcBNuiyZby5bffdwytpNPm3s+arnEUVcE2BaEqI3DV5AhyqRJKwCarqlVGUOkjMEriD8sIlhlV+Uc7srJYcmHotTfeTi5mBGN18hCMTkitdBN54BvjcdxdXdUFvG8sSXvES8S3uOpkvvkN15I5AiEEjx+eZk1vJxfn86wKdJwZEGRlw8poaV7lTNHkaw8c5i9vP4iNQrNHbrq2iAfNzFZzBFbRImd7ZLJsXmmkMTBAOVfgwFNjrDirAV9Awy4UIOYAgbBg352oqoLb66KQMzFnY2Db6AuBwMkTrPG34xOCaHs/d1oX0VsukxEmM/kZhuM5sowAgv76VcR7LwRgZWsaryPGtZARBNwuqYTpaOBPp4u0R7yY5BmNCW7ZdpLWsIecS26gUzECKS9RWiQ4N99a/a3VIScAP9j7A+7Z+XO0aKQ6MAfkwCLVpaLacKJPqk9O/+s3UVzgdaJm+nlSluHKTbME1kUYsL1w3lqSJ71ktz3H03ccpZAp85qPbOKaP92AN+imPDFB5pFHibzh+moyvrUvzI3/fAlNAy24lBIBf5nk/l1glUi0vB6QJb8ut8bFN6wkpKQJ2CWSuRJfuGs/N929n46ol+vbnDnLbvldJ/LzgCAk4+s77x+iviMg2Ulq9JRhoYq1RbxVRjDfTMsm5pRXnhXx854Le2t+Xh8wWNMaQghBNlGqZQTuQLVpcDm778R99Ef66Y/24wl4KAr/3BAeoJyIU1FnUl2CiO3IdSzDCMypScp6AI978c8VReFrN5zFn1zUy+/2jLPdXkVD+iDEBokqMu8THJUA0rqxG//Gy+heL5VGK6Ehw1dbuppLltD8grKiUHYYgaKqWG4XXlOphj5fCjuTUZWaoiivdcZVfrzyeMmu6CW2ounGMBbEDVMp1PDcwfO2372Nn0x/i5jHhz7kNIM4QOAan8bdNaeMsf80ieKKBRZ4shVL5U1Klk0o0sCWQpFfbfjY6RPFANkp8q4Q8VLlc1m8+htP8I2HjnDF6mbQfWjOIdoW8eK2C5iaF7fHBQIKigMgpbmD0hgYIBZdQzFvsfbCNia+9CUG3/hGyQiMEDSvhz2/lL/rCM+ZzsSpao5g8AkY30VvWG7ycxz9oJ7eFfykdCk9jvDeYHKQvaMpNK9kXOsa1mFFW3CVc0QvPA+fS34HC3ME8/Mt2aJJtmTx1i0dKGqRZ47mMG3Bp69ZTd5hBKcCgtlscUl5ifnW6m+tYQTbxrehJbMQrt2UsUIMw9BxofBoMYCrpQVrZgZfhxfVlAeY3dYj78d73kppZQCBINZ5DppX5fCf/SVDe2YY6CjSvW5u6lj6/gfAsoi88Y0176eoirwnikrYEycxkYYNNxDPBlE1heC8kl81ECBgFjkxm+NHT5/g/Rf18vMbz2eTFSNmBBlxRAgTuTJuTcWrazRG5fdmlm1Wn+/kL1KjpwwLVUwCQWHR82VLkFIFmkutNisuZfl0Gcu0CdQtzQiWsvHMODundnJN7zUAGAEPRSIwM8cIik6SP4mG6rIJ2k6yeDlGMDZEWQ/g9S2tzquqCn/zmrXc9Lp1BPovlIqt+27HqyZBs2m1VBRDpfntN8Hmd7PhsnY0l0pDp2Tx7nnJYiEE2VQRPSjfK5dyBPyGn8d02QRNFypnOM/6P2FnEhq6C3gPUA8E5z3+KK1oGbg9tR9bJotl0upY4hh7ZvZwLP80Q615jr3wIKZtUrSTaJZAmZiSQ7aRh9HgbJb17aeXhvUbLnJL5AhmnL4GX9jZ/KcZZFK1zBR5vZ6SKWu/j09nOTmb4+9fv55vvv0cVLdfDihHTk3zUSCPp5r00is0cz4Q9Pcz07ABXbNpboLk7XdQOnoMa/Qw1K2ADW+EkecgNugAgYk57QBBo8MI7vkEPPC5OSDQ5KJft3Ilh0Unu3v+HUWoDCYH2TOaxOUbIewO0xHowPRH0ctpAhdeiNclvaZFjGBec14lLBQNCFAEwvJw/dntbO6OnhEQzKQlip4qNNTqbyVVSpEtZxFCcDB2kGBeUFzwmgoQ6IrC4aksgYul9+/vj1bvaTFroihgBNzMWBZDuuBYfCV9H15D+m2fAUUl8NMvYufnPnPh4EG0+nrc3YtnSaOq4IkQyb9IotwCl36S+ESWcKMXbV7JrxoI4DPlwfzBS/v4m61rUBQF7eQgQ6EWRuISbJP5EmGfLvNFfoOQPouiKqzcUgGCsTMGgvFkfk5fyrGyZSMUCDV5iU8uP4Q9NSM/f6hhLvQTcAdIl9PLvYRfHv4lCgpbV8imRo9fp6DUwfTcSNFiUjpzCdyousBvyrVRXqZqyBo/SUkP4A2fmu2/64Ie3nnDm+U/dt2KokCkUa6P7tV11TnHXWvr+cDXLyFU7zACr6valFnMmdimwAjK/F4+MyHXza/eS0mzCOaL8O2LYO/tp7yW/6ydCRB0CCGuF0J8XgjxhcrjJbmal9gsy8YUHox5QCAsCzudroaGhlIyFLRafIapaD91EznuPXI3eTtJQ8yLYlu4u+SmPDAu9dnPhBHI2PZiz2PWqZ4IRhwgyC8ueVvSstMUHd37bNHkuDNg/GxHphq3D0qO9EXEi08pkrbduL1yoXkruiUVIEgMoZRnmG3cRLM6Rea3dyKK8qAtHjsO9X3VBhn2/hqPX6eYNTEnZfdmNUeQm4XYcS5su5CvXPwVLrV0MMK0NzWw3uPBfMTFhtkLGUwNsm8siTcwzrqGdSiKglXfhq8xjLu/f44RLJEjkJ/ZqnYF+51O0q3revnk1atpCBjVHMEpgaDSTHYaRgCyhHQyN0mimCCUm5MxqNhsYRbD7UYTMJHKy3i+phFY3wZFCQSFTBnDr/Pz54e5bfswU/Ua6XKUMTZxIllPS5PAm52keGieF3voEJ5Vp+gp8dUR0UYpiiAFo4vEZG5RJ7jq99NhwLffsZlPXb0KRVEQtk3x2DFmGtqr8fxErkzE65RJGgFWB59iw2Xt+EJuKBfkvQ2fPjTUHvFQtgTTmdrYuukAQ7TFR3xieSCoDG6phFBAMoKKwuxCK1pFfnX4V1zWeRntAXl9hl93QkPzgCAlgWRW8aC6BB6nc3q5PoLy+Bhl3Y+v3r/kz2vMVyfl32PHQdFocvZhx6rauP58gDZ8LspFC9uyq5IavpAEnSw2/OZDkByh6DXw4wdNr+YG/7vtTKuGXvWSvPv/sJUdnSFj3kQuKyW9hEqy+GRaxvdSyXrK7ZfjtuC3D3+LrBmjaVbeJHe3ZAR7R+UGX3eKiqGKBYylk8WzzmYJOSVvZ8wIstOUPfI1maLJcWf4y4pGZ9HqPimBjPTQfBRIWgYZJ7beVGEgFbp9918w+ePPUXIFqJ/eRfxnt+LulV59cTQGdX1ywlXn+bDnl9XQUHlqClQVV0O9nIebj0NyBM02efWKV6NlJqulkS/TZLiiL7eRwcQge8ZmMLUx1tVLyYKiqRHs65CdzvrSjMA/T8CvAgQeQ4Lp1et6aAwaeHQNLVCZUrZ8OGGPc/+6l5jVXLFKU9l4dpwDswcACOYh7pk7PIQQxPIxvB4DVcBkokDgkksYePIJjK7W6j1Np4rMlMp85o49DDQF+cR7N+BWsjx+YDPpWIG1F0pvu3BAvo8wTYpHj2KsXGIGbsW80WrCODaeJTmVJ7JAG0oN+HEVcly9vqWa2yqPjSNyOfLtXYzG5wFBZW8YIc7z38bFNzggVKm+OcMcAVCTMAYoOWHBuhY/6Zn8slPNKowgOG8MZ8AtgWCh3AfAvYP3Ei/Gefuat1efM3wuCmUDkZmq6jEVU3I/TOBHdQm0YgHNpdaWj47vhu+/EtKT5KfioKh4684wANLllLpFOom0SCYs5xovbW6PdGpKBYtcUq7hSoI8p6hw4C7Y8gHybhUvPrjxUdhy45ldy3/QzgQIngXuUBQlryhKSlGUtKIoy0/b+F9sRUcawPDPeYB2FQikVz+cGqbF38Jk0sLul9On3MdG2RPfRktMHkJuJzS0byxFvd9Nc2h5j7JifrdrSSCYcdrq68MBeXgXzpARZKaxfbJkM1M0OT6TpTXsmetungcEzUE3XkokyjpPnpQ18KvbnQamCiOIDTI41oCCTWjvA5RHR2n86EdQ/T6KCZdkBAB9l8P0QQyPKpPFU1NyqImmyfezy7JTNiGZVUV+17YF9TH5+aPxDo4mjpOyTyKwq8Pi8+ky3qA8iJbLEcyX66h4nIZbfofzJSYCdRKcT8UIfr9vgk2dkars8VJWYQRjmTEOxg6iCgkEE/rcdWXLWUp2CZ8hD8B4pkTRtGSfgScsx1XaNlMzORKWxZeuW88v/vR81kVL9HueIpH2Yvhc9F8+gBoOU9gvgaA0NIQoFjFWnQIIzn4nkUtvAGBo/yy2LRaJBGqBQI3cBkDxqJNE7e5jpAIE+TJhrxMGMYIytFg5eJOnLx2tWEV8cWHC2LRtNKerVgin5HUJS83k8UcMXPqcGm3l3i5cD0IIfnbgZ/RH+tnSsqX6vMevY9uqnEboJIyLWRkeGyeAqtvY+cL/396bh8lxl/e+n7e23g7NPe8AACAASURBVGaVNIv2kSzJkrzLwgbssNmA2WwChAuEJ3AgIXkOJDmEQy7cbIRzEi4JJwlJgBMHuBBIYggkQRCw4bBDwFjehDfZshZr10gazdp7/+4fv6rq6mVmumeqZ3pm6vM888z0MjW/mqqut973+y5YMaNSI7j373T4897/zZTbQyzeM7vHD+ibJIDeIXY9dy03/9J2Vq+f3puIBXp2TXlN9tx02ilDoGsD3PKHTFlFEgXXA61uOR8SjWz1L4DnoAvLupRSnUrVK2dtf7yhNE5H2eX0PALDCw2NP8OGjo2MTOVJbduKxONcO9JFvpRjcARKsbhfgPPY6TF2r+uacdSjR3Xao8dFNzTUm3Qg3tOYIchndLjBbdPgGQLfG4CK0JBZzGCIYjhn8c0ntWuZ9DIQ8lP6Tn7sJEczexnonMQupLH6++m89VZiG/vJjFraIwC/WC2WENcjCFQVBzthuh0XmTgDnWs5/dQlVLrISbOIM5Vk8lIaK6nfc8XqK1BKkZnIk3AzeOJu1k+9ymLQhuD8eBZDwHDT+4KGYFVXkrxpTWsIToxMceDEKC+7snZOcJC+RB+mmJyZPMPjFx9np7URQ8EJo3wv5PUiSsbd9iMKzrofbN14TkFugomxHFkDXne99noYP83OhC7Su/zGQWzHIr5rl+8ReCGiGUND17+FrlvfjggcPaDX0TtQGxqq/j/kDulWIvEd2zg7niFXKDE6lQt4BO754YZPGGveI6gxBEWFZYg//3q68NDY+UxNfyvv2FYLxg+ee5DHLz7Om3a9qWp4knuRVR0w/IT+2b3pGhbtEZQyOWzHLGcN5SZRj/47uVIC9n/KvzgnVjVY0bupbAg6euNcc8vGGa8Nnl6Xc9u9A3S73unU+uvhFz+BcjqYtIrEcjOPJJ0vjRiC48AjaqYG40uErHvRj3WW75iKl7Rx8MTi4+PHWe3ou57BnhTxyy/n+lEdix+8VCQ7sM4/uGfHMmycIawQJOWGhqr/jRcms3QnbBzLmHXGrc+UTh2VDtcjyOjQ0JY1gQuAnfTFYs8gHDiX5xm3zYM3t5jcBExd4FJmFSPFDQwN6m33vP71iG0TG0yRHbVRq9xMYTf2Ho/rnOjcuQvTGwKltEfQMcBT+89iOQbPukNvZ3B8K3b3Q6xJ9DGQGiCXLlAqKd8jMMQgYSVI56cXi4cnsqxKxZgqVE4nA50JlLHjFKcxBPc8qrUNrynfdJiGyUBygNOTp3ni4hNcZQ8BcMaeZNSN/V/MaC+r062YNtG9dvQ/qjyToJAuEO+wiVnune74GQbtg9z66iTPeoUOw8V37SL75JOofJ7MwYNgmjh1eupUrNEy6Fwd54I7+araIzBSHTX/h+xTh7AGBhhc14dScGY0w6V0UCOoNgSNewReNXt15lCuWMIxDXr6kyDl7rbVjJ1P072mskbA6yNVLRjfdfAuupwuXrHlFRXP+21QZLVfS6BTNUtcEts1BHksxySfdcXix7/GqYnNfOr85xm+1MvkeZ1OG+9pMDS0aitc8ybYfUdDbw9W6E+N5rBiJt0p/bcmb3onbHke4/lxMrbCnqENRhg0YggOA98Tkfcv9fTRnKsROIFCoOKYZwi6GM+NczFzkQ5ThwPWdseJ7d5F6ug5bl3/UgYvFUn3l3vCjGUKdNZpVlaPVMyipHSHxyAXJnKs9vLYGzUEbkMqy+0CeezCJOOZAlvXBIrL7KTfwdDTAUbyjn/yeXOLyU3C6AkOZ7VbvX3DU6z7sw+z+m3/BYBYj6KUMyhMuHdN7nD5WEwbtPTFCawBzxAEvJmLh7VhKOYoptby9APDbLmmjztu2YLpCGvHLsOIneVKdy5zelx/6II9XRJWYsb0Ua8quHo6GWhDMGXGpvUI7n7kNDsHOxlaM7sQOJga5ImLT3B68jSXm9pwjCXxx3FedIfDdCb137eUcHrUvQi6rajzkyOYeUVvb+BOd/w0InD5czcTd/c7vnsXKpcje+QI2YNP4mwZ8ofGzERPv774p7qdmnYIRkeHbp1dLIdAsk89RWzbNr91+uHzE0zlirUegXcHPnZKe6xOA8Ip2iuo1ggKRYVlCpZj0rU6zrlj42Qm8xU3R4V8kYlLWb/oyqPTdi+QVYLx4UuH2TOwpyblOu41RuzcqVtvANl0CcfI8qevvQZxDFSugO0YZa3i4X9mNHYFpZLBA5lfIWfpvxmv6jM0LSLwi5+Ay6YfdBOk7BEUmRrLkupy/P3wkiQuZS6RtcCaoTFeGDRiCI4A3wYclnj6aHZCn5ix7nJky5vXa3Z388y4jmvbSod+BrvjxHftojQxwQc2/QaD4xNMrNaGIFsokiuU6Iw3Zgj82HZVCun5iSxrPM0i0dNY1pDr6loDWsM4cELvw3ShIU8rmCLGK67TxiOXd9ftGoKnM89ljXOMrtF76b799nKzq5T2orJPutkXrkfg1WJkpwrlYjLPIzBj2hCMaxHzxKX1ZCbzbH/WAIZpMLi1m7Xj2jPwZgOnJ9y7r0CXx4SVqAkNJd0+7ZO5om8IvEKjao9gwoyRH6sVi8+NZ9h/bITbZgkLeaztWMuhSzqUMlTS3uF4Ujg8qkNbZ6e0d9GV0H9fewSuIYjpc+3o8TNYCGv7Ahes8bMgBqTK7Tniu3R7kezjj+uMoZmE4gDdriHoGay9UBspVzif0ueBKpXIHj5MbNs2P57/6Cl9nLuTAY0AKkNDDYSFPNb1xOtqBLZZ7hx79MB5PvWeH/Kp9/yQM4ddQf1CBlRl6ihAyqkcSeqRK+XqTvKLpdw2KB3b/M9LLivErCxvvGETZly/blmiNYLRk3D4e+QGdR+jw5mrmUrp2pjEDAWH8yHmGoJsOs/kaI5kt+NrY955P5IdIWuDmZ25eeJ8aaSy+I/rfTWycRG5TUQOisghEXlfndc3i8i3ReSAiHxPRDbMZScaJTuhP5yxwDALXyzu6uKZUW0ISrmAIdit71jzP/g+tioytlqfHOPuMJDOeGN3CymnfCcb5MLkHDyCc0+AnSTRr8MJB9zsF69pF6DHVfqhIf19ijivv2ETlmOQy7uHPjfB+aPDnMtvZ+eWC3D2USiWT7qYqYupvGZ0viFwqy3zVrI2NLT2atcQ6N89dLSHWNJi0y59EV2/vZdVU+twCgmu8D0CtwVytUdQlT4aswwsQ3yPYE2Hw0Ruwg8lefR1xEjbMXJjtbnn33z0LErBy66sHQ9ZD08wBljn9nbKpGwOX9KG4DvHv8P6jvX0pPTdf7djcsYPDennjhzT2sxQMNV4/DSk+sEs30w4W7Yg8TiTP/sZ+VOnZhaKA/QM6H2vDguBzhoCfME4f+IEKpMhtn0ba7sTiOjCSCAQGnLX6c1bHjvRUFjIo151ca6gfEPwwjfv5KW/diU3vW4b+VyRpx/UTRTHzuvPaLUh8DyCao0gV8zhGLUX6rhrCDLxzTqslb5ENmcSc9vLGHH9O5apdNbQgS8AityqawAoYXJy/S9gGgUspzUCbYVYPJYj1R3zz+EKj8AByeSm3U4YNFJZ/F0R+U71VwO/ZwIfA14G7AbeKCLVvRM+AvyDUupq4IPAh5rfhcbJTeURinz2xD7+9sG/1SMHL40iiQS/+aVH+LNv/wiA9FQP3QmbpGMR27EdLIvxb7pdHnv0Ra9sCBoPDUHtlLKLkzlWpZo0BMOPQ9/lpGL6954ensCxDF+kA3Q/GM8jcA3B//ilG9i9rktXNGYViAm5SR5/xMAgz+U3bYZitpx7nc9g5U5gdiXKHoHpGQK34VzQEHhC9/rrddaQG1c+dULYcHkvpq1Pt7XbehCEwfEtfupoxvUIEgGPIGknazwCEfGF9/MTOd8jSNmpCmFuTWeMtBUjN1HrEdz9yBm2rkmxY6BsOM/++Z9z/u//vu6/2zMEA8kBYq64v2pwiMOjhzk1cYqfnf4Zd1x2B7ab5TKQinOqKjR09rQ+rusGgh7BmZquo2KaxC7fwfjd9wAQm0koDuB5BPUMgdmh99MzBFlXKI5t24ZjGQx0xv3miX5oyJvtUOERNGcIRqbyFUWUhVIJy9THKNHpsO36fq69dRMDQ12celLfRJSLyarEYqdyNrVHvpjHMWsNgXeRzbh6H8MHyeYtYjF9A2PE9XlsGiVdUPbIl2Hjs8lJF7Zj0DvyOEUjTqIz0VAyyFxw4haINxs8S7LbwTRMElbCD4GNZEfI2ILkC6jC9PNM5ksjpu6/A+91v/4AeIjGms3dABxSSh1WSuWAu4BqFWU34BmV79Z5PVSy6SKOpPmnp77A3x34O/7+539PcWyMdCzF1w6c5vTUCTqt1QyPKda6aVyG4xC77DIyBw4AcLHbzdRp0iOoN5OgUCwxMpVjtVelGu/RhuCpb8EX3wI//1L9jZ17Avp2YRpC0jFRCrasTmEagRPWSelUzmLeDw1tGtQhiHjKZvj4BCW7i0I6zcFj/WzteoT4Ft0jh9MP6+8jRwFFfGhdjUcQ9wyBnSzPZkiPgGHpVhSlApy4j6liN2MjBX8aHMDAli4wFM+WF/mNtNLuBTY+i0bg/S9PXcqQK5bo64gxkZvw7xg9+tyislJV07mfnxjlR4fOc8e168s59efOcfEzn2XyRz+u++/2DMGu3p1M7b8Po6uLjX3bODx6mK88/RUUitu33e4bur6kzZkqQ3BpRF/AKsIMdQwB6PCQp23EG/QIBoa6WLe9h027V9e85oeG3G16w4cct43z+t4ERy/o/3NPok5oqJDV8y+aCA31u0V6XvU26Mpi26y95Kzf0cvw8QlymQKjw2ks2/ALqzz8rKEqQ5Ar5bCN2s+gHTMxDCFruP+P4cfJFmJ4couR1J9vU0o6NDRyFDbsJZcpYBlFNh7/LgDxBlLD54oYghMzmbqUJZ8p+vscPO9HMjo0BOi+Xy2ikdDQ/YGvHyulfgd4QQPbXo/OOPI44T4X5GHgNe7Pvwh0ikjtmRwSuWwJy8pwPn2evkQff/Pg3/D44Z9zumTzmuvW09k5yuRkD4eHJxgMtMeN79aOTN6wuJDQH+xxdxB4vclW9UjWmVI2MpVHqcCYRC/V8B9fB4/9uy4oqSY9olMy+7U+4HkaW6pFT088y0+VawVs/Z69Lxti+Jlxfjb+eo4c7yJbiLF7/WFYvU3/nmcI3GZzse3byT79tBYbTQelIGa7Y/6sRLkFdXoEEr3lmoNjP+Es1wIwGDAEtmMysLmbK/J7y7s1nsdyDGynnDuetGo9Ar3PJkcv6H3q64zVTCcDfSGasuKoqUpD8uG7n2BVyuFtNw/5z43t2wfFIipX3/32DMHzHzeY/MEPWfMbv8HW7q2cmjjFvz31b9w4eCPrO3QfGYA1CadGIyhMuhpIUHgcPz2NIdDnm9HVhTXYmI4RT9n84nv20DNQLzSk/zdeJ9bsU09hrVvrewrrA55k3fRRtxNmMx5BzPWOcsVyckTeTR+tZt22HlRJcebpUcbOp+nqq70LT1gJDDHqh4bqeAS6TYZFtpjU5/SZR8gWy10FvFnAFgXyuYIWxZOryKWLWIU0a6YO09OfoKN3+hqTMHCSlp9Gm3KLyZJW0jcE59PnKcb0MSlN1U+3DYNGQkOrAl9rROSlwOyltI3x34Hni8iDwPOBk0CNPC4i7xCR/SKyf3h4uPrlhslmoWjpD+iHfuFD7O1/NpcuHKLQYfOnr7kKJ36RzNQqnh6e9D0CKAt4w119pN3VjTUZGuqoExq64PYZWu2JxdtugV23w2s/BX27oFjnwnROC1/06TV5WUsVQjH44yrJBQyBK7htf9YAu29ex/0jL+GnB3fTaV1gw8aSnho2eJWurgS//XTsqj2oTIb0Aw9w4kOf5Omv9iOj5wBFIdZZHiCevqQNQa/bVfLCU5xR12CYQt/Gygv1wJYuho+No9y2A+mJXI0oV08jAG38nnHvYPs6YxXTyTxWpRwyVgwjXfYIfvTUeX506DzvfOE235NTSnHpy7p/y3SGYKh7iF/pfxVXfO4nJK67jlVv+RW29GxBoTg9eZo7tmlH1vMIeuM25yeyZAtFsByKZpy4mxjjG4JiXqcBd9bqFPHd+tjGL788lLBEjUdw6FDFUBdPMAY9nxioNAQH7gIEhm5q+G86bgjIqyYG7QHX8wgGL+vGMIRTT13ShqBKHwA3JGin6noE9QwB6BTSzFRRt344/lOyqsMPGXnJEKYqlAvKkqvJZQoYU6Okrt/Dq9+zhxe+eWfD+zwXYgmbi24abdLtaZS0k/55f3TsKJ1dWrNU6foFeGHQSGjImztwP/AT4D3A2xv4vZPAxsDjDe5zPkqpU24fo+uA33Ofq0mbUUrdqZTaq5Ta29fXV/1yw2RzJhkriyBcteYqfmnT/0MqLRR6xymoNGP5EXasHgJgsKt8MnofzIs9/WTcVDPPI+hqVCyuM6XM6zPki8X9u+D/+pxu7uYk6xuCYZ0KR58OGXTEPUNQNZegnkfglO8Wb379dlbFhxnLdLIr/k2kx3XWBq+GMwe0EXjonyDVT+wKfVd/7C1vZeKnD1PImpz56OdJSppTa2/ixEFXJE6P6PBW5yC4otfZ3DbWbOjACtzpg26TXMiXe6xkJspVxR71NALQRtW70+zriDGZn6xp0WuZBiSTWNkMqlSiVFJ8+O4nWN+T4M3P3uS/L/3gg+SOHAHbrjEEuePHGbnrLsa/+CVe/4XTSDbP2j/5E8Q02dqts5467A5u3Xyr/puuIehxz4lzY3rf0mYHMWWCBNqbTOhMo3oeQWzHDl3DsSuci5CRKmsEKpcj9/TT/mhSwE8hNQ0pp0MbpvYgJ8/D/Z+BHS/VefIN4l3w81UegW3WGjY7ZtK3uZNTT11itE4xmUfCTJAtlvsXlVSJQqlQVywGnUKancpD/26Kp5/QfcZcPc5IeYYgTyGvUEoguZrseBpj4hKp5zybVHesJkQVNk7C9Ac8eR5Byk75huDI6BF6e/Q5UlpMQ+DNHXC/b1dKvUQp9aMGtn0fsF1EtoiIgx5msy/4BtfD8NbwfuDTze5AM+RyFuN2hqHuIZJ2kvNjQmrK4bR5ia88/RUA3njddXQnbK5cX87uiO3cBYbByKpB3xB4d/YNewRe1lAgH9hvelYvPc2M6dhsNcMH9Qe0W9tYLxupxiMIGgLvrtouv8d2TG7b8R/s6NrPFYl7oNtN2Fp7jXaTP3GT7i/z6o8T27YNs6eH5N69bP3MX9B/7SiTDzzBVQ/9LY7k2ffRh7h332FKU65HIAKrtlJSBmcn1lboAx7d/fric8ntQpkezxOv5xHU0Qi8fQb8OoKUPVPaZJpvPnaWn58c5XdevKNc0AVc+vKXMZJJOm66qcYQDH/0rznzgT/mzAf+mKl776X/ve8ltlV7O0NdQziGw21bbvMzPbzQULe7Pi88NKaSJETXcBheaMRNra3nERixGJs++xnW/Pqv17w2F4J9lzJPPIHK50lcfY3/uhca6k7YlR5IrBMe+ZLWB25sbi2O+7+oDA2VtIGuw7ptPZw5PEohW6zrEQA4plNhCPIlfTNmm/VvxmIpW3f37N9JtuSmQ3e42p9buGW62ysoB5JryF6awipmSN5wQ91thk2w75nvEbihoWwxy8mJk6zp1TdppanWGYJZr2Ii8kvA3UqpcRH5fWAP8D+VUg/M9HtKqYKIvAu4B51a/Wml1KMi8kFgv1JqH1pr+JCIKOAHwDvntzszky04XDSn/FGQJ0fSXJUtUuxI8NEHPgrA9et28MAf7KgQXs2OFBvvvJP990+QznkegTYEHQ1nDdVqBBe9PkOpOoKUaUOhjjh0TmcMeT1HfI+gWiOoCA1NaMNiVq61tzvHi5N/ik7cdg3BBjdu378Tfukz0DuEAWz/wffBtpGLh+ndNsVE4Xp4+Gmen/wJT+95G/u/fpTTyV/mxc96jBTAqi1cODlJoWQxuLW2I4lXAHXpXJoNO3VoaNW6yn1IWkkyhQwlVcKQ8gXE865sU+hO2EzkJ+oO7XA63TvhyUm+8tBJ+jtjvPq6skxVmpxk7Bt30/Xyl0GhSClfaQhKk5PEtm9j06c/jdh2OQSGvih9/uWfZ2Nn2en1QkNdjkmsBAe/d4IrBjs5m4vhiEMxWaUPAHSUZz1X7PuePXWfnwvB0FD6Ia3/JK4tGwLPI/BTRz1inXDhjA6tbH1hU3/T9wgKlYYg6dT/vKzb0cOD39Lp29VVxf5yzBi5gJfs/TydRxBLWlw8NQl9u8gp/T9w3K4CXkqtNgQd5FUcO7maXHacZCFdv+13C/BqCQxT/JTXpJ3kzOQZjo0do6RK9K/WHmwpvYgaAfAHrhG4GbgV+BTwiUY2rpT6ulJqh1LqMqXUn7jP/aFrBFBKfcn1MnYopX5VKVXnFjg8MsU4o9akPwHs1Pkx4sU8u4ee5YcgNnZurMy+cem4+SZKPatIB0JDcduoG/Osh2UaxCyjJjRkGvpiVvsL03kET+gQkktv0mZNR6x2Qpp3h5yf1MbAqRURtWbgBq89j6B/F/zGj+Ft90DvkP9WcRx9t2g6iMDaX7sNc/VqUpdt5pa37OaWt+zibHoTX/jpbZx66hKs2srZvA5fDW6p9Qg6emJYtqGHrgOZ8XxFDQFoj0ChyFQZxA7XqPa52Vb1NAKAmDs8Jj06xvefHObFuwcqju3Ej3+Mmpqi5447EMdB5SqLdlQ2iySTWH19FUbAY9fqXRUitRcaSlkme7MWY/ee51vfP8aR0gBG0azcvxk8grAR20ZiMYoTE6QfeghrcBB7oGyA1vfoc6M7WccQgO542aRWUc8jKJSUnz5azdrLuvHmrlRXFfvbNJ36hmAajSCeLHsEmZL+PMS69PEy3Al4Rt4dV6likFxNPi9YFPzeY63GG/ua7HJ8b8zzhL3K9XVrtBe62BqBF8t4BXCnUuo/0FXGS4pSoUhBJciaad8QXDyjm3RdvfW59CX66Ev0zTgdLG6bAUNQaDh11KN6StmFySy9SaccLghiOrUawdRFHVvuK8eOf+uW7XzyLXupwZsr64nFTu2FsqJdQLDP/OCVfppoDW4zOLsrxrZv3sOad2knbucNfbxu1XuJOSX+4+MHuGTu4EzuchKJUkU7YQ8xhO7+BKNnp8hnixTypYoaAsA/FtM1nuvrjJEpZiioQk3WEEDCrSB/+OBJpnJFXry78u47f1I3Uovt2OEagsr/t8rlMOzGT3XPIzCKcLVbuf3zR89z2Bwil3eIB69v42d0HUdqTcPbnw9GRweliUnSDz9M4tprK15LOCarU06tRxDv0llP17yx6b/nuDdIuUJ11lD9S04saetxmEBXnfNFb7N+aGhasThl6x5WHevJmvr/HHPbzUu8AzFLGDl9buVJoGLdFJSJk7BaVjtQs8ZE2RB4pOwUk/lJjoweQRDfELRSI2gkrnFSRP4OeDHwYRGJ0ZgBaStybgVxzkqzc5W+kI4P6x4xsd7VfGjPhxjJjEz7+wAJ2ySTCxqCxsJCHsmqmQTnJ3L19QHQF+JqQ+CWygc9gg29STb0Tne3j+43lJ8sawYV73EvnvHu8t3fbFjuegtZP+QAQGaU1fZxXvXC0/zL3V18/bsbKeQtBrbFp/1Q9fQnuXBq0q8qru7p4ldZFqZYTTmrOGgIvMKb6joCgI5ebQh+eOAZOmL9POeyyszkwtmzSDyO0dWF2DYqX+kRlPI5zI7Gu6l4Q0eOHDhPR0nv84UTE+y48loy57pYI4Eq57FTunusYdbbVOgYqRS5Y8fInzxJ75vfXPP6m27cxMbq8+h5v6tvImJ1biJmoSwWl/sI5YslHGv6C+xl1/VjGFKTWOAxnUdQr44AApW7mSK5jm0wDLFedz6AncSwFYY3nMbpwzv8Tmrh7nO9fkPeHAIoawRHRo+wrmMdiU695kXVCIDXA7cBH1FKXRKRtejisiWFN6+0M6aHQGfyReSi7rRprVrFjWtvnHUbCSfgEWSb9whSTuWUsgsT2XLGUDVmDApVhuBcZcbQjPhi8aTrEdRpFuY95+kDjeD1dSlWha3c9hJdfZ289NeuZN9HH0KVBrhi1/Tb7h5IcuTh80yNue0lOmvFYph+XOWajnLDuVSd/etare/+Hjt0muffekWFSAx6OLk10I+ITOMR5BGn8YuCGIJhCeeOjpG3hNNSpDsL2696DofvO05cnS+/+dSDMHBFw9ueL0ZHivT99wOQuOaamtff85I651QT6aLVeKGhYNZQoVia1iMA2PvyIfa+fGj6bZoOo/ly5f2soSGv39BkgWxC31V7YjFOEsNSGBl9/uSdNf4g+XhX/dBUK/CMVSowDjNpJymUCjw58iRD3UMYCb0elVncrKEp4CvApIhsAmzgiZatqEWMntd3/wOuSHTyUpqhMR2nDabSzUSiIjSUp6tJj6Cjam7xhclcfaEYtFhcfbEdPqjv4rs31v+dIBVi8dQ0hsB9TwPjB8vr8jyCKiPltZdI9LLh8l5uep1btTrDhKae/iSlkuLsUe2tVWsE1Q24PIIegVdgVM8j6HaH09i5DC+5olaUzZ89hz2gU/PEsXVRWaBDp8rlmjIEAJZ7AUyvj3PKKLK6JOzZfhkFYsRzbvb01EWdBuz1r18AzFSH9nhs20+HbiV2nTqCfHF6jaARHMMhVwp4BKXZxWKAzFSe7MZbK57D1jMJjLQ+9wr2GnJu8kasp7EOq2HgTSmr9ggADo8eZkvXFt8QLGpoSER+E/gj4CzgHVUFXN2yVbWA/QePAqvodWf1nhxJs3X0FKWeXqw1jcVp47ZJJq9z0sczBQZnmGxVj1TM4tJU+US+GGxBXU09sfjCIV3920j8MugR5Cfri5JeaKi7CY/AMLQxqM5o8hrOJfT/95oXbeSy6/pmrMzscVNIvc6T04aGqorKfLG4M8Z4Xus89TSCVf29lICOYo4XXN5f83rhzBkSbnaOd8FXuRzi3YFls00bAtM2wwgXQwAAIABJREFUIFMkubObc8OjmAhjz7jtJTLusJ7j9+rvm57b1LbngxfGi+/ciRFvbbUsBDSCqvRRp8HkinpMmzU0i0dw4vERjh8uYlpGeeqZk8SwSxhT49AFebuX9Fk3VLx64eZu1fMIvFTokiqxtWerPgcta9FDQ78NXK6UutCyVSwAxtEngWeTTOsL5ImRNENjp7G3N9bUC7QhAMgWSoxn8k1rBB0xixMjbpZMvsh4tsDq6eKR9cTi3KTfu2ZWTEeLkfm0/r26GoEXGmrCIwAdHqpem28Iyh7AbOX5XjuEM09rQ9CoWOylIHp9hoC6WUN9fb2cBS7vrM3MUkpROHcO252lYAQMAZ4hyOWQWHOGwIlb9A6myG/o5JypL4InntD/m/jkIe1JPfMTMGxYH16K6Gx4bSbqhYVagZ81VGgsa6ihbVZpBLOKxe5F9t59hzEtg103BW6GXI9Apsa0ITB74Ky+xCX6V815jc3SuUp/RoKtQbx53QBbunRIy0gkFl0sPg40OFG9fenbkMT6z29wZpW++z91YZxbx87QufuWhreRcLNCMvninLKG9JQyHXrwawg6psvOqXOxLWQaNwQi+kI/Y2jIfa6RUFPF2pxabyVdDg01SrzDJpa0mBjJYpiCE6+M4QfFYtBjCWNmjN3rLuOGoVVct6mXn5yrnU7m0bOqkyPxFDfatcNpiiMjqHzeb5gX9Ag8VC7nG4hGefHbryDRaTMqiuuvWIN5/5RfeR3nou7seuwnsO66cmbXAuDlzVdnDLWKupXFhfotJhqlOmtoNrG4pz/JjbdvpXN1nC1Xr6kc2GMndGhoyhWLzW4K50YAg8Rgy9qd1a5xIMmv/OlzfYMA5dAQwJZu1xDE4y2tI2jEEHgTyv4D8I+CUuovWraqFvDcN7+TA/9rL6c6bgZg/OkjxEoFEk2U8SfcbIaJbIGpXLFpjyAVKw+w99tLTOsRxHQHz1KpPLC6mCtn7TSCN65yOrE44d75BOoFGsKMTSsWN2yo0P1juvuTnDs6RqLDrskuqtYI/ug//4hOu5N/fMU/8sXf0ANExk+408nqhIYMw6D/pmeTPfRozWuFs7rFgzUwsyGQJtJHQXcBBegCPvnWG/jS2f2cPaLj0HFjHE7cp4Xi5/zXprY7X7zQULCQrJXUE4vzpfkZgpgZq9QIZgkNiSHTi89uaEjcUbUFo5PihTGgh+T62jBiKwkaASif911OF6vi+jMqyQRqkUNDz7hfDkuwfsBDbJvRrTtZ/8wTOmPosDu8u8E2v1AODQ27rSEa7TzqkXIsJnN6bvF5r+HcdB6BVzZfzILh3jkWMn4ef0N4Mwny0xiCoV+AN/0LbGyynL6uRzACTmd53Q3S05/g3NGxislkHp6LPJWfolAqcHzsuO7fXsz6U6m8JmQpq77Al9y7l4lvf9sVhssf8LxrCLznxHab0AVSSEv55rKG6rF6Q0fZEFhZeOAfdHvwTc+Z13abpfMFL6A0PoG9vskw4BzxuoxWNp2r3320URyjKn10FrF4RtzQEFPjQIm8pMhfGgF6iC+gR1APTyPY0r3FvzkyEsnFDQ1508hEpMN9XDvpY4lgX7eHoS98lkcPniB14gglY/bB4EESriHwmok12nDOw5tbnM4XfY9gxjoC0BdcL4RQyJbTNxvBSen5BqVCfY3AMGDHS5rYA29t8VpDkLnUVFjIw4uNVmcMQWX66MmJkxRUARQ8duExruu/DtCjC5NWEnOafPzkXl1sl75/P/bLX+4/XzjjegSDXtaQPg4l1yNQpRKEYAj6NpQ9lfjgBjjldmbZOHu6cpgkn/Usks961oL9PRHBMQ1ybh2BUopCSYUSGlJKISKzegQzb0ynj6psHkuy5EmSGdNtP5x6lf4LiKeNeY0NofUaQSNtqK9020Q/CjwqIveLyMIlQIfIhuffhIHiyPf+k77h40wObGgqBuyFhobHdcZM82Kx12+oyMVZPQJ3XUGdoJCdvuK3HnYSJvWIxLqVxXOlnpCdHoFE893JvZ5D1UIx6NivbdhMFaY4NnbMf/7hcw/7P0/kJ+qGhTziu3ZiJJNM7a+cpVQ4dxYMw88YK4eG8u53vX/SwOD4mVi9QWsXsaSFsdb92PTtguTCCZKLhWMZfmjIKyyr13204e25n4lCSYdX52UI7CSmXQIFNlkKKkZuMoulcvUr/RcQL/Gh2hAsdouJO4HfUUptVkptRrehrj/Tr81Z/9y9FAyTCz/5GVtGT1Pc0nhbXSh7BMPj+iLevFhcbkX98IlRuuIWqWmqKP0Lfo0haCI05CR1G2Hv57Col9rqDaVpkpk8AnBbUefTft+V3lgvDw+XDcGF9AW6nOnT/cSySOzZw9R9lYYgf/Ys1urViKWPiacFeAbANwTO/O4OV69PgbipjANX6ScXsH5gMbFN8UNDhZL+Pl330UbwwoGeYOyFhqYTi2fESRHr0QbFLOXIlxw9lMaoGYey4KxOrOavXvBXvG7H6/znJLnIHgGQUkp913uglPoesHAVFyFixOOcXbeVoYMP0J++hLOjcX0AyhrBOd8QNC8WAzxxZpy7HznDG27YNH1PEzMQGvIoZpsXiyfdQT71NIK5Uq9FdvqSnkXQJN39CQxTSPXWv/P2GnAdGztGT6yHm9bfxEPDD6GUYjQ7yr2n7+WGwZk1juTevWSfeorCSLmFSOHsOV8ohlqxuGwI5hcacuIW3X0JXSOxzs3Y2Tz3it2lRIVHUPA8gvmFhqBsAOblEZgOyb4iiMIo5siXbPK5EnZzH+mWccvmWyo83VZrBI0clcMi8gciMuR+/T46k2hJkt99NZsmdLik98rdTf2uFxryDEGjLag9PHH5b77zFAL8l5uGpn+zLxa7HkGp5GYNNSMWB4bb1OnXP2esabKG5uAROHGL1/3fe7nyefVFTG9c5bGxY2zu2sw1fddwPn2eU5On+Oaxb5Ir5bj9sttn/BvJG3RsPP1AuXN64ezZKkPgicWuIcjq/Ws2fbQeN7xyC9fcslHrAm/6F7jyNbP/0jLANg3fI8i7HsG8QkOuKOwZgNnqCGZEBCOVJL4qj5HLk08XyBsxnFh7tlFbdI0AeBvQB/wr8GVgjfvckqT3OWWRbnDPVU39ri8Wz1Ej8DyCR0+Ncfu161jbPUMeuVXlEXgX3mY0gmA4KPTQUCBkpdScDQFA36ZOv9S+Gs8jODp61DcEoHWCrz39NbZ2b/W7yU5H/MorkVisIjyUP3u2ohVztUdQCkkjANhxwyDb9w7o2o4dL1mwRnOLjRaLPY3AMwQheATFSo9gTqEhADtJqi8LuRz58TRFK45T3Yq7TTAStfO3Q93+bG9QSo0opX5LKbVHKXW9Uuq/KaVmbtPZxlz+opsoIozHUiTW1h8KMh3zzhoK6AHveN4s+oTf3M1NZ/QMQjNZQ0EvINTQkFPpEeSndEpkovnQ0GwkrAQX0xc5lz7Hlu4tbO/dTsJK8LXDX+OBcw/wqsteNWvLYMNxSFxzjS8Yl9JpSmNjFR6BURMa0v/3ZusIIsoEQ0MFVyyeV/qoawh8jaCYwzKsiqFFTWEnSPbnMAs5shdHKZjxclO6NkNcj0ApNfub50AjWUPfEpGewONeEbmnJatZAHoHVnGsf4jTa7c23XPcCw1dmMxhm0LMau4E9DyC5+3oY+fgLP1MPC3Au+AW5uARBCtXww4NBTWCOu0lwiJpJzl0Sdd8bO7ajGVYXLXmKn548ocIwiu2vKKx7ezdS+axxyiMjASKycp1BdV1BGFpBCuZitBQCB6BJxb7HkEpN7caAg8nRaIvh1nKknM9glh3iJ5ziBiJJCjlhyxD334D71kTHCjvegMNld6JyG0iclBEDonI++q8vklEvisiD4rIARF5eb3thM2av/prNn7kz5r+Pe/CXywpOuO1lbCzMdAV5403bOL9L2ugmtnv8ukZArfJ25xDQyF7BAtkCBJWwo8FD3UNAfjhoRsGb2BtR2MTvjpf8mIolRj7xjfIn9Ua0UyhIU8riAzB3LFN8dNGy+mj8wgNGbVi8Zz0AX+BSUxb4cQURUwKZmJBO482Q6s7kDZyVEpu+2kARGQz/nzD6RERE/gY8DJgN/BGEakO5v4+8EWl1HXo4fYfb3Th8+HGPdvYc+VQ078nIn54qNmqYgDTED70mqvYtbaB7obVdQTe96bE4haFhqx4ZWjI6zM0h6yh2fDK7QXx5wNf26+zb1512asa3k58505il1/O6Fe+omsIoG7WkF9Q5t55zTd9dCXjWLUawXybzkE5NJQv5efpEbgD7bstCmZcewTtqhEk3UaILdIJGjEEvwf8SEQ+JyKfRw+Zf38Dv3cDcEgpdVgplQPuAu6oeo9Ct2UB6AZONbbsxcMLDzUrFDdNtVg8F48gGBoK1RBUicUt9ggA1nWsI+4awZvX38xfv/CveeXWVza1re477iDz8AEmf/pTAL/hHEyfPmqEIBavVIKhoUJp/gVlNaGhYg67yZYmlQt0W3OvTlJ0z7OKxnRthNcavZTJzPLOudGIWHw3sAf4Avpifr1SqhGNYD26c6nHCfe5IB8A3iwiJ4CvA79Zb0Mi8g4R2S8i+4eHhxv4060j7oaHWm4IwhCLvYu/mGUPI5S1VYnFGbc5bRMN5xrFK7ff3LXZf84QgxdueuG0bSWmo+uVrwDDYHTfVzE6OjA7ysaxurK4FGkE8yZWUVncmqyheYWGXI8gubZ8AzNd9tpiYyT0Wls1k6Cho6KUOq+U+pr7dX7232iYNwKfUUptAF4OfE6kNgVAKXWnUmqvUmpvX19fiH++eeK+R9BiFzIUsdjVCJyOxobZNLw2rzOqW4WZmyz/nZDxPAJPH5gPdn8/qZtugny+IiwErSsoW8nUE4tnGlU5GzWGYL5isfv5cHrKLczteHum9nqhoVa1om5l9cRJINjofoP7XJC3A18EUEr9BIij6xTaFk8jaL1HMJ1Y3GSLieD3sKgOW+U9QxC+0OZpBEGPYD5036Gjk8FOpABiGGBZtemjkSGYM7ZZ22topuH1s1GjERTz8/QI9PlqpcrnbaxNQ0P+3OJFFIvnyn3AdhHZIiIOWgzeV/WeZ4BbAERkF9oQLG7sZxZ8QzAHsbgpqsVi3yNossUEhH+Brh5gn5vU4admvJUG8T2C7qFQttd5y4swOjux19eO5xTbLqeP+mJxZAjmiq4j0AagEIJH4GkEXhZZrpSbezEZ+J8PO1X2CNpWI4i3Nmto2r0WkRnbIyqlLs7yekFE3gXcA5jAp5VSj4rIB4H9Sql9uA3sROTdaOH4rapVFRMhkViw0NB0lcVNtpgIfg8Lzxh5grE3AS3M8JPLjt4drO9Yz65V4QxcNxIJhv75nzB7a4VtcZwoNBQitmmQLVR6BGFmDeWKOf9GYW4L1L9rdXThDWFs+9BQizSCmczf/eiLc70jp4BZW3cqpb6OFoGDz/1h4OfHgCXVgSu+YKGhacTipuoIXE8g7Nh9jUcw0ZKwEMBVfVdx92vvDnWbsW3b6j4vjl1TRxBGr6GVSj2xeD7D6z09IGgIumPzSFC4/OWQHsHu6sXLa2lfsbi1GsG0e62U2tKSv7jEKWsELfYITAvEqBWLm2oxsUAaQW4yfK9jETDsyCMIE11QFl4bas8jyLs3R/OuIxjYDS/9E6xDfr3sitUIGtprEekFtqNj+HpBSv2gJStqcxZMLIbKCt7CXEJDrtsc9t16jVg81TKPYCERx/E9gVIup0NdVnteGJYClVlD8+81ZIiBZVgVHsG86gi8dQZ6gNmx9gwN+XUE6dbUEcx6lovIrwK/jc76eQh4NvAT4EUtWVGb42kEzbagnhNmLCAWe1lDTdwBeRfnMPsMeeuCSrG4BamjC404TqCyOIfEYk23EYko41gGhZKiVFLl0FCT/bmqCQ6wn3f6qIt38bfjJrLI08mmQwwDs7sbVGn2N8+BRq5mvw08C/ipUuqFIrIT+NOWrGYJ4GkEXQthCIJD4uciFps2GHYLPIJqsXhyWYxerBaLo7DQ/PCKx3LFUijdR6FygP28C8pcLPfmrl3DQh477v1py7bdiHnOKKUyACISU0o9ATQ32msZsWAaAbgeQUAsFgOMJk/WK18LW54X/rqg7KXkJpdHaMi2K2YWR4ZgfnhNGvPFUrmyeJ4egWOWDcG86whcLEevyW5ToXghaGTPT7htqP8d+JaIjADHZvmdZUvCWaAWE6DvvIuBgjIz1nyK5mv+rgXrcr2SYsAjCDv8tAhojSBoCNqzAdlSwfMI8kVV7j46jzoC0KGh4MziMENDTpumji4Es17NlFK/6P74ARH5Lro5XLj5fEuI6zf3cvO2NazpWIBmZBVica4lBVtzwqqqes4vE4/AcSi53R1VLosRDaWZF35oqFAqF5TNo44Ayh6BUio0sdi0DAxD2raYbCFoRCzeFHh4xP0+iK4KXnFcv3kVn//VG2d/YxiYTqVY3Iw+0Ep8sTjgEYSdoroIBDWCUi4XypjKlYxTJzQ0b43AdMiVchRUAYUKxSMAsGJm29YQLASN7Pl/UC4siwNbgIPAFS1cVwRUTgIrZJvLGGolvkeQ0RpGMbdMsobsSCwOEa/ldK5YIl9S2KbMOwvLMRyyxaxfSxCGRgCQ6onRsWrlGv5GQkMVE95FZA/wX1u2oogyQbG4mG0/j6CQDXQeXfqhIaMiaygfGYJ54gRCQ/lCaV59hjxiZox8Me8LxmEZgle/+7q2rSFYCJo+MkqpB4AFio2scCrE4mxzVcWtxAqEhvJuyfsyqCyO0kfDJRgaKrgewXyxTZtsMevXEsyr6VyAZJezog1BIxrB7wQeGughNW0/SWxZUCEWZ9pILK7nESyD0FCwxUQ2i9G59PdpMQmKxfliaV5DaTy8grKwPYKVTiMaQWfg5wJaM/hya5YTUUGFWJxrv9BQMacbzsHyEIuDbahzuajh3DzxPIKcKxbPN2MIyllDnkcQlli80mlEI/jjhVhIRB0qxOIMxBsYer8QeA3xChndghqWhUYgjkMpWEcQpY/Oi2AdQaGoQvEIvMrisMXilc5M8wi+is4WqotS6vaWrCiiTLuKxaDXstxCQ44D+TyqVKKUjzSC+VIhFpfCMQReQZlXVBYZgnCYySP4iPv9Nei6gc+7j98InG3loiJcTLtSLG4XjQDKYStvTOUyEYsBVD4fZQ2FQEUdQaEUiljsh4aK4YrFK52Z5hF8H0BE/pdSam/gpa+KyP6WryzCDQ0FCsraJWsIymGrZZQ+Ghxgr7LZqKBsnngXfp01FE76aI1GEHkEodDIkUmJiD+NTES2AA196kXkNhE5KCKHROR9dV7/SxF5yP16UkQu1dvOisUMpo+2UYsJ0EapkF1mGoG+u1S5XNRrKAQ8jyBbKJErhpM+WpM1FInFodBI1tC7ge+JyGF0dfFm4Ndn+yURMYGPAS8GTgD3icg+dzwlAEqpdwfe/5vAdc0tf5nj3XUr1V4tJqBc4+BnDS0HQxDwCKI6gnnjmIE6gpDSRz0PYNINSUYeQTg0kjV0t4hsB3a6Tz2hlMo2sO0bgENKqcMAInIXcAfw2DTvfyPwRw1sd+VgxgAFpWJ7tZgAVyzO6dCQGO1lpOaI2NoDKKXToFSUPjpPKpvOqXDSR41KQxBG07mImbOGXqSU+o6IvKbqpctEBKXUv86y7fV4E6E1J5imIllENqN7GH1nmtffAbwDYNOmTfXesjzxTvJitv2yhrywVX5Kt6BeBpO8vAt/aUJ7OeK0UShuCRIUi3PFEp32/Ju6eR7AeG5cP45CQ6Ew05F5PvrC/Ko6rylgNkPQDG8AvqSUKtZ7USl1J3AnwN69e6dNaV12eJpAblKPqGtLsXhiWYSFoBwaKhuC6CIzHyrqCErhVRYDTOT1MYpCQ+EwU9aQF6b51eku0LNwEtgYeLzBfa4ebwDeOYe/sbzxTvKsvvtpL7HYgXxai8XLoKoYyhf+YmQIQsETh7NeaCiEecBeKGjC1aYijyAcGjHRR0TkThG5RZrrIXsfsF1EtoiIg77Y76t+kzsDuRf4SRPbXhl4F/7smPu4jUJDVtwVi5fHUBoIegSTFY8j5oaI4JiGHxqa75hKiDyCVtHIkdkJ/B/0HfsREflbEbl5tl9SShWAdwH3AI8DX1RKPSoiHxSRYFXyG4C7lFIrJ+TTKF4oKOMZgjY66S1Hi8X5yWVRVQz1QkOREDlfbFPIux6BHYJHUG0IIrE4HBrJGpoCvgh8UUR6gY8C3wdm7dmqlPo68PWq5/6w6vEHmljvysI7yf3QUBt5BGas7BHEexZ7NaHg9RYqTuj/txEVlM0bxzICTefm7xF4lcQTuQkEwZKVO1UsTBo6MiLyfBH5OHA/ekrZ61u6qghNTWiojS5MwcriZRMactNHo9BQaNhuaCgfUtM5zyOYzE/imM68J55FaBqZR3AUeBDtFbxXKTXZ6kVFuFSLxe2UNeTNShBz+RgCO8oaChvbNMgVvKyhcHoNgU4fjYTi8GjEr7paKTXW8pVE1NLWHkFcN51TpeVjCDyNYDLyCMIi5oWGQhpVGawsjvSB8JipoOx3lVJ/BvzPeu6XUuq3WrmwCOqIxe1kCDyPILeMDIG+sHgaQVRQNn9s0yDvtaG2wqssHs+PsyaxZt7bi9DM5BE87n6/fyEWElGHpSAWg64sXgYYNemj0R3nfPHE4kKxhB3S8HqAQqkQhYZCZKaCsq+63z+7cMuJqKCtQ0OBD+Gy8QgqNYKo19D8sU0hky9SUoTadK7654j5EU0oa2e8E90LDbWTWBz0TpZZZXEkFoeHbRpM5XRjgrBmFvvbjobShEY0oayd8T2CdmwxEVjLcikosywwjMgQhIhjGYxMudPEQppH4G878ghCI5pQ1s6Y1YagjTSCZRgaAt2KuuhlDUUFZfPGMQ0ms9ojCCM0FPQCIkMQHi2dUBYxT3yxuA1bTAQ9gmUwr9hDHAcKhfLPEfPCNg3SeS80NH9DICK+SByJxeHRsgllESHQ1k3ngh7B8ggNQeXF3xtUEzF3HMtgMqsNaxi9hsCdW1zKRXUEIdLKCWUR86U6NBSJxS3HNwS2jYSQ7rjSsU2DbKHk/xwGjulAPvIIwqTRjk3XA0Pu+69xJ5T9Q8tWFaExDDAsKBXAsPXjdqFCLF4+kUKvdsCIvIFQcAKtp8PIGoKyYBxpBOHRSK+hzwGXAQ8B3oAaBUSGYCEwHW0I2iksBJWhoWVSUAbl2oFIKA4HJ3Dxd8L0CIgMQZg04hHsBXZH8wIWCdPRc4HbSSiG5esRuI3nIqE4HILhoDDEYigbgKiOIDwaOTKPoOsIIhYDTzBuO4/AMwQCdmJRlxImnkAcGYJwaEVoyM8aijyC0GjEI1gDPCYiPwN8kTiqLF4gvDvvdiomg/J6nBQso57wngGIDEE4BD2CsEJDvkYQicWh0Ygh+MBcNy4it6EnmpnAJ5VS/2+d97ze/RsKeFgp9aa5/r1liRcSaqeMISi3v1hGYSEIGIJYdJEJgwqPIMT00eD3iPnTSPro9+eyYRExgY8BLwZOAPeJyD6l1GOB92wH3g/cpJQaEZH+ufytZY13srerR7CMismgbAgMO7rIhIHTQo0gMgThMVPTuXHqN50TQCmlumbZ9g3AIaXUYXd7dwF3AI8F3vNrwMeUUiPojZ5rYu0rA98QtJlG4Hkoy6iYDKLQUNjYLcga8kJDkVgcHjP1Guqc57bXA8cDj08AN1a9ZweAiPwYHT76gFLq7uoNicg7gHcAbNq0aZ7LWmL4YnGbXZiCGsEyIjIE4eJYpv9zWGKxZwAijyA8FrtCyQK2Ay9AdzX9exHpqX6TUupOpdRepdTevr6+BV7iItOuHoFvCJZbaCjKGgqToEcQVmVxJBaHTysNwUlgY+DxBve5ICeAfUqpvFLqCPAk2jBEeFhtmjW0XMViL300KigLhaBYHEYbaog0glbQSkNwH7BdRLaIiAO8AdhX9Z5/R3sDiMgadKjocAvXtPQw2zRrSESvbRlVFUMwNBTFn8MgEouXBi0zBEqpAvAu4B70/OMvKqUeFZEPiohXg3APcEFEHgO+C7xXKXWhVWtakrRraAjASiw7j8CINIJQCYaDwvIIotBQ+DTadG5OKKW+Dny96rk/DPysgN9xvyLq0a5iMcCr/hL6dy/2KkLFTx+NDEEoVISGQmqaGFUWh09LDUFECLSzR3Dlaxd7BaFTDg21WShuiVLZayjSCNqVxc4aipiNdhWLlylR07lwcazws4aipnPhExmCdqddxeJlSlRHEC6OWa4jCD19NPIIQiMyBO1Ou7aYWKZEhiBcbNcjMATMkHoN+QVlkVgcGpEhaHfatQ31MqXchjoKO4SBlz4aVuoowI7eHWzs3Eh/KmpNFhaRWNzu+B5BdPezEPhZQ1FBWSh44aCwBtcDXLHmCr7+mq/P/saIhok8gnYn8ggWlKjFRLh46aO2FV1q2pno6LQ7kVi8oEQaQbj4oaGQaggiWkN0dNqdSCxeUPzK4mgeQSh4nkBYVcURrSEyBO1OFBpaUKIJZeHiGYCwUkcjWkN0dNqdSCxeUGLbtpG88Ubiu5dX64zFopw1FHkE7UyUNdTutHOLiWWI2dPD5s9+ZrGXsWwQEWxTQptOFtEaoqPT7qzeBvEe6Flhk9kilg2OaUQeQZsTeQTtzsBueN+xxV5FRMScsS0jyhpqc6KjExER0VJs04hCQ21OdHQiIiJaShQaan9aaghE5DYROSgih0TkfXVef6uIDIvIQ+7Xr7ZyPREREQuPYxmh9hqKCJ+WaQQiYgIfA16MHlJ/n4jsU0o9VvXWLyil3tWqdURERCwujmngRB5BW9NKsfgG4JBS6jCAiNwF3AFUG4KIiIhlzDtftI2eRNTNtZ1ppSFYDxwPPD4B3Fjnfa8VkecBTwLvVkodr/OeiIiIJcrt16xb7CUCNIM5AAAGwklEQVREzMJiB+6+Cgwppa4GvgV8tt6bROQdIrJfRPYPDw8v6AIjIiIiljutNAQngY2Bxxvc53yUUheUUln34SeB6+ttSCl1p1Jqr1Jqb19fX0sWGxEREbFSaaUhuA/YLiJbRMQB3gDsC75BRNYGHt4OPN7C9URERERE1KFlGoFSqiAi7wLuAUzg00qpR0Xkg8B+pdQ+4LdE5HagAFwE3tqq9URERERE1EeUUou9hqbYu3ev2r9//2IvIyIiImJJISL3K6X21nttscXiiIiIiIhFJjIEERERESucyBBERERErHCWnEYgIsPAXPsyrwHOh7icxWY57U+0L+1JtC/tyVz2ZbNSqm7+/ZIzBPNBRPZPJ5YsRZbT/kT70p5E+9KehL0vUWgoIiIiYoUTGYKIiIiIFc5KMwR3LvYCQmY57U+0L+1JtC/tSaj7sqI0goiIiIiIWlaaRxARERERUUVkCCIiIiJWOCvGEMw2P7mdEZGNIvJdEXlMRB4Vkd92n18lIt8Skafc772LvdZGERFTRB4Uka+5j7eIyL3u8fmC27G27RGRHhH5kog8ISKPi8hzlupxEZF3u+fXIyLyzyISX0rHRUQ+LSLnROSRwHN1j4Vo/trdrwMismfxVl7LNPvy5+55dkBE/k1EegKvvd/dl4Mi8tJm/96KMASB+ckvA3YDbxSR3Yu7qqYoAO9RSu0Gng28013/+4BvK6W2A992Hy8VfpvKtuMfBv5SKbUNGAHeviirap6PAncrpXYC16D3ackdFxFZD/wWsFcpdSW6Y/AbWFrH5TPAbVXPTXcsXgZsd7/eAXxigdbYKJ+hdl++BVzpDvJ6Eng/gHsteANwhfs7H3eveQ2zIgwBgfnJSqkc4M1PXhIopU4rpR5wfx5HX2zWo/fBm+r2WeDVi7PC5hCRDcAr0MOIEBEBXgR8yX3LktgXEekGngd8CkAplVNKXWKJHhd0W/qEiFhAEjjNEjouSqkfoNvZB5nuWNwB/IPS/BToqZqPsqjU2xel1DeVUgX34U/Rw75A78tdSqmsUuoIcAh9zWuYlWII6s1PXr9Ia5kXIjIEXAfcCwwopU67L50BBhZpWc3yV8DvAiX38WrgUuAkXyrHZwswDPx/bpjrkyKSYgkeF6XUSeAjwDNoAzAK3M/SPC5BpjsWS/2a8DbgG+7P896XlWIIlgUi0gF8GfhvSqmx4GtK5wG3fS6wiLwSOKeUun+x1xICFrAH+IRS6jpgkqow0BI6Lr3oO8stwDogRW1oYkmzVI7FbIjI76HDxf8Y1jZXiiGYdX5yuyMiNtoI/KNS6l/dp8967qz7/dxira8JbgJuF5Gj6BDdi9Bx9h43JAFL5/icAE4ope51H38JbRiW4nG5FTiilBpWSuWBf0Ufq6V4XIJMdyyW5DVBRN4KvBL4ZVUuApv3vqwUQzDr/OR2xo2hfwp4XCn1F4GX9gFvcX9+C/CVhV5bsyil3q+U2qCUGkIfh+8opX4Z+C7wOvdtS2VfzgDHReRy96lbgMdYgscFHRJ6togk3fPN25cld1yqmO5Y7AN+xc0eejYwGgghtSUichs6pHq7Umoq8NI+4A0iEhORLWgB/GdNbVwptSK+gJejlfangd9b7PU0ufab0S7tAeAh9+vl6Nj6t4GngP8DrFrstTa5Xy8Avub+vNU9eQ8B/wLEFnt9De7DtcB+99j8O9C7VI8L8MfAE8AjwOeA2FI6LsA/o/WNPNpbe/t0xwIQdCbh08DP0dlSi74Ps+zLIbQW4F0D/nfg/b/n7stB4GXN/r2oxURERETECmelhIYiIiIiIqYhMgQRERERK5zIEERERESscCJDEBEREbHCiQxBRERExAonMgQREdMgIqtF5CH364yInHR/nhCRjy/2+iIiwiJKH42IaAAR+QAwoZT6yGKvJSIibCKPICKiSUTkBYE5Ch8Qkc+KyA9F5JiIvEZE/kxEfi4id7utQRCR60Xk+yJyv4jc006dLiMiIkMQETF/LkP3TLod+DzwXaXUVUAaeIVrDP4GeJ1S6nrg08CfLNZiIyKqsWZ/S0RExCx8QymVF5Gfowe63O0+/3NgCLgcuBL4lm7jg4luHxAR0RZEhiAiYv5kAZRSJRHJq7LwVkJ/xgR4VCn1nMVaYETETEShoYiI1nMQ6BOR54BuKS4iVyzymiIifCJDEBHRYpQej/o64MMi8jC6c+RzF3dVERFlovTRiIiIiBVO5BFERERErHAiQxARERGxwokMQURERMQKJzIEERERESucyBBERERErHAiQxARERGxwokMQURERMQK5/8HsT5tWZO9xuAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEHCAYAAACjh0HiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyddZhc1d2A3zO6M+vult0kG/eQhABJkEbQlhYJUKhQSkspULzlK6X9ins/Ci1aChQJQQIJEuLuspt1t1nfnR2fOd8fd9ayGt00ue/zzDO7V8+dmXt/5+dCSomKioqKypmLZrgHoKKioqIyvKiCQEVFReUMRxUEKioqKmc4qiBQUVFROcNRBYGKiorKGY4qCFRUVFTOcHQn6sBCiNeAiwGLlHJ8H+svAx4BfIAH+K2UcsNgx42KipJpaWnHebQqKioqpzc7d+6sl1JG97VOnKg8AiHEuYAVeKsfQRAEtEsppRBiIvC+lDJrsONOnz5d7tix4/gPWEVFReU0RgixU0o5va91J8w0JKVcBzQOsN4qu6RQIKBmtqmoqKgMA8PqIxBCXCGEOASsAH4ywHY3CyF2CCF21NXVnbwBqqioqJwBDKsgkFJ+7DcHXY7iL+hvu1eklNOllNOjo/s0camoqKioHCWnRNSQ34yUIYSIGu6xqKioqJxpDJsgEEJkCiGE/++pgAFoGK7xqKioqJypnMjw0XeBeUCUEKIC+B9ADyCl/DvwA+AGIYQbsANXSbUUqoqKispJ54QJAinlNYOsfwx47ESdX0VFRUVlaJwSPgIVFZWTg5SSVSWrqLJWDfdQVE4hVEGgonKG4PV5eWTLI/xu7e94eufTwz0clVOIE2YaUlFROXVwep3cu+5evi37lhhzDJsqN+HxedBp1EeAiqoRqKic9kgp+f2G37O6bDX3zbyP+2beR5u7jT2WPcM9NJVTBFUQqKic5rx76F1Wlqzk9qm3s3TMUmbHz0an0bGuct1wD03lFEEVBCoqpzH76/bzxI4nOC/pPG4afxMAQYYgpsVMY33F+mEencqpgioIVFROU9xeN3evu5sYUwx/mfsXNKLrdj8n6RwKmguotlYP4whVThVUQaCicpqS35xPpbWS26beRqgxtMe6c5LOAWBdhWoeUlEFgYrKaUtOQw4AE6Mm9lqXHpJOUlAS6ytV85CKKghUVE5bchpzCNQHkhSc1GudEIJzks5ha/VWHB7HkI+5qWoTbx58c9DtWpwtvJ/7Pl6f94jGrDI8qIJAReU0Jacxh6yIrB6+ge7MT56Pw+tgY+XGIR/z2Z3P8uLuFxmsLNgHeR/wyJZHeDvn7SMas8rwoAoCFZXTEK/PS15jHmMixvS7zYy4GUQERLCyZOWQjlnUUkROYw4Or4MGx8CFgjdXbQbgxd0vUt5WPvSBqwwLqiBQUTkNKWktweF1MDZybL/b6DQ6Lki5gLUVa7G5bYMe88viLzv/rmir6Hc7u8fObstuFqUvQqvR8vCmhwfVIFSGF1UQqKichmQ3ZAMMqBEALExfiN1jHzS5TErJl8VfkhCYADDgLH9n7U7cPjeXZ1zOndPuZGvNVpblLzvCK1A5maiCQEXlNCSnMYcAbQBpoWkDbjc1ZipRpii+KvlqwO2yG7IpbS3lxvE3AlBh7V8j2Fy1GYPGwNTYqVw56kpmxs3k0W2PktuYe6SXoXKSUAWBisppSE5DDqPCRw1aVE6r0XJh6oWsq1hHu7u93+1WFK9Ar9GzOH0xMeaYAU1Dm6s3MyV2CgG6ADRCw2PnPkawIZg71txBq6v1qK9J5cShCgIVldOA7TXbWbJsCWvL1+KTPg41HmJM5MBmoQ4Wpi3E6XWypnxNn+u9Pi+rilcxN3EuocZQkoKS+hUEdbY68pvymR0/u3NZlCmKp+c9TbW1mgfWP4BP+o74+lROLCdMEAghXhNCWIQQB/pZv1QIsc//2iSEmHSixqKicjqzo2YHv/r2V5S1lXH/+vvZXLUZq9s6qH+gg8kxk4kLjOPNg2/i9Dp7rd9cvRmL3cKSEUsASApO6tc0tKV6CwCzE2b3WD45ZjJ3z7ibtRVreXX/q0dyeSongROpEbwBLBxgfTFwnpRyIvAI8MoJHIuKymnJztqd3PrtrcQHxvPO4nfQaDTcseYOgCFrBBqh4YGZD5DTmMNj23p3j33v0HtEBkSyIHkBoAgCi83St9Co2kyYMYysiKxe667JuoZF6Yt4cc+LnQJD5dTghAkCKeU6oHGA9ZuklE3+f7cAvdMfVVRU+iW/KZ9ff/trYs2xvPq9V5kQPYFHz3kUh8eBTqMjMyxzyMeanzKfn4z/CR/kfcBnhZ91Lq9oq2BdxTquHHUleq0egOTgZAAqrZWd22U3ZPOXLX/h69KvmRU/q88kNiEEf5z9R9JC0rh33b3Uttce7aWrHGdOFR/BT4Ev+1sphLhZCLFDCLGjrq7uJA5LReXUpLa9ll9+80vMOjOvXPgKUaYoAOYmzuXemfdy1eirMGgNR3TM26bcxvTY6fxp85/YW7cXgPdz30cjNPxw1A87t0sKUuZsHX6CZfnLuOrzq1iWv4wFKQu4Y9od/Z7DrDfzzLxnsHvs/GHjH45ofConjmHvUyeEmI8iCOb2t42U8hX8pqPp06ermSkqZyTP7nyWQ42HiAuMY49lD22uNt5c9CbxQfE9tls6ZulRHV+n0fHEeU9ww5c3cMvXt/DCghdYVqA83GMDYzu366hd1JFL8EnBJ2SGZfLGwjd6VTntixFhI/jlpF/y9M6nOdR4qE8zksrJZVg1AiHEROCfwGVSyoFz1lVUzmAsNguvHXiNwpZCviv/jjp7Hc/Me+a4P0SjTFG89r3XCDOG8dOvfkqLs4Vrsq7psU1kQCQmnYmKtgpanC3sqdvD+SnnD0kIdPD9kd/HpDPxTs47x3X8KkfHsGkEQogUYBlwvZQyb7jGoaLy38CXxV8ikbxy4Sukh6YjpUQIcULOFRcYx2vfe42bVt1EiCGE6bHTe6wXQpAYlEiFtYINlRvwSR/nJZ13ROcINYZy8YiL+aTgE+6YdgfhAeHH8xJUjpATGT76LrAZGC2EqBBC/FQIcYsQ4hb/Jg8BkcD/CSH2CCF2nKixqKicKOxtLioONVKe029cxHFhRdEKxkaOJT00HeCECYEO4oPiWX7Zcl793qt9nispWMklWFuxloiACMZFjTvicywdsxSXz8VH+R8djyGrHAMnTCOQUl4zyPqfAT87Uec/U6j/+8tY160j5fXX0BiNwz2cMwav18fyp3ZTU9SiLBDws6fPxWg6/rdUR9XPu6fffdyPPRABugACCOhzXVJQElurt1Jrq+X8lPP7LXU9EBlhGcyKn8V7h97jx+N+jF6jP9Yhqxwlp0rUkMpR0vLJJ9h37aLu2eeGeyhnFEW766gpamHKhSlMOC8RJLgdJ6YJy4qiFWiEhkXpi07I8Y+GpOAk7B47ba62IzYLdee6MddRa6tlbfna4zg6lSNFFQT/xbirq3EVF6OLiaHxjTdo37ZtuId0xrB/TQUh0SZmX5FBTHoIAF7P8RcEUkq+KPqCmXEziTZHH/fjHy0duQQ6ja5XFvGRMDdxLpEBkXxR/MXxGprKUXBEeqwQQgMESSnVylGnAO2blOYfSc8/R9W991F93/2kf/oJ2qCgYR7Z6U1deRvVBS2cfWUmQiPQ6pT5lNd9bJHNTq+T1WWrqbRWUtNeg8fnweF1UGGt4BeTfnE8hn7c6MglmBE7g0B94FEfp6Po3fKC5djcNsx68/EaosoRMKhGIIR4RwgRIoQIBLKBXCHEyTVWqvRJ++bNaKOiCJg0iYTHHsVdU6OaiI6Eko3w3CSwHlmS4v41FegMGrJmK/H7Or1fEHiOrZjaw5se5p519/DcrudYWbKS9RXr2Vy1mcywTC5IueCYjn28SQxOJMYcwyUZlxzzsRamL8ThdbC2QjUPDRdD0QjGSilbhRBLgS+Ae4GdwBMndGQq/dLe4uTzF/YyclcBsbNnI4TANHkyYVf9iKZ33yX8mqsxZmQM9zBPfdb8FZpKoHIHjB6a/d3R7iZvWy2jZ8UREKg4N7V+QeBxH70gKGstY0XxCq7Nupbbp95+ys+MjVoj3/7w2+NyrCkxU4gxxbCyeOUp5Qc5kxiKj0AvhNADlwOfSCndgJrdO4zkbaulvsJKAzEEzu6yz0bfdhsas5naR3sXDjtjKd0M9qbey6t2Q8l65W9LzuDHqd4H3/0vh555CK/bx8R5XaWxOjUC99H7CF498Cp6jZ6fT/z5KS8EjjcaoeGitIvYULkBq8s63MM5IxmKIHgZKAECgXVCiFRA9REMIwU7lGJddlMUgXO6BIEuIoKoW2+lff16rOsGbj14RuBogTeWwJo+BOPG58EYAuYoqDvU5+4etxeXwwOWQ/DKPFj3BOWNCYTryogM7erxq9Vp/dsfnUZQba3m04JP+cHIH3TWDDrT+F7a93D5XHxX/t1wD+WMZFBBIKV8XkqZKKVcLBVKgfknYWwqfdBSZ8dS2gaAMzIVfVxcj/URS6/FkJpK7WOPqw3Dq/eC9ELBNz2XN5VA9nKYdiPET+xXI1j/Xh4fP7ULtv8TNFp8v9lPjWccCfocqD3YuZ1WryRcHa2P4LUDr4GAm8bfdFT7nw5MjJ5IXGAcH+Z9SGlrqfrbPckMxVlsFEJcK4R4QAjxkBDiIeCBkzA2lT4o2KloA0HtlThC4nutFwYDETf+GFdhIe6K/tsJnhFU7VbeG/Khuaxr+ZaXQGhh1i8hegzU54Gvt1mntqSV+nIrrTu/gXHfp7E9FJcL4g3ZYMnu3K4raujIBYHVZWVZ/jIuy7iMuMC4wXc4TdEIDddkXcMuyy4u/vhiFi1bxM7ancM9rGHD6vScVGE4FNPQJ8BlgAdo7/ZSGQYKdlqIjtUR3phLuzT3+WMxTZkCgH3P3pM9vFOLqj3QYW8v8Ds2Ha2w618w4UoISYCYLPA4oLm0x64+n6S51g5AmXUUzPw51QVKFnF8aC3UdhMExxA1VNhSiMvnYl7yvCPe93TjJ+N/whdXfMGDZz1Ina2O1WWrh3tIw0K91cnMv3zDW5tLB9/4ODEUQZAkpbxKSvm4lPKpjtcJH5kKAE017WxfUUx9hZXmWhv15VZSwq0EOOrxegW2VlevfYyZmQizGfveM1wQVO+BjAUQktRlHtr7HrjbYebNyv/R/i5elp5+grYGe+eDvUycB4nTqCpoJijcSHBCHFi6TEM6veIjOBqNoLilGKCzhtCpiJSSlhUr8Dkcx3YgWyN89luwN/e7SXJIMldnXU1ycHJnmevTkar7H6D28b4DL9fk1mFzeXn+23xsLk/n8o0F9Vidnj73OVaGIgg2CSEmnJCzq/SLx+Vl66dFvPfINrZ9Vsx//ryNT5/fA0C8sxCTS4mEaa3vfXMKnQ7T+PH/vYJASvj4Ftj3/tEfw94MjUWQMAUyF0DxOvC6FXt/wlRInKpsFz1aea/r6SdoqlacwZG6Yipso/H6JNX5zcRnhCLiximCw29OOpbw0eKWYnQaHYlBiUd5oScex969VN31O1pXrjy2A+35N+x8HQoHDztNDk7uty/yfzvtmzfT8vHH2LZu7XP9mlwLJr2WhnZXp1awu6yJm17fzv9+MYQIt6OgX0EghNgvhNiH0jBmlxAi199ovmO5yjHg9fjwevt+cNSWtPLen7ex44sSRk6P5do/nsXMS9JxO7ykjI1AW5FPSJgSw95aZ+vzGKZJk3Dk5Bz7LG44qNoFe9+FA8dQlbLaLwQTJkPG+eBshQ3PQn0uzOhW6zAgRNEYDtMImmqUz3Vi6Grcbg0F22tpb3ERnxkGMWPBY1eczoBOd/SmoeKWYlKDU9Fphr1HVL/Y9+0HwF1ROciWg3DwY+W9Zv+gm3ZUNz3dnMbS66X2sccB8La09Frv8fpYn1/P4gnxnDcqmpfXFlJc384tb+8kNtTI3ReNPiHjGujXd/EJOeMZjMftZfnTu2mqbsfl8GIK1nPJbZOJTgkGFLv07q9K2fZpMeZQA5f+djLJWREAzFiSztSFqSCh5PIiQlNGgISWPjQCANPkSeDx4MjOwTx1ykm7xuPCrreU937COodEtaI9ET8FNFrFObz2UQgIg/Hf77ltTFZvjaCmHZO2lYyxRtZsFGz7XDHhxGeGghirbFR7ECIz0OiUqKGj1QiOpLfwcGA/4BcElccgCJrLoNLv/B2iILB77DQ4Gk6rkNqWTz7FeegQ+qQkvM29TWR7yptpsbuZnxVNUriZy/+2kUte2IDXJ1l26xzCA4+s/ehQ6VcjkFKW+kNF/9zxd/dlJ2Q0pzmWkjZqi1tJHhvJzEvS0eo1fPLsbiU6paKNjx7fyZblRYyYEs1Vv5/ZKQQ60Go1aPDhKi3DnJFKUJiR1jp7n+cyTZwI8N9nHnJaYf+HoNFDUym4+tZ4BqVqN4SmQGAkmMIgaTr4PDDlOtCbem4bnQX1+T0ih5oqm4nQlmJMn0Jcegit9Q4MAVoiEoL8fgXRGTkkhFJv6Eh9BG6fm4q2ilPOPyBdPf1Ojv0HAHBXVQ2+87++D/+5DloOM+tkf6K8p8xRkvMGoaOoXUdf5NMBn81G3bPPEjBpIqGXX47PakW63T22WZNbh0bAOZnRTE4OY0FWDFanh6d+NIkx8SEnbGxD8RH06DghhNAC007McP5L8bjg0ArFtj0AtcVKHt65V49ixpJ0rrhrKkazjuXP7Ob9/91BW4OdC386lot+Nq6zfMHhuCsqwO3GkD6CkCgTrfV9CwJddDT6xMQ+BUH71m048/OP8CJPEtnLwWWFmT8HpBL6eTRU7YGESV3/j/qeohVM/wlerw/p6/ZdxYxRIof8ph4pJU01NsK0lZB8FinjFIEclxGKRiPAYIaI9MNyCY5cEJS3leORnr4FwbePwPqn+s6KPoHYDxwkd9p0HDmKhuS1WnEVK9rQoBqB06rY/3M+g7+dBVv+3nVPHPwY4ifB2Euh3QJttQMe6vC+yKcDrStX4bFYiLnrLrRhYQB4W3vm5q7JszA1JZxQs3L/P/2jSfzn5lksntA7VPx4MpCP4H4hRBswUQjR6n+1ARaUkFKVDnJXwHvXQs6nA25WW9xCSFQA5hBFvQuJNHHFXVOJTAhkzOw4rv3jLEbNiBuw+5TTf1Ma0tMIjTbR4hcEHpeXT5/bTWVe14PDNGlSL0HgLCqm/Gc/o+75F47mSk88u96CqFEw9Qbl/7rcIz+GvQmaiiF+ctey2b+GW7dAZAYf/HUHX7+e3WV/7owcUh5+9jY3Tqcg3FAN8ZNIHhsJQHxGWNfxYsb2zCXQa47YR9BvxFB7Pax/Er79Ezw9Dr55eNBJxvHCvmsX0u2mdcUKABwHFGEXMHYs7poapHeAMhpNyvVwwcOQMhtW3guf3gaNxYpZaOzlEOePOxnEPNThPD+dHMbtGzeijYrCPGNGlyDoZh6ytDk4UNnK/KyYzmVhZgNnjYg84WMbyDT0VyllMPCElDLE/wqWUkZKKe8f7MBCiNeEEBYhxIF+1mcJITYLIZxCiN8dwzUMP/UFyvu2fwy4WW1JK7HpPRt8B4UHcOW905l//Zh+tYDuuIqUm82Ynk5IlAlbiwu3y0vR3jrKc5oo2t1VSdM0eRKe6mrctcrsS/p81Dz0ENLtxtN4YlsrHhWWQ1C+VRECERmg0R2dn6DTUdzNN6IzQvQonDY3DRVW8rfXkre1Rll3WORQU7WSJhMREwA6IzGpwSy4IYvx53WL7Ikdp0QluRVBrDsK01CHIEgLSeu5osrv31j8JGTMhw1PD8mufjxwFhYC0Pr110gpcfj9A8EXXQQeDx6Lpf+dG5R9yZgPSz+Ac++B3f+C1/2F5MZdDrHjlb9rBjYPGbVGYswxp41pSPp8tG/aRNDZcxRTYqjyHOjuMF6bq9y75406+X0nhlJi4n4hRLgQYqYQ4tyO1xCO/QawcID1jcBvgCeHNtRTmI6ZUMn6XtEnHVibnFibnMSmHZudz1lchDYyEm1YGKHRiq27td5O7hblodZQ2VW0yzRJMY10aAXNH36IbccONCEheJtOrslhSOx4TfENTLwadAaIGHFkGoHbASUbYPuryv8JvZ3kDZXKQz4gSM+69/JobbCDMUjxJ/hNPU1ViroeNkKxUwshGDMnoaegjhkL0tcpqLR6DZ6j0AhizDEEGQ7rH9GRET3xKlj4V+Xv8r5DDY83zkJlUuMuLcOZn4/9wEH0SUkEjFMc5AP6CRqLlPeIESAELHgQFj4GbdUQN1FZbgqDsNQhCbbk4ORTTxAUftf1+xoAT2MjLZ9+2ql1OnJy8DY18WlEORabpU+NYFNhA1FBRsYlnDhfQH8MpcTEz4B1wCrgYf/7HwfbT0q5DuVh3996i5RyO+Dub5v/GhqLFPOC1qDEqfdBbYki+WNHHNuX7CouwZCeBkBIlCIIqgtaKM9uRKMV1FdYO398xjFjEEYjVffdT9nPb8byxJOYzzqLkMWL+hQEPunjg7wPuGz5ZWys3HhM4zxiHC1KnPn4H0CQf0YUPXroGkH+1/DkKKXIXM5nMHoJmCN6bdYhKBf9YgJSwrdv5Cj+ghHnQe6X0FZDU1E5emEnaNSkXvt3Eut3nfkzjI/GR1DcUty3f6BqN0RmKqGtockQkghlmztXO9xe3tpcQnljlyO91eHmu1xLjwSkI0VKiSu/gKD580EI2r75Bsf+/QRMGI8+UdGGBvQTNBZBYAwYg7uWzboFbvwCvt9NW46bMLTIoaCkU08QbHwWVtypBDQMQPNHH1F1z73YNivfW/vGTQC8HbSP3639HTJEaebjbe7SCPItbYyJDx7QNHyiGIqz+HZgBlAqpZwPTAGOrJPHMSKEuFkIsUMIsaOu7qSeemg0FkPiNBj3fSVz1dnWa5Pa4lY0OkF0UnAfBxg6rqIijOkjkFJ2agS7VpYiJYw/LxGnzYO1yQmAxmAg+eWXCbv8MmUmJwTxD/8RXUQE3paWHvbewuZClq5Yyp82/4kqaxX3rb+PmvaaIY3pYFUL1/5jC62OY5Dpu/+tOIln3dK1LDpLebh4nAPvu+M1eOcqCE+Fq9+Fe4vhmnf63LSh0orRrCM+M5Szr8ykKr+Zkv31cM5dSsLZhmdoqmgkXFuBSJ7Z/zkjRkBgNHzzRyjbiu4IBYGUUhEEIf0Igg5tRghImaWU0/YL+A93VvDQJweZ9+QafvPubu5fto+z/vItN72+nR+8tJmKJkVAeH2SfRXNOIfSQrOhEG/pIbwtLQTOnoVp0iRaPl6Ou7IS0/gJ6BMSgCEIgogRvZenna2E6HYQNxEaChTn8gAkBydjsVtweE6hXJh6f/DCp7cNWL7cXaY4uRv+qUwM2zdupDU1kpYgwW7Lbl4qfhvo0giklBTVtZMRPTzdBYciCBxSSgcoBeiklIeAE5PV0A9SyleklNOllNOjo0+dvq0AuNrBWqNEkcz8ObjaFGFwGLXFrUQlBXdmoR4NnqYmvE1NuJNjOO8/57GjeSuGAC1tjQ5i00PImKo4mRoqum6wwFlnEffQQ2Ss+JxRW7dgSEtDGxYOPl+PiIXHtz9OWVsZfz3nr7x/yfs4vU7uXXcvHt/gM8zVORY2FTaw6sDQBEcvfF7Y9jIkz+ppzonOUswvDQV9fx51ddTd9SOan3sQMs+Hm76ErMVgCu/3VA2VViITgxBCkDUnnsAwI/vXVirf3+RrYcfrNDX4CDM3Qx9F/TrRaOHHn4EhEN68GK2j7ojyCOrt9Vjd1t4aQVsttFX1/BxSZivL/IXzVh+ykBhm4idnp7H6kIWPd1dyyaR4Hv3+BCqabFz64kb+/Hk2cx9bzaUvbuSjnYNE+3g98PpinG/fCYAhI4PgCy/EXa48zAImjEcTEIA2MrJP05CnsRHb7t2KIIgcQkOkuAmA7OFs74uOyKFK6zEmsh0vXO3QWqkkJBqD4b2lSu2qvjatUD679k2bsW3fjm3XLkpHh5EcnMzSMUt5o+Q/SI2m00dQ0+rA5vKSEXPqCoIKIUQYsBz4WgjxCTCEgOIzBH/IIRHpilYQNwH2f9BjE5/Xh6W0lbj0YzcLAVRHamhyNvHkjicJ8WsFWbPjiUpUfkT13QSBx+XtDJXsUDm14cqD0tvUZZ8sbS1lbuJcLh5xMemh6Tw0+yF2WXbxxPYncHl71zPqTmGdcr4V+6uP7sLyVimfY3dtALo5cRXzUMVNPyJv+lRKb7iBit/+loL586hfsZ+6QzGKJmAc+CaSPklDZTuRScp2Wq2G8ecmUJ7dSHOtDc69G5dXj9UVQnj0EDJ9Y8bAz1dD8lloG3LwOgfRXLrRb8RQZyJct4inlFnKe9kWHG4vmwrruXBsLA8uGcu2B89n5+8v5PErJ3H1zBSW/+pswsx6Xt1YzKjYYIRQHjLdaW924nF10xKK1oC1Bmeu4iMxZo4k+EJ/a0whCBirmMH0iYm9NAJnYSHFV15J6bVLcdfUKvfBYHRGDg3sMD7lQkg7JiRpcxVTV2NhV7b0YbgrKgk871w0wcFU3nMvuN3sTVeioe6adhdjo8ZhNYG3WTHRFloU31VG1NH3fz4WhuIsvkJK2Syl/CPwB+BVlG5lpy1522pw2oZo5jjcQZY6F6r3IT1u8nfUYmt10VDVjsflI/aYBYFyrupI5WsrbCnEampCoxNkTovBYNIREhVAfUUbNrcNr9vHv/9nC+8+so3ynC53Tacg8P8IPT4Pte21PerdXDziYq4afRXvHHqHJR8v4f3c9/vVDgr8gmBDfj0tQ/3curP1JaXMQ9Zh/W8jM0FooC4XT+Eu2rbsQ29owVeyHdv6bwlNayPs7DQ8bS68tr7zKbrT2uDA7fR2CkyAsXMT0WgF+9dWQHgqhTF3ABCREtPfYXpijoB596EVLrz2nslvTY7+HfL9CoKq3YBQ+iR0EDMWjKFQtpnNhQ043L7OEEOzQUegsUtoZUQHseq357Lr9xfy5k9mEmzU0Wrv+k5cDg/v/mkr21cUdx1/33+UdU2gCTShi4nGkJKCcfRojJkZaIOUh5M+IQF3Zdcc0LZzJyXXLkXaHSAlreWmvk1DhxOapGR4D+InOJ5JZSDhkxQAACAASURBVHaPfcimzn7pMAtFjoSU2XidAtnW+5jS48FdVUVA1hjCr74aT3U1wmhkc1QLScFJ6LV6rh59NS0BPposipArqlfuoVNZI0AIMVUI8RtgIlAhpRx4iqjs8y6wGRgthKgQQvxUCHGLEOIW//o4IUQFcCfwe/82J99dfhjNFhtfv5ZNzqbBZ7ctzhba6/1RLeH+GzphCnjsVG4/wFf/PMi//rCZtX9THK+Hh44eKc6iIoReT3FgOzqNjglRE1gR9ibzbhrZGdGiiXKzLzePRcsWUbTfgrXJib3VxafP7eGrVw8ifbIrYsHvMK6z1eGRHhKCEnqc78GzHuTlC14mxhzDI1seYVn+sl5j8vkkhZZ2pqeG4/FJVmUf4c1mtSgF4abdCNrDZuF6E4SnQd0hrC/fC1IQd89vSL8+nlGXlBH/mx8TdK0Seezyhz0ORIejOLKbIDCHGMiYGsOhTdXk76hlzYGpJIRUkXr+UALj/MSORydcPTSCzVWbmff+PA7U946etrltbKjagElnItYc23Nl1R4lj6K7w1WjheSZULaFbw/VYjZoOSu9tyO8A71W01mKIMSkp6WbICjeU4fT5uksqY3TCoc+h4lX4Ww1YIw2dWqOiU89ScLjj3cdNzEBd1UV0ufD09RE2c9vRhceTtoH7xOQkUhrmUkJ+x0MIRStoCNMth/CjeGYdebjohH8ecuf+eFnPxySqbNfGgoAAZEZuGrqyP8kjtaNvbUad00teL0YkpOIuOF6hMGAcfpU6nzNJAUpWs6ClAW0mwQNtSUAFFqsBBl1xAQbj358x8BQooYeAt4EIoEo4HUhxO8H209KeY2UMl5KqZdSJkkpX5VS/l1K+Xf/+hr/8hApZZj/72Fvgdlcq8zqOmLJB+L6L6/nguK3eS46jgb8qnaCotLXZCv23JQxEdQ2G9C7WgloHzibcjBcRcUY0lKpstWQEJjAndPuJF+7n3cdr/DSnpe49Ztb+cb6Oab2UFrb29izuQhTsJ7r/zKbseckkL+9ltYGB7rwnqFrHTbYwytgCiGYkziHtxe9TWRAZJ8PtaoWO3a3l8unJJIcYWLFviM0D5VtUd5HnNf3+ugsyPsK6+58dKFmAi69DX72Ldy+Dy78E8YM5cHjLCrue/9uNFRaQUBEQk/1e+L8JFwOL1/98yCRScEsefhqtFGpQ78GUxhagwFPt4id3Zbd+KSPdw+927lMSsmHeR+y5OMlrClfww9G/qB3hEjV7s7fEEB1i523NpfgTT4L6nLYkVPE2ZlRBPhLXw9GqEnfQyPI9edO1JW34fNJJcLKbYNpN+G0BmAwdwU6GDMzCRgzpvN/fWKikoNSX0/b118jbTYSnnwSQ1ISIVOTcTQacFm7Qmx97QPcQ8lnKRrBAA5jIcSAVUillPzsze088vnAvoY6Wx1fFH9Bs7OZ7IaBtx2Q+nwliktvonXFCqRPYM/vbSV3+/0D+qQkdNHRJP/9JZy/Wgp0mbtCjaEYwiOxN9bjkz6K6tsZER04LBFDMDSN4BpghpTyf6SU/wPMApae2GENHy0WxcTQVDtwjZs6Wx3FLcVESQ2vBhpYtGwR++v2K+YMQxA1pXbC4wNZdMsEzsr7G5P2v0Trp58d09icBQUYMjOpslaREJTA9LjpzEuex8cFH/PS3pcoaC5gxriJaNAQa03HkmMnc2oMhgAdqf7sWJfD081HoGgE/QmCDoQQpIemU9RS1GtdYZ1ys2fGBLF4QjwbC+pptg2qMHZRtgV0AUr5gb6IHo3Paae9xkTQRYsRGo0yowxPBSHQJyUh9HpcRUPQCCqshEab0Bt7PkRj00OIzwglPD6QS26bhMHU2z/gcHsHrISpDQzpkVmc26hoiiuLV9LsUATu50Wf8/Dmh0kKSuKtRW9x78x7ex6ktVoJPPA7itudHm56fTsPfXKQvxUqQRIpbbu5JroUtr7cZ1e1wwntphFYm5yUH2oiNNqEx+WjucYG+96DsFQ8QaPw2rwYjfW96wT56R451LriCwypqZ35BSGZymfWuno9APV//zt5s2Z3JjP2InW20ka0YtuA4++oQtoXy/dU8k2OheW7KxWh5sdTV4erW3e+9/PeZ2qOi1984WVbzcDnG5CGfIhSCgS2fv45AM6q3hVEOzoD6pMU01bgnDlU+uvmdWgEAJGxqZhsbvZY9lBosXJp4QaqHnjw6Md3DAxFEJQAAd3+NwKD33X/pTRbOjSCfgRByUb41xXsq9kBwCOtbj7xjeGHW7Xc+82dNLvakLETqWkIIi49BE9jI4FV2YRYy2n55BOk7+j62vpsNtzl5RhHjqTSWkmAiMLnkzx+7uN8evmnbL9uO19d+RVL5/4AgJkVi8EjGDlTaX+oNykPP5fdgzCZEEYjHr8gqLJWIRADtkocETqC4pbiXg/DAosyo8uMCeLiCQl4fJKvDh6B5lO+RekPoOupEm8qrOdgVQvET8ZmMeJzQ9D55/faXeh0GNJScRb2FlKHU19p7eEf6DyGEFx6+2Su/v0MTMG9qzta2hxMe+RrVh3s3+ylCw7D69UokSVAblMuI8NH4vK5WF6wHKvLytM7n2ZC1ATeXPQmU2L6qAjb4ShOmILPJ7nz/T3k1bZx+eQE/pYXihsd/6d/jgVbfwJf3gOVuwa95pCALkGQt70GJMz5vvIwq8sth6K1MPEqXEXK52cM8XR1czsMgz+XwL53L7Zt2whZsqRzBquX1ZgSDbSu+IK21d9R9+xzSLcb25YtfQ8s+SzF/1O6acDxdySV+WTP+6bN4eZ/vzhEgF5DQ7uL3NouTabynnsov/kXALi8Lt7PfZ8rc8M5f68kd9/aAc/XL1IqmdORI3Hk5uHMz0dj0OC0OHrdE67yCtBqqQ3s0hAr25TJVodGAJCYkEWwHT4v/IKqFgdjCncrmsZAZTxOEEMRBE7goBDiDSHE68ABwCqEeF4I8fyJHd7Jp8UvCBztbuzWPma2W/8OhavZn/cJOo2OrIYKxLJaLv6qmbHbarl/w/00hczB6TUTlxbUabsOvfQS3JWV2HceXR/WjtR/zYg0GhwNrNrjZG1+HSadifTQdIxa5UEaEqnMeGNb03GY2ojzJ7AZ/bNcl8OrpLiHh3dGDVVaK4k2R2PQ9l/iNj00nVZXK42OnjmCBRYrYWY9kYEGxieGkBxhYuUAD8weuGxKOYiOqBg/24obue6fW1ny/AZ+sSOBCvO1CJOJwFmz+jyMYURG54MMoKaohd1flfXYxu300lJn74wYOhydQYtG2/ftsCG/nnaXl02FDf1eijY4Eo/UQ202VpeVSmslC9MWMjVmKv/J/Q8v7X2Jens998+8H43o57ar3gco9vMXVhew6mAtDywewzNXTeam88bwD89iNhrnwnz/rNHW/3g6CDXpaXW4kVKSu6WGuBEhpE2MRGfQYDlwCJAw4crO35cxIbLfxjEdGkHjm2+BlIQsWdy1srGIkKkpOPPzqbzrLgLGjkUTGoptx46+B2YMVrTAQQRBlCkKl8/F7opqfvXOLh78eD/5tW08+00+9VYnL18cRQxNnd+Np6kJ29ZtuIqK8DQ2srJkJY32BlIqFP+Nbtu+QaPg+qStWslziRqp1GHSaok4JwWvQ/Yqu+GuqMAZFcJln19BnU3Je6qwVhCsDybE0OUGDYiIxuiGbwtXAV6CmyxIpxN39VFG3x0DQxEEH6M0q/8OWAM8CHwJ7PS/TiuaLfZOx2svrcDVrmSwAvtqdzE6OI22/YHYCyxoQkO5NjuCDRXrea1emSXFhjV03mCRi6eiMZtpXr58SOOoarZT1dwVCePMy1PGl6Q4nH3uCOraeocrCo3odIbmRm7DK5XZhSHALwjsHvjgRrQ6Z6dpqKq9atAOWSNClWiQw81DhXVWMqKVuHwhBPNGxbClqAHXUMotVO5USkN3EwTNNhe/fW83yRFmbj9/JJuKGqlds5X2CVPRBAT0eRhjxghc5eX4XErdpVX/OMCmZQWUHux6UDZWtYPs6SgeKhsK6gE4UNnbDNCBNjQGL0Zk9T7ympTvanT4aK7OupoKawVvZb/FFZlXMCF6gGZ/LWUQFEtOg5fnvs3jiimJ/HRuOkII7l04GtOiP6H70etKv2UYUmXSULOiEdSXW2msamf0rHg0Wg1RScHUVXtBHwiRI3HmF6AJDEQ3cb4STurt7VTVBAaiDQvDU12NMSur0z+D2w6tlYScMx00GjQmE0kvvoB52jRs2/sRBACpZ0PFDqU0SH/4lO/8R698x/q8Oj7YWcGFz6zjtY3FLJ0Wy3kbf8wLga+yuVD5jqyrV4Nf67bv2cvb2W8z3ZeCpkXRXMcXuNlffxR1m/wRQzIig9YVKwicPRvzuDQAnLk9y6C4KsppjNDh9rk7TVEVbRUkBif28AFow5R7WbY0YTDnoG9QBMpQAh+ON0MJH31zoNfJGOTJwuv2YW10kDpesac31Rzm7Mr/Cjx2vCmzOehrZ36JpD47iNAL5hDzu7swldYyq3wyRTUSj8ZOTes3igqpB8PqmwmeFE/bylX47H2HOnpbWrD5NYYbX9/G2Y+t5rp/bmXlgRqcefmIgABqQpQfuXSH095P/9Io/6z3UOS2zgd3h93bZfdAwWp0eneXIPD7HA7n1Q3FXP2KkqnaEebYEfbYQaHFSma3bMi5I6OwubzsKhtCLaMOR7E/g1dKyX0f7cfS5uSFa6Zwx4Wj+O7yRGLszfzTl8yWor5nwIb0EeDz4SopYfeqUqxNTkzBejZ+WIDP3wWuIlfRZI5UEEgp2egXBNnVrXh9ffsJtEGKA95XfYDcJuXBMDpiNBekXEBEQATB+mBun3r7wCdrrUaGxPOXFTkEB+j5n0vGdj44hBDcdHY6Z2dGgckfMWQfvHBgSIAOh9tHwR4LQkDmNCXsNDo1mLrmQHyRI0GjwVlYiCEzA5G5QCn30a0nc3c6Sk301AaU34QufRyJzzxDyuuvo09IwDx9Oq6SEtz9FapLnQNep9KRDmj5fAWl111P41tvUVtSxV9WZPPoihIALpsaybp75rP5vgX87qJRzB8dw/3xu6C1kgkUsLWoAY/XR9vX36CLjVVMM9vXk9OYww+9ivNdO2US40slO8oG1kL6xF8O3V7jwV1ZSciSJQRkKPeEM7unYHGXV1ARrNybHYKg0lrZwz8AdEbvxbqiSAz4slOADSXw4Xhz9GmupyEt9XakhKSscHR6TWe7wk6yP4HAaArPuwubRsNZH+RiCPIS99AfCL34YjQhIczdCDGNU2gIKmFp4Vsc3PopvlA3IuUsQgO24mtvp/mjbglnUiI/vpWWV/5K4aLFlC69jtYNGymqa2d8Qmhnm7r6/dkYMzOptCtqo88djtXRtyCYMD+JMZdG0GSu6YySMAT4fQRtbeBsQRsg8TY14fF5qGlXopC602B18tRXuWwpauSyFzdSVqfHpDP1EARN7S4a2l1kdot9np0RiVYj2JBfP/gHXr5FiZH3ZwJ/sb+GlQdruGfhaCYmKTeJNlcZf/3ICfz8zR1kV/UOLDNmKNpK44Eidn1VxsjpMcxbmkVTdTsH11dRtKeOrZ8Wk5QVTkhU31pF9+v++9pC2vzlMgrrrNS2OpmZFoHD7aOoru8oF53B38C++hC5jbmEGkOJNcei1+p56ryneG7Bc0SaBikn3FZDvYhkQ0E9t58/kjBzP6Y6Y4hiX++mEUgp8Vp7jy3U5Ndu6+2YQgyd2m5MSjAen4Fmk9K72V1ejiElVYnxh37NTh3modDFPc1CAESMIOR7FxEwehQA5hnTAfo3h6bMVt795qG2Vauw7dpF7f/+lbpFF1L+9nvMTFXOd92cWMLMBiKDjPx6wUheu34ygdteAKHF7G0lxFnD/vwq2jduJGThQgJGj8a+R/G5JJba8OoNPB81B4MHajes7ns8A1FfAHozrau3IAwGgi+8AG1sEjqTF0dOl9D0tbfjbWyk0B99tbV6Kz7pUwRBYLyibfkf+B0VSNPt5xJv6yqd093MebJQBUE3WvzdvsJizYTFmXsKApdNyYAdcwn7vC0gJcYmSVCyF010KhqTiZDLL2diRTaRbhMzdbVc59ZjqrHyXbyBP2bNwXzV3ZhjnFgeexxHtvKA8xTuovy5L6l6+i30SUnoExKofvRRfF4vV81I5r2bFbOJt7AQ48iRVFmrQGqRnmCs/WgEEfGBzFs0EbPO3CkIvq74Gp/wUl+vOK20Bh+e5mYsNgte6e1lGnplXREOt5d/3DCdEJOe6/65jQhDUg9B0JFI1l0QhATomZQUyvqCQQSBzwvl2xSnoZ9dZU2Y9Fp+NrcrKcldWQl6Pc/++iL0Og3PfZvX61CGdGVmtmOrAwHMuiSV5GQNiaPC2PppEav+eYCY1GAW3TJhwPC8PeXNXPzCBh798hAvfqdkkXYItJvPVcZ0sA9BBKD19y321BaS15jL6PDRneeaHjedGXEzBv48ANlWxSaLnvSoQK6bNUD4qkajJGTZm7CuX0/5rb8i/5xzyZs+A+u6dT02DfELgrYmZ2cfDIDoeGV5nRyHlBJPfT26mOiu/IU+6mUBhF5xBZG3/KJTM1AO4q+5c1gyWcCYMWjM5v7NQ+YIpVijXxC4ivIJmj6ewHc+4GBEGr/O/oy7xiplPqzuw4Tc3vcUU9q5Sh7JeE0JBZ9/jXS7Cb7wAkyTJ6E5VIjwSQLyKyiJSGJVQApeg5aQnflHXr+oIR+POZ3m5Z8Qsmgh2qAgMEdhDHPjLOgy5bj8fZ2rQ31Mip5EpbWSvXV7cXqdJNla4a3LYMUd4PN1agTSEklKk5JPok2Ix1msCoJhpcNRHBZjJjzWTHNtN9NQwTdKvPXYy9lfv594dwD4BPqocCWcEXAtuQJbUDIaBHXSyR1FhYRbITQthY8KPqJ2xg0kXhKFNkBQcdtvaN+2jZIbb8VmMRJ7aSZp775DzD134yso4MLS7SSGm0gMMxEn7ehbGrsEgScM0PQUBO318Or3lBkHoBEasiKyyGnIwel18tTOJ3Fq7eysVm5arcGDr6WFSn/9mu6mobo2J29tLuWyyYlcODaW5beezbiEUMprg8ht7PrRF/ojhg4vlDV3ZDT7K5oHzjK2ZCsN5TtmhUBlk53EcJPSBcyPu7ICfXw8iZFBjIoNoqm99zE1JhP29CmUt4Qw5aIU2p56hJIf/pAZ30/FYXNjiJBc/OtJnX6Svvh8XxU/+vtmNEIwJyOStzaV0mB1sqGggZQIM/NGR2PUafr1E3TUkHJ5vOQ35THKI+HFGcr3MgSk246wN5FnC+b+RVkYdIPcmuYIsDVS9/wL2HfuJOjss9GGhdG8rGfJgw5BYGt1ERjaFZkVrq9Ch5M6e4LSMtHpRBc1uCAIXjCfmN/+tmuBzwd73oGkGUqJ6W4InQ7T1KnYtm/v/zpS50D5VuSO13GVFqNv2UZjaDhPTrsGodGge+JVAlyBWF3dBIHXo/RoiJ8Ec+8AoeW84CrE+jVoIyMxTZmCafJkNHYXabXgO1TAvqBE3Fo9jolZTCrwsqdu4GS2XtTn05QfiLTZiPjpT5Vl5kgCQt04Sys7W066K5XQUUuY4Pqx1wN0JmImdkQD7XwDVtyJNlj5rO31jUxyjMathdKRIZ09R04mQ0koGyWE+IcQ4ishxOqO18kY3Mmm2WLHaNYREKQnPD6Q1gZHV02W7OVgjoTUs9lXt4+ZupEAij3ST3VwNDkJysxvn9eAs1V58Mye9xNAiSnXTbqIpNl1eCwWym74MdJhI/X8eiImmxFaLcHf+x72UeO4IWclSUYfGo1gtkZ5+BhHjaKsrQKPSzGldAoCKZVqiOVbILurS9rYyLHkNuXyTs471Npq0RoFtTYbO41GtHrlh1tbozzYu2sEL68txOnxctsCJcww1KznlRumESDjaGtr5UCOYp4qsFgx6jQkhvfsAXzOyCh8UgkB7Q9v7lrcNg2kdGkEFc02EsN6HstVWYk+URFSQUZdv1pQRfICtNLNqLhWWj/9DE9NLV+3fcpHE56k6vzNgzb9+b/vCkmLMvP5bXN55PLxOD1e/m9NIVuKGjg7MwqdVsOY+BAO9BE3DqDzC4JyrQmHz8XonJVQn9fVrGUAvD7JM8uUmXxSSjoXjo0dZA8Uc5q9CVdZGcGLF5Hw2KOELF6E9bvv8Fq7JjAdpiFXmxtzaJdGoGkqIEpfjKUpGI+/oq8uKmpQQdCL/K8U09BZt/S52jx9Os78/M5Q5V6kzgGXFe+HdyI9AkOgE2/BGurM4XDLbVRWBXP9zj/Q1t7tc9/zb+Wc596tZJ9HZzFdW8qIwr0Uj57K+c+s5+FC5ftYfMAATie54SkABMy5gLhmyNkz8CPM55O8uDqfZbsqwO3AV19O09Y6gubNI2CUYvoiMBJjmAc8XlwlJQCdhfqaIgwsSFlAZEAkq0pWAZDkcir9Ns7+Lex8He2GPypjcrSTavNijTKzw2zB29jY5+eVv6O2M+H1eDMUjeADYBfwe+Dubq/TjhaLjdAYM6CYh5D+vAKPUzELZV2M1eugsLmQ8RpFddedc2Pn/pVNdmoix2Fur0bbrKeqXbG3Jk2aw/jI8XxZ8iWMvAhThJ34235E0IL5pC1sxhTpVhx0KE7BA1f8hAhnG+YP38HtdZPqUGZUxpEjqWyrwudWZl6dzuKdr0PuF6A3K5E4fsZGjsXusfPi7heZkzCHuPBogr2BPBEZhkanqMb1NcU9cggsrQ7e3lrK5VMSGdFtph8THMAvEs7l6j0PsPr5bL7cW8WhmjZGRAeh1fQ0t0xODiPIqOvXPNT23XcU/u4fFH8Vi+zmmyh3buaQ7gHsni5nuruyCkOS8jkGGnW091Fv32F1U6lNI86yneZnnlAW+ny8sfsV6oMqKHYM/jCuszqZmhJOeKCBjOggLpucyGsbi7E6PczNVLKBxieGcLCytUfyUgcdpqEivfIgHR2W6R9c/5FGoNj2b3t3F5v2KFnbVy04a2jZpaZwvE0N+FpaMCQrD7mQJUuQTifW1V3hn6EmPUKCx+7poRFQn0+0voj6Wi/Wcr8giI4CwxEKgq0vQXACjL2sz9WD+glGzIOoUbgybwTAEKYnqEwZf8y1V+OMS0aLifZdSqIabbXw9R8gZY7ScwIgfhIR+UWYPE5eIQ0JLKuB9kAds/cqkXUdgsA5dS4A3i39Bzx6vD7u/nAfT36Vx9++K4CmYpqLTHjbnUTe/PNuFxeFMVSZUDn8UX2uikqcRi2x8RnoNXpmxs/E7rEjECTY2iA4Di74I8x7AJHzIWghw1VJaLMFZ2wY5eHKxLOjwGQHbqeXb17PJnvjian3ORRB4JFSviSl3Cal3NnxOiGjGWaaLTbCYpQZaXicUoagqdoGxeuVGOKsiznYcBCJJMOjzMp1Y+d07l+Z30S4NpT49kNcUpPNB3VngTEAfUICC9MXkt2QTWloAhiCCI2vI/m+G9DrWkFn6vHAyAlNZmPaNNr+9RZfbnsbTc06Wg0GLEYjza4GpCucUJOeNocH6vJg5QMwYr5SBrv2YGc43pgIpTyAy+fiN1N/Q4DJQJo3iINGIzsCvf5rLu+RQ/DUV3l4fZLbzx/ZOR4pJav/lYP7azM6nwGtFNz1791sKKjv4R/oQK/VMGtERC+Hsc/lourBB6n45a3g8+J1CGy7lG5cNpcHh7YIm6xla7XSjcvncOCtr++0RwcadX1GSmVvrMInNSSWfYd91y6MY5Xr9lqtTIyaSElLyYDfu9cnaTMvZ4/7KVYUrcDusXPbgkwEitVvdobi5B2fEEqb00N5U+9ZWYdpqDRhKjoEGRe/pKxwDlw1pbLZzhf7a7hunPL5awYqfd0dUziuWmXWaEhVHnKmKVPQxcfTuuILQHFcap59nFGtFpD08BFQn0dqeBlup4//vGdl74RbafGFKPWedKZBxw0o9fiL1sCMn4K2b40rYMIEhNHYv3koMAp+vR1XlFJiRD9uBgl169BpIFK04+tI8NtbDmVblT7Ibjtc+rziKwFkzHha9oAnJZX/e/oWlv/qbAIMWvIS9BjcPtqMgYSNUCZujSHReLUCV23fsfoOt5fb/7OHj3ZVkBkTRFF9OzZLKQ2HAjGNG4lpypTOSDQMgRjCtaAROHP9gqC8nLowwehIpf/CWXGKxhsbGIuh3aIIAiFg3r2IGz9DY5Bc6t2ErrocZ2wYxeGKYHEd5ieoKmjG55UkZ/VfY+pYGIog+EwIcasQIl4IEdHxOiGjGUY8bi/WJmc3jcAEwh9CmvelMttOP7ezdECsTfnh6/z9EaRP4tnVRLtWMmlBAjF5e5lWk0NrTCJCo2Fh2kIEgi/Kv1ZmQfnfKG3vEEotfXtXSejKZjvrzvmB0jPgH/8m2SIpjxZsLVdmtj53BGPjQ5TZ8eYXlN6+l78EidPB54ZaZXaZHppOiCGEhWkLGRc5DkOAlmCXjnFOJ/+KVgSdrb6mM6wtp7qV93eW8+PZaaRGdtXjsTY5ydlYTdbZsWwY8REAz1wxkWtmJnPtzJQ+P8+5mVGUNdooa1AemtLtpvLOO2n5aBmRv/gFGUuDEFqB9bvvlGtusiN0ymewpnwN0NUWsUMQ9GUa8vkkB9ZWEhenJai9SgmB/OHFAFwSdz7zU+ZTZ6/raWM+jJ3V2egj1mJxZXPf+vu44IML0BubuGF2GgtGxxDhL+A2PlGJ8jhQqTwkmz9ejqu0FOgSBOWmSNLCMjAE+msKOJoZiNpWZcY6LtgvXIYsCCJw+ct76JP9LTU1GsU8tHEjnsZGKn93N46PPmBao2Ku6G4aoiGf1DQPV/9hJlnxbbSEpLFlg/8zMgaDsw2P19dvuCwAW15SyoNMu6nfTTQGA+ZpU7FuGLjjnbusHDQa9DMuJthVx9mB1WgOfoRTp3zmutZEePcqpezzufdAlDJR2fVVKZ9/HkdR8ALCrlhEbJiZ+BTFWgAAIABJREFUUJOeSycmkBOv/FYOhSVzyWTlN9Rkc+E1GXC1tfRILLO7vPxzfRHnPP4dK/ZV88DiLB5cPAYpoWLTdlx2A03nXse/H9rCP367js9e2Mu+NZUQHIMx2tyZ5+MoK6Eq1MvocKWE+sx4JTQ6MSgR2mogqMvsJ9PmUmGMx2k14LPacMdFUBnkQhj+n7r3DpPkrM6+f1XV1TlOzmFnZnOQtNIioSwBklgESIDI2cj4A2OMTTDYYGTwC/g1fsEGkwQYEAIBkkBCEspZWmm1q815Z3dy7Byrq+r5/niqe6Yn7K5tZMy5rr6k7TBdXVXPc5/7hPu4KS2oHBo5EEd1KbT0//eEK5ezMwGCdyNDQU8z10R2ii6RP05LTRdAUGUELl0jXO+VlUOH7pMet+5lpjiDrurosxm0SATVI+n24ecn8aRNjrfqNNzwBnC56MxOs8dVh2HaNAea2dy8mXsH70X0vwLSI7DjP6SuTKynhhGMJPL4u7qIvO2trHx6lL4JGGk2qrHGqLuRxpBHlo+mRuWiCLdCuywFrEgPaKrGz1/zc2668CZA9hIYpsbHExlOhGS5Y2l2hrZgG0IIvvjbA0R8On9+xRwbAIg7Anxrzm8j6KgjbmoO83+u31j1lhfauT3SV9gzmkLYNmOf/gzZBx+i+TOfoekvP4pWnsDfX0/20Uflb04WUPU5ILCFXdW+rwCB361RLNuY1lyz2ondM2TiRTZetQLfWWfR8nef5YG4HA/4tq7rqxPATmZOLnvtv7vn2wjLw6fW/5hvXvlN0kaax0Ye4+9fu46b3zNX7TPQHETXFPaOpRDlMuOf/jQz3/6OvF+c0NB4epKB2AB4nQV7mtDQlDMroM6akZuqN3rK91fNF6OclBuZ2wECgMjWrWCaDL373VWQDTnLvBoaEkKWQzaspL49yPrAMVqnn2dqOC/1kjwhzEKaG779DB/40TJL3cjB7ttgw5sgcOqy2OAVV2IcO3bK+nhjeBi9pQV1jRx0/yr3Ltj1U/Kq3Dj1Yos8l01r4ULZjyFswY57TzIcD3F45Zu5a/d6xo7Ie+j6c+s50iFZ76FoJ6/ZKAE2mTdQ/H48huBE+oRzOgRv+c4zfOG3B+hvDPKzG8/nxkv6qsAfPzHB8+f+DU8faED3aqx+eSvpmQJP/Pwwe3LX4GlwkXvmGY5ecSXW8RNMRmUPCUhtof5ov2TnmQnJCBwbnMkxq/kpJuV1EQ1BhKqgdXdhLJBMGTmUYDYywq1Hbjnluf6v2pk0lPUu8TgD0fE/LquIzVUYAUCsNUBiJC437VVXAzBbmKXOW4c5PV1NFJcNi2fvPEbCA1pPAL2piZCji3PE28Ddu6Vne03vNQymBjnc5MSPM+PQd7ncNMo5sKQUwFiyQEfMx/D1LyPvBd2CoQY32+LSG+8KdRD0usiWLMhNyZGJIGfbBptr8gQdoQ58LglubpeJYXnZHOpli5C/V6RStAXbePTQNE8eneEjVwwQ8dfS/IoSa6wlQENMbvDFJap35ltfg5+LxnajfutrnHjzW0jfdReNH/0ode98h6T2hQTBzQMYJ09SOj4oGYGeIuyOMFucZc/MnkVAEHR093Pzhqoc3jaBP+Kmb0s7PT+7FWPTAE/G5eYVs710h2VIYH546OnRp9k1vUt+PnGYZycfwUhcSHe0kYs7LqbJ18S+2cUNVR6XxsrmEHtHU1K5VQhyzz6DEKLKCHKFgpSW1r1yhvUyE6wqNukAQdCYgVBrtQLttOaLYWRduBobUH1zCXbPmjW4e3spHTlK3bvfhRoKEVDl9ayGhtJj8n5zBNTM6RnqmMEq20wPZRCeEAdOjLJjKMkzx2ZrgLdixuBTYBbYFbnitIcaulK+Z37uYtHfGzqJ3tUFoWYOqgNcU7oPe3QXOVNKMiilEOKdv4G3/xJc8nfEx3OUCiarD97CdZ4voKtlDjwt11oskuNQu8L9ff2MnnsJXXV+XKpCIl9GD4TwGXI8K8DxmRy7RlJ88urV3Hrj+Zy/QgJbY8hDa8RLclohF2jjwq2t3PA353HpW1fx9s+fT6zFz1B+DZHVGv7zzsN37mZGX3ce921WWRmTCWVFUbjl1bfwsU0fkuxwHhA8eXSGtNuP4tzPipAVR0p3e00JaSFjMDOc5bB/J3nzD5QsVhRFVxTlI4qi/NJ5fFhRlFOXYPwvN8u0F82XTVZLR+cWVawlQHLawBIaDLwKgHgxTr2vHnNqCleT7NI8vnOabKLEIx6D9joJJLG3vw2AXE8/Nz8pxdpe2f1KvJqXrx2+FdEkVRtZcXmN9zibMyiWbdpjPp7I7OQ3L5ebX7zxLCxKIFT669qdMElZlidWhr0rihRwG1tajMxNFkP4EY1r+Eg6QVGHYN5mOhHgI7fuXLZ+PTGRxxvQ8YXctNfLG3n7yR2nVOPM33oLn3nuR3Q8fg+oCs2f/hsaPiiFwEjLxRo6fzMA2Uce4WQiierK8vr+16EpGo8OP1rtIaiE3yoDWObnCaZHsrT2Rao6Qb868ivSLglSdi5HV7gLBaXq/ZWtMh999KO885538s/b/5l/2/lveFQfxuxFNDpsZ13DuiUlt0HmCfaMpihMO9o2Y+OUh4erQGBbgjqvEzn1Rk7PCDIldE3BnZ+QQLCELXme/XUYGQ29rXaAjqIoNP31X1H/J++n6ROfQA0G8TrLtRoamnF6MRrkZmVOT9Pgk/f/+NEUJ3Ma+WyKl/XWUShbVYXZ+Taz50EMofGrmc5Fry00vbUV77p1ZB5cHgjKQ8O4u2SY8SH7LOrMKQoihhBOabZeRzFfB5G56rbxo9L7b6oXtF7UzYrADo7tnMY0LCbzk5guha+d92rWnLceRVGI+t0k8waecBSvAUeTslfkkYNToJR59YbFY3A3tEco5+Re0XlOB8q8woj2VTHGMu34GvN0fe+7tH/lKzywtRWtvZWIZy6E49f96HknXxaU62fH705y6NFRrNCc9pArI0ta7a5WysMj2IZkfCOHHJXgyGFinuXHsP537ExCQ/8ObAa+6Tw2O8/90dp939nLAz+o1SWffOwF3KJYI0Hc1BXCslXisauqSF5lBJOTVSAYORjH7XdxTLGq5Y+BLVvo+919vPzNW9k3lua5wTgxb4yPbv4oT4w+wZ1dG8DfIOUVKuGAYorRhPTU26M+nhh5gonXbqHrR/9BdM3bEELBLkfpbQwR9LgolU1EbhoC8zaD9nPkQl9iA3KLNDY6VuM6Ok0LO+QjnIdbnszQ3xzkR+/bsmT9emI8R6xVAtx1614LwK/23slfPPIXTC4xY6E8Nsb01/+V432b+OT7vkbvz39O3bveNfeGjEzU6X1r8KxaRfaRRxhMSHBYVbeKzc2beXT4UYyREfS2Vik9zWIgKJcs0jOFqmxE2S7zs4M/Y2WHlLS2c3ncmpu2YFuVEeyb3UfBLLCxcSM/3PdDHhl+hI3ha8H201ABgvp1nEifWDKvsHVjK8l8mceen2tsyz3zbLV8VLNdcx3E3shpk66T6RJNIS9KdmLJ/MDxF6e5+a+fIJ9eIJTmi1LOunC3LA7LhK68kqa//msUTUMN+HGpbkxNhjuB2klbgDkzQ6A+QKTRx6G90xxOQJff5IvXSV2kXSNzeQ4hhGRAJ55gpxjgxYkzG88ZvPIKCrt2LSk3YWUyWIkE7q5O8obJvSV5/XLtsnvZchcoeusovFAbpho7ksRjpGg4dy1K21ms1O6hXLQ4sWeW8ay8x67fuI63nicBpi6gE8+WSJZVgnaI40npdT98aJLowL/y7f1fWnRsG9ojYMr7zh/28C8PHOZjt8kNu2N1DNPSmUrMhfMOJw5X8wM1lnHWiQP2+58aQxsrEGuWuSQtEsJny0qtckcT2DZlJ/80cjCBy6swHRwmeqahw/+knQkQnCeEeLcQ4mHn8V7g9G2S/4stdWKYkT2jiHmUd3bGxp8cIvfEE9Xnmhrl4psKvZKfbhvi+HSWbKpI59B6yjMzuJqbEEIwcihBsDMICjV18O7ubq47p4OoX+cHT50A4K2r38p5LefxlfQext9/D09NbueTw7/lOa8HiklGHCBwe1McSx3jos5LCGzZwub2lZipszFzffTU+wl4XETIodgmBBcAASw5/cltSS/WiMiqGk8gij/ZzHvOuYLb/vQCOuv8iz4jhCA+kSPWKpPHnY3SI7u86RU8PfY0r//16/nF4V/UyARPfPEfQQiOvvXPOBovLg4tpJ2KjXA7wcsvI79zJ4lpuShbA61c1nkZR5NHyQ0NVqWPAYLOHIFKaCg+LoXkKoNmHhp6iMn8JK9Z/yYAbEdyoSfSw8m0XFQvTMqw2dcu/xrfuPIbbF2xlW7tatwulZADNOsb1gMsOcTk4oEGNrRHeHibs5lqGvltz6K55LG5bH2OEXjCZ8AIijQG3fKcLMEIRg8nKOVMju2o3UBtfJhFDXdDaNFn5psWCKIqHkqakFU3QkjdHHeo6tyYMzO4GhtpHYiSGMqSFj7qdYMVDQFCHhe75wHBc3cP8oNPPEFiuoGnzXUcHM9QXiJ0tNBCV74ChCD7yKOLXjOGZFOj3tnFVLrEPtHDkd53khuQDVml5hRld4j087X39PjhOJHkUbwr+6H1LNrd+/AHbA4/N8F4bhyX6uIr111EV71TAOJ3U8ymebbxveTC13A0eZRsyWT72G4sbYq7jt/FzqmdNd+xoSOCsD0gbPJC8O3Hj3HPnnFsW9C+MgYIRnJ9YJYomAUGU4PV/ECNOc4PoWZsyyY9U8RlQVuXkwPp7iUQkeyq0F5P0RMlu0uy0pGDcYLdKkKx/6CMwFIUpTp/TlGUFYB1ivdX3vd9RVGmFEVZkmMr0r6uKMpRRVF2K4pyzpkf9n/PSvkypbJO8s4vgxDSsyRKJH2MmW98s0rFwyO341EyDBb6+fQde7ht+zAdgxuJPLeGdLALvamJ9EyBbLyEaJLe5MLmKp9b44pVTdXFpCoqN738Jixhce29b+eDD36Qe2Z38utgAApJRpOSop/My/DOxR0XA7CyOURx/AZKE2+gx1mgDYqzyQTmUdq2SsJ4cYWvu+yoG+pObsPrIZTT+dDlq9CXkWAuZMqUciZ1TjmtpqnoHo21wQ3c8do7WFu/lpueuYkb7rqBd97zTj71xSvIPvQQjR/+EG2rV2CYNsOJBSJ7GacWOtRK6LLLwLJoPSwXeUughcs6LpPXaWS4Rsog4K5lBNXRk22SEdyy/xY6Q528fEDmZyoTsnrDvZxIn0AIwY6pHfRGeqn31XNJxyV86eIvkcrpNAY91fr9tfUybLdUnkBRFD50eR+lGQmqgZe9jNyz21A1ec9otus/FRqaTBfpCZpgFpYEgviY/A1HttcyLyMhPXF3/am1k9RgEFv1EVHG4fuvglveBMPbZIGBoiBMEysex9XQQGtfBLtokTFbcZWzqKrC+vYIe0bmfsOJ3TMUMmUeSv0lxdzr8BqCI5PLV2RVzLNyAL2zk8xDDy56bfdz8jy7u7uYSBcRqEy+/O/Jac61b5H3T3zfierazMSLZNMmkdQx3H190H0harSdgdBOTu6bZTIxQ7O/uUbyO+bXUTJJhOIiE1zLcHqYRw+NQWAvKioNvga+/NyXa5yaDe0RbPzodoGf7ximWLYplm2GEzJc2lhvMFLaCPlZ9s3swxIWGxvmzZuuWNa5fsEWsokSwhZ4hEJvr+yjcXd24nfWbiIa5ZnzP89vflNg+1duk6DRJZ3SmPcPBwQfBx5RFOVRRVEeAx4G/uoMPvdD4OpTvH4NMOA8buR/MNxkWHLTntj2HDz5VaZOpBGKSrQwIodu3H8n3PpWlAc/S1NohpMjcoNIl9K0JmWCbaJ5C66mJkYOyvhdKiw9woVAABDy1pY9doQ6+NwFn2NT4yb+8aJ/5Ly6dRx169XQUMjjYvvU07QH26tVLyub5zy/7no/Qa+LBsUJO8wHAn+dnJ+8RJ7AXRp3fr/cPEq6RtTIE/Mvn/KpJopb59iCJ+CilC/TGe7ke6/6Hn9/wd/jcXnwaG6uvmeKyVYvde96V7XH4Mjkguak9Di4g+AN4924EcXno3NSljg2+5vpDHfSotahp/K1QOB47JVzGR/L4dJVwo0+JnITvDj9Im9c+UY0vwStChB0h7urw8t3Tu5kc/PmmsOZzpaqYSGQi6092L5snuBVa1vocTqzQ1ddhRWPY508AYAmXNR7K6Gh8Bkki0v0eZ33hBYPBpody6FqCuNHU2Tic/o4xpT8jB499chKNRDA0nw0KqMQ7YKhZ+QMCKf80ozHQQhcjQ209cuwQ97sQjEyIAQbOyIcGM9gmDblksXsSJbV3Ud4WegHhM0w78t42Pbb45jlU/uGiqIQuvJK8s88W9P5fHAizS/vkn0jekdnNXneHPaQSxkoCuhOGWjOcFUbrcaPSccqmjom5bA1F2y5kZXlW7FNQfmod9GgpZjfjZaX92LJ00Ao38A9B3fjCe9nc8u5fGzzx9g3u4+7j99d/Ux90IOpBNBEgR8/c7I6U/jQhPw77d0KE+VVlJPTsgBBwMbGJYAgMy7LvP31VU0zHwqhZnmv6J0d+MKyjDs5kkcoLsr+OrYdl6Ejs1WC8R8MCIQQDyE36484j1VCiEfO4HOPA6fSyX0d8CMh7VkgqijKGRZR/9fNMm1M4QBB6Gp46CbGH3VawC9Yias+yswXPyEbZV7xeZrOvxg7WcYlIJdP0JjrAMVmqmkzSn0To4cSBCJuxswyYa+LsHfxpio7YmtHHW5dsZWbr7qZa/uuZVVsJYO6jl1IMpos0Bbz8sLkC5zfen7VS40F3DSFPDSHPfjdLgIeFw04nlqwNmFI+zlLTq9yF+Rma1gyaVh0qUTKuVN2slakuCsNdgAev04xLxenoii8YeUbuOXVt/D1xg/TPGtx93kKuFxVIDi6ULEzM1b1fhVVhfZO2tIpgq5YtbGtMy+vkd4+J90b9CxmBLHWAKqqkCzJjaEr1IWiqqh+fxUIeiI9ANx/8n4y5cxiIMiUZHhmnq2rX7ckIwCk7Ee9i6zLy4stsnGo9ILczLT5oaHTMIJi2SJVKNOtO+8J1yrAFrIGhbTB2ovk80e3z4WHyuOSkbjDp6jzB5RAENMVpFkdxT7vRvjQNjj3/XCOzNlYMzKJ6WpoINLkw3arWGY7il0Gs8TGjiiGZXNoIiMdJgFNpcfJewfZ+qlzOOmxyb8Q5xf/Zztl49RgELrqVYhymeRtt1Wfe3EoSWtulkIgghYMMOX0VTSFvWSTUigvUC/XVMFbT97JE4wfTeHCJOIvo4WdhOs576TRN0HUnyE41LYICKJ+N3pxDoS6k2t5ZvJRcE/xiq4r2bpiKxsaNvDV7V/lu7u/y2PDj5EtpjHUINgFxlNFPrNVhlUPO85NR38AG52JI7McOHqcd+26ifEXCjC5H+7+2Nxch8ykrOhTVY4NyntVEyAC8tjdnZ34o7JQIzuSR1HgHV+5nJXeQZonnyftk93f85PQv09bFggURbnC+e/1wFagH+gDtjrP/XetHRie9+8R57mljuVGRVG2K4qyfXp6eqm3nLEZ2TmvapKzYO3rmNg3hD83jl+LU987Qn7KRf7Cm+Gij6I2+VGBJktFmc6joNLeNE5ZDzKe8jFyKEH76hijqSLtscUxdpBAYNmC0jLDWvrr11BQVUazw4wkCjREs2TKGdY1rKt535beOs7qlF5bcLnQEMhqkPQo2Baf/OVuHtg/CULgzp+Q58B0FpYm8BlFhLH8xKb4eB7doxGMzXnMXr9kBAstdeedWB6dx/oNZouzhLw6rREvRxeGDtLjNYnRUmsH7akcDd65ZpuWtLw1l2IEuXmMoN7JD2QMuTADuvy3Gghg5x0gCPcAsqII4Nzmc2sOZyZrVCuGKrauYR2j2VESxaU1crpdBnl/iC/tSKJ3dVHYtg2hCPxKAL3SZXuaZHFlsFCL6sTgF4SGKmGh3k0NNHWHasJDxvAwmkegcYoB8YDtD2OrOn4tQbbjEikz/ZqvQo+UWpivM6QoCoWIC6XsOBalDBudQUi7RpJMDMr7bcB+nEP+c+jpjDC6JsjuHp34WI5dDw4vPoB55j/7bAIXXcTMt7+NlZJ/a89oirbcDBNB6flOpov4dI2w10UuWSIQ9RAI+yirJYrR9mqH8vjRFFFjDF9/39wX+GIoZ7+NRvEinlyI1kDt+Yz5dQKWvG8V26Q7vo5yQGo8XdF1Baqi8nfn/x1Bd5Cv7/w6H374w3zgl2+hrAexMOip93PtxjY6Yj72Tkzy8cc+TrY1j4rJnu0lWh8+H38hwtjhpNQm237z3FyHzHiV8e06MNdxr/YMELjkYgIXXEAgJqvySxMasdYA/rCHs9farDvwQzK5WUJ6CF19aQo2T8UILnX+e+0Sj9f8Hr57KTd0SfdGCPEdIcS5QohzGxsXl3j9Z6zk3IDhkEF8LIfx6u8wYW8gkj6OdvR2ohesAFUlt0cmL3c6NLZXdeGfFRhakQHPcXQjwwuPz1LIlOlYFZPKmdHFYSFY7MkutL566WUcy44ymijgDchRj2vr1ta87/+9+Sy+8bZzqn+zXkljK9rcoJKK6RKQpuIJfr59mPv2TkB+FrclNzXDqYIoKBKYKotyKUtM5Ii1+GtYg8evU8ov6PAtFknfey/mJedS9ChVuer+piBHphYCwZjUp6l8R30rTekyXd45D67JOSS9vZ1cqsT0cIb0yQwBG7Ili0LWIJ82qHMqhnJleZ1CjlaOGghU9fmb/E3VWQrtwfYaT9GyBfFciYZgLRCsr5cJ4+VYgUgmCDc3cmgyw3jfevLPP49QLQLqPMkNT0Qq1ppLA20lDNIoHOK8IDRUAYL6tiAD5zUzPZSpio6Vh4fQI9ppp5SVHA+yrBgkA/2LXjcdRqA1yHWV8CuoVoCcFYNSmo6Yj5hfZ89IionjaSJRC6+aweyWQLK2LczjuRy9mxrY8buTDI2lKZ4iTNT013+FnU4z8x3ZiLdnNEVrbpbj7ih5w2QiXaQ5LPM1FSAIuYNkPHFKTd3kn3mWYs5gdixLeOoA7vlAAPCyDyLUDB7TR4t/cWgo7KQ36+P7aMmuwCMEq6JrqvfEmvo13H3d3Tzz1mf4v5f+XzITw5T1AIZq8e6X96CqCgPNQXbkbua+E/dxy8T9NOuHGRz0YCoGWr0pS9ETJ+SXVph5dhKCLdi2YHx0bj1Ympeu73wHva0NX6wfBFizQZq6nfvY6RHJpmZesoohOAUQCCE+5/zvTUKI985/AP/we/juEWB+EXIH8NIoKs2zUkp6X91dZYSAwy/MUDI9RFKDaF3rUN9/F+6uLkqHpZTEvcdmKLqgR9WJpnyMho/gT2VoyR5gdlQu1PaVMUadJrClbM6TXXqB9EXlzXwoN0mmZGLpw7gUF/2x2oXr0lRcTlI36JWhoZI7VtVcqZpbAsGeQXk6x5IFSJ7ErcrjNUo2wuVDuCUQVBq3ljJZOhqoec4TcFFa0FCWffhh7EyGutdfB1Ct2+9vCnJsOjsn1GbbkJ2oCYNMhJrQBKwtzW2i9UkbU1M4Pmjxw089xW1ffJ77/m031+U85Ipl4qOVTbKWEQR1+TfUYLAaGlIVtdpYtjAsFM8Z2IJFjGCNA877ZpYGAjORpL69iXO7Y3xXW4GdzaJaBn5lHhBU+kOWYQUVeYmoNSPVRPXa+2d2LIfH78IfcdO/uRmUuaSxcXIId53ntEBguOTxHLOjpJYYZGROO6GhRumRT7nldZosD0Apg6IobOiIsms4weRgiph3lIzw0blGzslY3x6hULZov7QVs2zzpX/axv978Miyx+NdvZrI615H4sc/ITs0zMTxERoKKcYC9ewdTTOVLtEUljmsOSAIkfHEyfvqMaenGXryIAiIzBzA07cA3Br6KcUieCz/IiCI+nUCTiK4ZfJ5VKHRkVrNVb2vXHScQXeQq3qu4n3hSyjrQZTGUrXHRg/vpODeTr23ngdHH2dF4FHc4Ti/XvevNK4IkZjII2adLupK0UZmAkLNPHcijrdog9OPMN+hcoWaqStGwPDR1C1DRqpf3hO5TPwlqxiCM0sW/2qJ5375e/ju3wDvcqqHzgdSQoiXfGqzkZIbRucKSbFefEjS2Uj6OOorPw7eMJ5VqygePsxossCLw0m8TT4aMzaBkpex6GHU2RSdqvxcuMGL8Mtk8PKMQCb0lpNQDrlDNNtwpCQXdcY+SV+0rzqQfsm/6Zahoby+hOyTEx45OCSZxWiyAImTuBWZpDIKFqbLjxXVsN0eht7/J8R/+lOEXRu6KhVMcimDuoVAMC9HULHkr3+Nq6WF9kuvxqN5qnX7/U1BysGH+ZvHPydzJLlpOad4HhAc8Uvg6krNJT7r4mVm6wM8ffsxmrpCXP2n6znn6m5aLZXiRIHZirfsMILK4JKg2wGCQAA7N9eFWQkPLQSCmazcjBcygpA7RE+4h72zSyeMrUQCVyzGZ7au4fFgDxMbtuAulQgZ8/6O14ldL5MnqDCCQGl6mYqhLHVtARRFIRjz0NoX4djOaYRhUB4fR28InnZcZakkv2N/uYlUYXE4z5yZQQ2Hq1Ipo8JEIJgu90mhRWBTR4SpiTyFTBmvfZCTopkt/TJ8tL5d/sbBkkG63cOagsr40eQpmw0b/+IjAAy97vX8xz2fR0VwMtTCruEkk5kizWEvpmFRypsyNKQHyHhmKZgSIPY9OozXA+H0IJ6FjAAohOU6rBO1ayMWcONzjqsuvp+yatCVWMsVXct3R19sdmCrOvu143zssb/gJ/t/wo7czZj5Hj668SYKVpGhtt1Mn3MzZjDPnYczGAWT4qwT/hndIdWLC3EItfKr7cNEbaU6TrY0/5ooCm05CTaNXZIRKM6c7mI2+YdhBIqirFYU5Q1ARFGU6+c93gOcumZNfv5W4BlglaIoI4qivF9RlA8qilIRLr9x9czmAAAgAElEQVQHOA4cBb4L/H//3R9zJlbKyA0k3BQg2uwnNVXA4wF/fqo6Os6zcoDy0DAPvHACgIE1deiOM59pnMCamqI+Bk3dIfrOaWLEKflcqmIIwF8pe1xCQrli/egct3OAYLx4tFrCuJwFPBqNSoqsawkvwfEsj47K+O94qoCdm0VTTDSXglE0MVQfrpBA/+Gt+DZtZPKmf2D8s5+t+TNz0hK1uQ+P34VVtquVIub0NLknnyLy2teiuXS6wl1VRjDQFMId28Y9J+/g3sF7a0pHK7ZXlwDUOD23KMLxEifbX0E+bXDxW1bSd3YT517TQ0kVuI/lmB3LVr1loNr8NT80VGEEMJcwPqeptkp5OSAAWF23miOJxd6tEHLMp1YX4+yuGNduauNzna9EtU2ahuZJAJxGb2gqU8Ktqej5yUVAIIQgPpajrm2OYfRuamR2JMvsvhNg27hbYqdlBMWsZCN7ys2ki0sDgauhofrv2ZIJfotpc0VVinpDe4TmsvRgQ+WdlPytNIXkFtDfGMTjUvnFC8P8KJ2gpMDKfXl+8MmnePhHB+bmeQC5Qpnv/XgP5VgjzZ/5DMn1m/neutfg+/b3ObF2C7tGkkymi7SEPeRS8roEK4zAG8cyFPIDWxhL+OirT6LZpqwYWmAZv1NgkaotW4753XiEgioMXFaJpFpgRXIzK8LLK+bkJ2UEYaCrl8Pxw3z5+S+jqRrF0TejGX10BDv4TcDHLmOWrsBqRkxH1Tftlr0a0weqozwNXyOP7ppAR6G5RwKoUaiNEjTluxBYVaBQfX7nOqb+YIxgFTIXEKU2P3AO8IFTfA4AIcRbhRCtQghdCNEhhLhZCPEtIcS3nNeFEOJDQog+IcQGIcT/iJBdKSMXqiccpqVXXoyGqI2CmAcEK0EIpvccoCHoYfVauVByeg53PZhTU+gtTbzxU+fy8uv7GY7LG+50oaHlGAFAnxrgpGKguJJkyslqaGI5c2kqDUqatLbEzeGWHvzI1Cwhr4uyJchn5Wbk9mkYBZOC4sVPic71K+m8+WZC11y9qNlnqYohkMlimKO12SeeBMsivFXqw/eEe6qMIBrKo7rjqLj40nNfIu4MAZ+fLD5pJUkEIOSU5AnLwp3UyYYvY+C8Zlp65XXRPRonIir+aYPh/XHq24PV3EWmnEFX9SqLWggEb1r5Jm56+U3VEFHFKgnbhaEhkIqRk/lJLLt2sYp8Xk70islz/87zuxlyh8l6TXyzJXLPPeecKHnck//2fSa/9OVFf38qXaQx5EHJLG4my6cMSnmzho31bpL34b7v/BYAT3szRq6AsTDkc/IZePgLcOQBirkcqmWQt7RlGMF0FQiEEKQKZdSoynR5Dghe1lvPJp8XW4NNwcOcs36uiMGlqaxuDfPU0Vl8QTfj50d5PGLRsSrGgafH2fG7ObG/e249SOmpaX7y64PE3nwDd133YR7a9Eq6LzmfTV1Rnj42S7Fs0xz2kkvK6xKIeAjqQdIeyXyO9LwexTbpTO9Aa2yojnucb0mfPB+u6drei5hfRxcaHkXeF4lSFnfZRamw/LrMx+V+8bpzruO+N9zHHa+9gx9ffQuKFePIZJZr+67lOc3mkF1AN3tIqJJxJMx2WPMaEDYcvg8h4P4hBXdJvl7JASwsuqjPdVPyjVdnYFdCQ0Y2/ZKVjsKpcwS/dvIBr1mQI/iIEOLpl+yIXmIr5ZxGnFiM5hVyoTYEJX2uAEFlApFy4hhtUW81XjcaPkGTK4aVTKI3NVU3of3jaVSFJbX54fTJYoA+dxRDgb5e6T1UZgksa0LQoKRIKEvQRSdZrNsFrl4n46SZjAMEXh2jaJGzvURdBj63hqIo+DZtwpqdxZydG1o+O5ZDc6mLBr57nL6DUs6RepiQET13bw8ggWA0O0rZKnM8I0Mr7863kCln+PJRp3TQSRZbtiBpTDFWD26HwRT3H2C49dXYClxwXa3HN9GsIxTIzBarHcUAOSNXzQ8AqMFAtbMYZML4uoHrFpXKzjGCxYPiWwOtmLbJbLF2kLuZcMr/HCA4uytK0F8iGTCxvD7i3/+Bc6LCCBuS9z5B/JZbFk2dmswUaQ25ZCJxgbzE7FilWW7uN9r330EgP85IMkDjR/8Cz6oV/Hri4/zuO3vmPmjbclrd4/8Et7yRYtHGbaTxmaWlgWB6DgiKZRvDtNHrveTtOnIJuWFG/DrnBAJ0rgjjKcdRIrVlruvb5Pr4+FWr6OuOsE0xuPAdqxg4r5kdvxsiNZ1nZiTD1PPy+m7bNYVlC3aPpNjQHkFRFDZ2RInnZFK9Kewl5yirBqISCDIeeQ1myxGap7ZTfvjexfkBx8YUeZ5L07Upx4hPRxMu3A4QqE4Sv7xM7g6gkJH3uC8mj7M/1s/K+hX01Ac4PJnl2hXXIhSwFJiabqXkUbCxSVltsP4NAPzqjnqeyryHb+/McWmbXK+V0M98EBJCEM52kPMNSmFG5pLFSskg6vkDhIbm2aSiKHcpijLtdAr/2uku/qM0I2+gYKGHo3SuqcMX0mlxvI1KPbLe2Yni8xEYOUFrxIs3qJNYF+SFtodpLzky1U1ztfv7x1KsaAxWQ0ALLVCRRjgFEDTYThgh+AKqMqdeuPwPyeLFIL4UEDjJYj8lXrNJLtp8Ng16QEpRF0xStpuoNlfN4hmQDUalI1KIy7YFx16YorV/TtCt+t5AhRHIjcWcmkKLRlHdcjPtjfRiCYvhzDA7pnbgteEjk09z48AN3JM+xHavr9r7MDiTxVaTjNdpiCGZtB598Hkmm8/jQOMj+KO15XKugIupiDyeSn4AJCOo5AcAtAWMYDmbyRp4XGoVrOdba1BuzmPZ2g3Fcjb0ChDomsrGbg1TK2PGYuS2bZOCYd4IhVk3dtGAcpn0XXONSoW9+2javY2+QFF6jctUDFXAzpydZfLLX6bNM0Mq2k/wHe/n6GQXU+UBpofnNewde4gdQ+u4nVsx3nInheg63EaakLU0EFjTM1VRv2RB3g8+J+4/PS43yLJhMTOSpbmCVeHaKu+3nNfFBy7u5U3ndlbzZOOpAhe+oR9VU3j8Z0d45CeH0LwaRUWgZU3u2jXGoYm58tTKfwGaQx6yFUYQ8xBwB8h45nIhnaOPIvL5JcNCqVKKHRkpE1GaqS01d2kqqnBXGYFmSQfQPEX/QyEvHQdvqNZRWNkc4vBkhs5wJ2c7MxOOj9bzjgu6EVqWpNkG7ZvJBTYwketgf+FVqP5WrupuQFEV6loDKKqCMS/Xlpktopt+koEhSDlKpA4QeMovXTMZnBkQ/BS4DWgF2pCjK299yY7oJTajYOJRciieEJFGH+/7p4sJl2dA16snXVFVPAMDNEwN0xqRz4meAEn/SVoKMoTgapqred83lmZdW3jxlzkWPE3VEEAhKTfvyeJxesO9+PWlexKqlpM3+YxY4nudz7YFBGd3SaAo5TPg9svQUNEkUdYJa3OCYXNAIEM3J/fMkE2UWH/p4taOCiOoJIzNqekaYKwkZgfTg+yY3MF6w8YFvM1Jjr4YrgNVguPe0TSqniTTEsZKJLCSSXbvE2h2kee6H6kZWwkyzHYoquAPu2kbiCKEoGzZZI1slREIIVD8AYRhVIeKL2fTmZIMzyzRVFcpKZzITdQ8byVrgQBgTbuCqZiUA2FEoSBHM3oj5CbdoIC7t5fkHXKwvJXNMfJnf8b7HvgOawtO6CS0kBHk8IXd+JwNKHn77VAus/Y9r0IIKUa3bafcwAsZE6PiWT7zDYbMCxif8PLwYw0UtGY8Rop6xSS9AAjsXA47n69WDCUdYI91xACb6Wl5jYb3xxG2oL3ZYVgLGt82dET4zNa1aKpCmwMEo8kigaiHLdf2MrRvlqkTaWIXNjOj2jTYKl/47X5MW0hRN3CYgXPeIzI05HKruL0auqqjeGyE26RtIEpjj7ynl0oUP3jyQXKazIsUk4uHAgnhweNUz3kseW+ZxvJaSUVD3uu+YK1DsrI5yInZHMWyxZ83X8QHEynqTZNXb2gl6E4Qt9rBF2PUKyuSysLHBzesp5QoEarzoLlUPI5TVrGpkxLQZwJDkJLFKKpTSOEp8wdnBIoQ4sdCCNN5/IRl6v3/GKxUFLi1Qo3uu5VKoUUiNZuB1tdPZ3KMlrDT4aqXUdQyDTl5yiobXzxnMJ4qnhIIlpJPrjkm02L/tEarKV8/XX4AgKwEgklreSBYVacS9uqEPC7MQkaO1vPKmGi87MbPXHOdq7ERLRKpAsHex0YJRNz0bmyQ3ZE/vh6OyYHfHv9iRlCZzQBzidm9M3s5nDjMeU43p3fXbTSjMeidC3fsHU2huZPYnfLzo0/uYdzVQ73/CCU9v0h/PehxMa5avPcrF1HXGuBv79zLG/79aTJGtpoo/uf7D/Pd7XLzPh0rmMku7iGoWJszT3k8V1vMZsWld+qaBwSdjRaWWiav+lB0XeZN3EFyE168XfXE3vF2SgcOMPHUHqa/9W3M6WkECqufeED+gYWMYDRbzQ8I2yb589vwb9lC+wWrCUQ9PPXLI6TTGmt99wOOjPrUATj+CAnRiy+kc2znNMnZMm4jTVQpL2IElTCg1rAACGI+oq5JpmcdOYVnJ/CF3XTE5sQCl7MKEIwl5Sa74fIOmnrC9G5qwNMXZFYTtKgaM1nJPjZ0yM0t5NXpc2ZkN4W85FKydLSyJoOeIKnL9nHlu9cQuOACADz9i0ND9564l+ao/D2ldF6GyuaZZXvxaE5hgTOT41ShoZLlRRFWjSoxwMqWELaAo1NZzlt5HR9KprjIe4yNHVGavROkzBbyhsXhzGrcSo6Qa5LC4Qyp6QKRRmc+iE+rCQ1ND2UQis20fwKSDhA4zqn3fwEjeERRlE8pitKjKEq3oiifAH77xzqyslQCj6u2wcdKp+fa1B0rdPQQMXJ0IG8WW5VoHUnKm0ZvlkCwb0zG3te3Ld/6rWsqbpdKdpmqoYcPTDFd9tFnyIV42vwAyIE0wLi5WH1ysig9uT4nhNIW9WGVctXQUCFXJifceMUcECiKgmdggNKRI6Sm8wztj7P24nYZFkqehGMPwdP/CoB3QY5ASnLPNfqF3CHqvfXcdewuBILNhTzb7ZV4cmP0FnIMzpO63juWwu1J4+qRUsHbf3sSzSwQlmXqSzACrYZZHZrIsHskxXgmQVAPMpUu8t0njnPC+djpgKDCCJayoDtISA8tAgIzsZgRKK4clmpSKCn4zt1M7oknsPJ5CrM6gYE6Ilu3kg938KsfT3Pv7lbir3wvv+19OaEX92JktCojsMo22+89wcxwtlo5knvqacojI0TffAOKqtC7sQGjaNHeo7HRLxPHqakCPPtNSmod+aLOWa/oYuXLJLi6jTRRUQsEli147gUJ+pUcQcoJDUV9bhp9Y0wnQxSzZU7smWHllmbUrNNvsoARzLfmkAdVmQMCTVN5w8fP4ZoPbsC0Ia4KNEPQoLuoD7hpi8zln87pitIQdONza+SSJYLRuesS1IMk6kcJN/iIXn8doWuuxrt+fc13zxRmeH7iea7qexW6blMy3XNVagC2jWH7QTNBEdRp8v5fThpDlMuUlAAepbCIMa5ytL/u2jWGaN1ECZ2tkZOSFeknEOg8v2+K4xNR2tz7WNu4h/GjKWZGs0QaHS/fr9cAQWIihx0ukHVZc4xgfmjoD9xH8GbgT4FHgEeBPwPexx/pyErDUHHrtRuylUpWE8UVS7TI6pKWGRmrqwBBYCon664jtfNr156CEQAE3NqyjOBXO0bBG6HfAYLTlY4CkJVAMFZenKB+YVyGfLqcQ2qP+RBGvsoIjKJFDi+6Vette1ZKINj72CiKqrDO0bhhVk5y4vhjkJ3CPY8RCNPEnJ2tCQ2BZAWT+UlcisaGksFD/q1k1DC9RplBDIQQ2LZg32gCU00S7F5BJtLNuGija+IJXJullG++XHuMgQVziyvJ3plcioAe4FuPHadk2uRdchOZL3C2lJ2KEQC0BFtqgMAWNkZ8FjQNNTQHwvFiHFuxMAwb38svonTkCOm77wahEOjxyeqW8y8HoKwHebF8LpM9r0NRFWb2hSDQxOxolp994Tm2/fo4PZsa2Hy1vAcTP/8ZWl0doVfKMMPKl7Xg8mi8/NXNRFyS+SRHZ2D3bSR63g3Ikt/L376ajVd00JTYS9gukS6aCCH4/pODXPKVR/j322V107gmmUeFEUT9Oo3BKbLFALsfGca2BKvPb5Ud4b66RY1v882lqbSEvbJ3xTFVU1EUhbJlM6tJD/1j56/gz6/or9lgP3n1an78fjnsPZcs4Y/UAkGlRNjd00PHv/xLzWQ2gPtP3I8tbK7puQaPT6Voh2D6UPV1UUxiCD9lVaC6BDGHEZvLMAIzHqesB/DMC6FWrL8pyOvPauPbjx/nw7ftZ7fdy1kcBNuiyZby5bffdwzN0Glz72dN1ziKqmCbgnCVEbhqcgT5tIEStMmpapURVPoIPIb4wzKCZUZV/tGOrCwZLjx67YW3U4sZwVid3ARjE1Ir3URu+J7xBO6uruoNvG8sRXvUR9S/uOpkvgU8riVzBEIIHj88zZreTi4uFFgV7DgzIMjJhpVRY17lTMnkqw8c5q9uP4iNQrNXLrq2qBfNzFVzBFbJIm97ZbJsXmmkZ2CAcr7IgafGWHFWA/6ghl0sQtwBAmHBvjtRVQW3z0Uxb2LOxsG20RcCgZMnWBNoxy8EsfZ+7rQuordcJitMZgozDCfy5BgBBP31q0j0XgjAytYMPkeMayEjCLpdUgnT0cCfzpRoj/owKTAaF9yy7SStES95l1xAp2IEUl7CWCQ4N99aA63VIScA39/7fe7Z+TO0WLQ6MAfkwCLVpaLacKJPqk9O/9s3UFzgc6Jm+nlSluHKTbME10UZsH1w3lpSJ33ktj3H03ccpZgt85o/38Q1f7oBX8hNeWKC7COPEn3D9dVkfGtfhBv/5RKaBlpwKQbBQJnU/l1gGSRbXg/Ikl+XW+PiG1YSVjIEbYNU3uDzd+3nprv30xHzcX2bM2fZLc91sjAPCMIyvr7z/iHqO4KSnaRHTxkWqlhb1FdlBPPNtGziTnnlWdEA77mwt+b1+qCHNa1hhBDkkkYtI3AHq02Dy9l9J+6jP9pPf6wfb9BLSQTmhvAA5WSCijqT6hJEbUeuYxlGYE5NUtaDeN2LX1cUha/ecBZ/clEvv90zznZ7FQ2ZgxAfJKbIvE9oVAJI68ZuAhsvo3u9VBqthIY8/trS1XzKQAsIyopC2WEEiqpiuV34TKUa+nwp7ExGVWqKorzWGVf5scrjJTuil9hKphuPZ0HcMJ1GjcxtPG/77dv48fQ3iXv96ENOM4gDBK7xadxdc8oY+0+TKK5YcIEnW7F0wcSwbMLRBrYUS/xyw0dPnygGyE1RcIVJGJXfZfHqrz/B1x86whWrm0H3ozmbaFvUh9suYmo+3F4XCCgqDoAYcxulZ2CAeGwNpYLF2gvbmPjiFxl84xslI/CEoXk97PmFfK8jPGc6E6eqOYLBJ2B8F70RucjPcfSDenpX8GPjUnoc4b3B1CB7R9NoPsm41jWsw4q14CrniV14Hn6XPAcLcwTz8y25kknOsHjrlg4UtcQzR/OYtuBT16ym4DCCUwHBbK60pLzEfGsNtNYwgm3j29BSOYjULsp4MY7Ho+NC4dFSEFdLC9bMDP4OH6opNzC7rUdej/e8FWNlEIEg3nkOmk/l8J/9FUN7ZhjoKNG9bm7qWOb+B8CyiL7xjTXfp6iKvCaKSsSbIDmRgQ03kMiFUDWF0LySXzUYJGiWODGb54dPn+D9F/XysxvPZ5MVJ+4JMeKIECbzZdyaik/XaIzJ82aWbVaf7+Qv0qOnDAtVTAJBcdHzZUuQVgWaS602Ky5lhUwZy7QJ1i3NCJay8ew4O6d2ck3vNQB4gl5KRGFmjhGUnCR/Cg3VZROynWTxcoxgbIiyHsTnX1qdV1UV/vY1a7npdesI9l8oFVv33Y5PTYFm02qpKB6V5rffBJvfzYbL2tFcKg2dksW75yWLhRDk0iX0kPyufNoR8Bt+HtNlEzJdqEvKs/1+7ExCQ3cB7wHqgdC8xx+llSwPbm/tz5bJYpm0OpY8xp6ZPRwrPM1Qa4FjLzyIaZuU7BSaJVAmpuSQbeRmNDibY3376aVhAx4X+SVyBDNOX4M/4iz+0wwyqVp2ioJej2HK2u/j0zlOzub5h9ev5xtvPwfVHZADypFT0/wUKeCtJr30Cs2cDwT9/cw0bEDXbJqbIHX7HRhHj2GNHoa6FbDhjTDyHMQHHSAwMacdIGh0GME9H4cHPjsHBJq86detXMlh0cnunv9AESqDqUH2jKZw+UeIuCN0BDswAzH0cobghRfic0mvaREjmNecVwkLxYICFIGwvFx/djubu2NnBAQzGYmipwoNtQZaSRtpcuUcQggOxg8SKghKCz5TAQJdUTg8lSN4sfT+A/2x6jUt5UwUBTxBNzOWxZAuOJZYSd+H15B526dBUQn+5AvYhbnfXDx4EK2+Hnf34lnSqCp4o0QLL5Ist8ClnyAxkSPS6EObV/KrBoP4Tbkxf/DSPv526xoURUE7OchQuIWRhATbVMEg4tdlvijgIazPoqgKK7dUgGDsjIFgPFWY05dyrGzZCAXCTT4Sk8sPYU/PyN8fbpgL/QTdQTLlzHIf4ReHf4GCwtYVsqnRG9ApKnUwPTdStJSSzlwSN6ouCJjy3igvUzVkjZ/E0IP4Iqdm+++6oId33vBm+Y9dt6IoEG2U90f36rrqnOOutfV84GuXEK53GIHPVW3KLOVNbFPgCcn8XiE7Ie+bX74XQ7MIFUrwrYtg7+2nPJb/qp0JEHQIIa4XQnxOCPH5yuMlOZqX2CzLxhRePPOAQFgWdiZTDQ0NpWUoaLX4NFOxfuom8tx75G4KdoqGuA/FtnB3yUV5YFzqs58JI5Cx7cWex6xTPRGKOkBQWFzytqTlpik5uve5kslxZ8D42Y5MNW4/GI70RdSHXymRsd24ffJG81V0SypAkBxCKc8w27iJZnWK7G/uRJTkRls6dhzq+6oNMuz9Fd6ATilnYk7K7s1qjiA/C/HjXNh2IV+++MtcaungidDe1MB6rxfzERcbZi9kMD3IvrEUvuA46xrWoSgKVn0b/sYI7v7+OUawRI5A/mar2hUccDpJt67r5RNXr6Yh6KnmCE4JBJVmstMwApAlpJP5SZKlJOH8nIxBxWaLs3jcbjQBE+mCjOdrGsH1bVCSQFDMlvEEdH72/DC3bR9mql4jU44xxiZOpOppaRL4cpOUDs3zYg8dwrvqFD0l/jqi2iglEaLo6SI5mV/UCa4GAnR44Fvv2Mwnr16FoigI26Z07BgzDe3VeH4yXybqc8okPUFWh55iw2Xt+MNuKBfltY2cPjTUHvVStgTT2drYuukAQ6zFT2JieSCoDG6phFBAMoKKwuxCK1klfnn4l1zWeRntQXl8noDuhIbmAUFaAsms4kV1CbxO5/RyfQTl8THKegB/fWDJ12vMXyfl3+PHQdFoctZhx6rauP58gPb4XZRLFrZlVyU1/GEJOjls+PWHIDVCyechQAA0vZob/H3bmQDBvYqivOol+fb/YSs7OkOeeRO5rLT0EirJ4pMZGd9Lp+opt1+O24LfPPxNcmacpll5kdzdkhHsHZULfN0pKoYqFvQsnSyedRZL2Cl5O2NGkJum7JWfyZZMjjvDX1Y0Ojet7pcSyEgPzU+RlOUh68TWmyoMpEK37/5LJn/0WQxXkPrpXSR+eivuXunVl0bjUNcnJ1x1ng97flENDZWnpkBVcTXUy3m4hQSkRtBsk1eveDVadrJaGvkyTYYr+vIbGUwOsmdsBlMbY129lCwomRqhvg7Z6awvzQgC8wT8KkDg9UgwvXpdD40hD15dQwtWppQtH07Y41y/7iVmNVes0lQ2nhvnwOwBAEIFSHjnNg8hBPFCHJ/XgypgMlkkeMklDDz5BJ6u1uo1zaRLzBhlPn3HHgaaQnz8vRtwKzkeP7CZTLzI2gult108IL9HmCalo0fxrFxiBm7FfLFqwjg+niM1VSC6QBtKDQZwFfNcvb6lmtsqj40j8nkK7V2MJuYBQWVteMKcF7iNi29wQKhSfXOGOQKgJmEMYDhhwbqWAJmZwrJTzSqMIDRvDGfQLYFgodwHwL2D95IoJXj7mrdXn/P4XRTLHkR2qqrHVErL9TBBANUl0EpFNJdaWz46vhu+90rITFKYSoCi4qs7wwBIl1PqFu0k2iKZsJxrvLS5vdKpMYoW+ZS8hysJ8ryiwoG7YMsHKLhVfPjhxkdhy41ndiz/STsTIHgWuENRlIKiKGlFUTKKoiw/beN/sZUcaQBPYM4DtKtAIL364fQwLYEWJlMWdr+cPuU+NsqexDZa4nITcjuhoX1jaeoDbprDy3uUFQu4XUsCwYzTVl8fCcrNu3iGjCA7je2XJZvZksnxmRytEe9cd/M8IGgOufFhkCzrPHlS1sCvbncamCqMID7I4FgDCjbhvQ9QHh2l8SN/jhrwU0q6JCMA6Lscpg/i8aoyWTw1JYeaaJr8PrssO2WTkllV5HdtW1Afl78/lujgaPI4afskArs6LL6QKeMLyY1ouRzBfLmOisfpcctzOF9iIlgnwflUjOB3+ybY1Bmtyh4vZRVGMJYd42D8IKqQQDChzx1XrpzDsA38HrkBJrIGJdOSfQbeiBxXadtMzeRJWhZfvG49P//T81kXM+j3PkUy48Pjd9F/+QBqJEJxvwQCY2gIUSrhWXUKIDj7nUQvvQGAof2z2LZYJBKoBYM1chsApaNOErW7j5EKEBTKRHxOGMQTkqHFysabOn3paMUq4osLE8ambaM5XbVCOCWvS1h6pkAg6sGlz6nRVq7twvtBCMFPD/yU/mg/W/7/9t48SpKzutN+bmy51drVtfRe3epdEq2laQGS2SRAIJAwlvmA4ZgxtlJC0R4AACAASURBVDHzgc3YDDaMx2N8PDZjY3uMjQFj4AODbYEBWwILSQw7GIR2oaVbavWibvXeXV1r7vl+f7wRkZFLVWVWRVZlVcVzTp3KNeqNysi4ce/vLkP7/MfjKZtSydDTCF3BODupw2Mn6cCwS5TSGayYUakR3Pt3Ovx57yeYcnuIxXtm9/gBfZEE0DvMrhet4bpf3Ebfuum9iVigZ9eU12TPTaedMgS61sP1/5Mpq0ii4Hqg1S3nQ6KRrf4F8EIgqZTqUkp1KlWvnLX98YbSOB1ll9PzCAwvNDT+LOs7NjAylSe1dQsSj3PFSBf5Uo6hESjF4n4BzhMnx9i9tmvGUY8e1WmPHhfc0FBv0oF4T2OGIJ/R4Qa3TYNnCHxvACpCQ2YxgyGKszmLe57SrmXSy0DIT+kr+bHnOJLZy2DnJHYhjTUwQOcNNxDbMEBm1NIeAfjFarGEuB5BoKo42AnT7bjIxCnoXMPJpy+i0kWeM4s4U0kmL6axkvo1l/ZdilKKzESehJvBE3ezfupVFoM2BOfGsxgChpveFzQEq7qS5E1rWkNwfGSKR4+P8urLaucEB+lP9GOKyanJUzx54Ul2WhswFBw3ytdCXi+iZNxtP6LgtPvF1o3nFOQmmBjLkTXg1qu118P4SXYmdJHejmuGsB2L+K5dvkfghYhmDA1d/Ta6bvgVRODIo3odvYO1oaHq/0PuoG4lEt++ldPjGXKFEqNTuYBH4B4fbviEseY9ghpDUFRYhvjzr6cLD42dy9T0t/I+22rB+KEzD/HkhSd5y663VA1Pck+yqgPO7te33Yuus6I9glImh+2Y5ayh3CTq8X8jV0rA/Z/2T86JVQ1W9G4sG4KO3jh7rt8w47nB0+tybrt3gG7XO51adzX8/MdRTgeTVpFYrrU1vI0YgqeBx9RMDcaXCFn3pB/rLF8xFS9q4+CJxcfGj9Hn6KueoZ4U8R07uHpUx+KHLhbJDq71P9zTYxk2zBBWCJJyQ0PV/8bzk1m6EzaOZcw649ZnSqeOSofrEWR0aGjz6sAJwE76YrFnEB49k+dZt82DN7eY3ARMnediZhUjxfUMD+lt97zxjYhtExtKkR21UavcTGE39h6P65zo3Jnz0xsCpbRH0DHI0/efxnIMnn+L3s7Q+Bbs7odZnehnMDVILl2gVFK+R2CIQcJKkM5PLxafnciyKhVjqlA5nQx0JlDGjlOcxhDc/bjWNrymfNNhGiaDyUFOTp5k/4X9XG4PA3DKnmTUjf1fyGgvq9OtmDbRvXb0P6o8k6CQLhDvsIlZ7pXu+CmG7APc8Pokz79Jh+Hiu3aRfeopVD5P5sABME2cOj11KtZoGXT2xTnvTr6q9giMVEfN/yH79EGswUGG1vajFJwazXAxHdQIqg1B4x6BV81enTmUK5ZwTIOegSRIubttNWPn0nSvrqwR8PpIVQvGtx24jS6ni5s231TxuN8GRfr8WgKdqlniotiuIchjOSb5rCsWP/l1Tkxs4tPnvsDZi71MntPptPGeBkNDq7bAnrfA7lsaenmwQn9qNIcVM+lO6b81ee27YPOLGc+Pk7EV9gxtMMKgEUNwEviuiHxgqaeP5lyNwAkUAhXHPEPQxXhunAuZC3SYOhywpjtObPcuUkfOcMO6VzF0sUh6oNwTZixToLNOs7J6pGIWJaU7PAY5P5Gjz8tjb9QQuA2pLLcL5NHzk4xnCmxZHSgus5N+B0NPBxjJO/7B580tJjcJo8c5lNVu9bb1T7P2z/6Uvrf/MgCxHkUpZ1CYcK+a3OHysZg2aOkLE1iDniEIeDMXDmnDUMxRTK3hmQfPsnlPP7dcvxnTEdaMXYIRO81l7lzm9Lj+0gV7uiSsxIzpo15VcPV0MtCGYMqMTesR3PXYSXYOdTK8enYhcCg1xP4L+zk5eZIdpjYcY0n8cZwX3OEwnUn99y0lnBx1T4JuK+r85AhmXtHbG7jSHT+JCOx40Sbi7n7Hd+9C5XJkDx8me+ApnM3D/tCYmegZ0Cf/VLdT0w7B6OjQrbOL5RBI9umniW3d6rdOP3RugqlcsdYj8K7Ax05oj9VpQDhFewXVGkGhqLBMwXJMuvrinDk6TmYyX3FxVMgXmbiY9YuuPDpt9wRZJRgfuniIqwavqkm5jnuNETt36tYbQDZdwjGy/Mkv7EEcA5UrYDtGWat45J8ZjV1KqWTwYOaXyFn6b8ar+gxNiwj8/MfhkukH3QQpewRFpsaypLocfz+8JImLmYtkLbBmaIwXBo0YgsPAtwCHJZ4+mp3QB2asuxzZ8ub1mt3dPDuu49q20qGfoe448V27KE1M8MGN72RofIKJPm0IsoUiuUKJznhjhsCPbVelkJ6byLLa0ywSPY1lDbmurjWoNYxHj+t9mC405GkFU8S46UptPHJ5d92uIXgm8yJWO0fpGr2X7ptvLje7SmkvKvuUm33hegReLUZ2qlAuJvM8AjOmDcG4FjGPX1xHZjLPtucPYpgGQ1u6WTOuPQNvNnB6wr36CnR5TFiJmtBQ0u3TPpkr+obAKzSq9ggmzBj5sVqx+Mx4hvuPjnDjLGEhjzUdazh4UYdShkvaOxxPCodGdWjr9JT2LroS+u9rj8A1BDF9rB05dgoLYU1/4IQ1fhrEgFS5PUd8l24vkn3ySZ0xNJNQHKDbNQQ9Q7UnaiPlCudT+jhQpRLZQ4eIbd3qx/MfP6E/5+5kQCOAytBQA2Ehj7U98boagW2WO8ceefQcn37vD/j0e3/AqUOuoH4+A6oydRQg5VSOJPXIlXJ1J/nFUm4blI6t/vcllxViVpY379uIGdfPW5ZojWD0OTj0XXJDuo/RoczzmErp2pjEDAWH8yHmGoJsOs/kaI5kt+NrY95xP5IdIWuDmZ25eeJ8aaSy+A/r/TSycRG5UUQOiMhBEXl/ned7ReRfReRREfmpiFxWbzthkZ3QX85YYJiFLxZ3dfHsqDYEpVzAEOzWV6z5738PWxUZ69MHx7g7DKQz3tjVQsopX8kGOT85B4/gzH6wkyQGdDjhUTf7xWvaBehxlX5oSP+eIs4b923Ecgxyefejz01w7shZzuS3sXPzeTj9OBTLB13M1MVUXjM63xC41ZZ5K1kbGlrzPNcQ6PcePNJDLGmxcZc+ia7b1suqqbU4hQSX+h6B2wK52iOoSh+NWQaWIb5HsLrDYSI34YeSPPo7YqTtGLmx2tzzex4/jVLw6stqx0PWwxOMAda6vZ0yKZtDF7Uh+Paxb7OuYx09KX313+2YnPJDQ/qxw0e1NjMcTDUePwmpATDLFxPO5s1IPM7kT39K/sSJmYXiAD2Det+rw0Kgs4YAXzDOHz+OymSIbdvKmu4EIrowEgiEhtx1evOWx443FBbyqFddnCso3xC87K07edWvXca1t24lnyvyzEO6ieLYOf0drTYEnkdQrRHkijkco/ZEHXcNQSa+SYe10hfJ5kxibnsZI67fY5lKZw09+kVAkVu1B4ASJs+t+zlMo4DltEagrRCLx3KkumP+MVzhETggmdy02wmDRiqLvyMi367+aeB9JvC3wKuB3cCbRaS6d8J/Bx5WSj0P+CXgI83vQuPkpvIIRT53/A4++tBH9cjBi6NIIsFvfPkx/uxbPwQgPdVDd8Im6VjEtm8Dy2L8HrfLY48+6ZUNQeOhIaidUnZhMseqVJOG4OyT0L+DVEy/75mzEziW4Yt0gO4H43kEriH4o1/cx+61XbqiMatATMhN8uRjBgZ5dly7CYrZcu51PoOVO47ZlSh7BKZnCNyGc0FD4And667WWUNuXPnEcWH9jl5MWx9ua7b2IAhD45v91NGM6xEkAh5B0k7WeAQi4gvv5yZyvkeQslMVwtzqzhhpK0ZuotYjuOuxU2xZnWL7YNlwnv7whzn3939f99/tGYLB5CAxV9xfNTTModFDnJg4wU9P/pRbLrkF281yGUzFOVEVGjp9Un+uaweDHsGpmq6jYprEdmxn/K67AYjNJBQH8DyCeobA7ND76RmCrCsUx7ZuxbEMBjvjfvNEPzTkzXao8AiaMwQjU/mKIspCqYRl6s8o0emw9eoBrrhhI4PDXZx4Sl9ElIvJqsRip3I2tUe+mMcxaw2Bd5LNuHofZw+QzVvEYvoCxojr49g0Srqg7LGvwIYXkJMubMegd+RJikacRGeioWSQueDELRBvNniWZLeDaZgkrIQfAhvJjpCxBckXUIXp55nMl0ZM3X8D3uf+/D7wMI01m9sHHFRKHVJK5YDbgGoVZTc67IRSaj8wLCKDtIhsuogjaf7p6S/yd4/+HX//s7+nODZGOpbi64+e5OTUcTqtPs6OKda4aVyG4xC75BIyjz4KwIVuN1OnSY+g3kyCQrHEyFSOPq9KNd6jDcHT34QvvQ1+9uX6GzuzH/p3YRpC0jFRCjb3pTCNwAHrpHQqZzHvh4Y2DukQRDxlc/bYBCW7i0I6zYGjA2zpeoz4Zt0jh5OP6N8jRwBFfHhtjUcQ9wyBnSzPZkiPgGHpVhSlAhy/j6liN2MjBX8aHMDg5i4wFC+Ql/uNtNLuCTY+i0bg/S9PXMyQK5bo74gxkZvwrxg9+t2islJV07mfHR/lhwfPccsV68o59WfOcOGzn2Pyhz+q++/2DMGu3p1M3X8fRlcXG/q3cmj0ELc/czsKxc1bb/YNXX/S5lSVIbg4ok9gFWGGOoYAdHjI0zbiDXoEg8NdrN3Ww8bdfTXP+aEhd5ve8CHHbeO8rjfBkfP6/9yTqBMaKmT1/IsmQkMDbpGeV70NurLYNmtPOeu293L22AS5TIHRs2ks2/ALqzz8rKEqQ5Ar5bCN2u+gHTMxDCFruP+Ps0+SLcTw5BYjqb/fppR0aGjkCKzfSy5TwDKKbDj2HQDiDaSGzxUxBCdmMnUxSz5T9Pc5eNyPZHRoCNB9v1pEI6GhBwI/P1JK/TZwTQPbXgccC9w/7j4W5BHgDQAisg/YBKxvaOVzIJctYVkZzqXP0Z/o528e+huePPQzTpZs3nDlOjo7R5mc7OHQ2QmGAu1x47u1I5M3LM4n9Bd73B0EXm+yVT2SdaaUjUzlUSowJtFLNfzHW+GJf9MFJdWkR3RK5oDWBzxPY3O16OmJZ/mpcq2ArV+z99XDnH12nJ+Ov5HDx7rIFmLsXncI+rbq93mGwG02F9u2jewzz2ix0XRQCmK2O+bPSpRbUKdHINFbrjk4+mNOcwUAQwFDYDsmg5u6uTS/t7xb43ksx8B2yrnjSavWI9D7bHLkvN6n/s5YzXQy0CeiKSuOmqo0JH96135WpRzeft2w/9jYHXdAsYjK1Xe/PUPwkicNJr//A1a/851s6d7CiYkT/OvT/8o1Q9ewrkP3kQFYnXBqNILCpKuBBIXH8ZPTGAJ9vBldXVhDjekY8ZTNz7/3KnoG64WG9P/G68SaffpprLVrfE9hXcCTrJs+6nbCbMYjiLneUa5YTo7Iu+mj1azd2oMqKU49M8rYuTRd/bVX4QkrgSFG/dBQHY9At8mwyBaT+pg+9RjZYrmrgDcL2KJAPlfQonhyFbl0EauQZvXUIXoGEnT0Tl9jEgZO0vLTaFNuMVnSSvqG4Fz6HMWY/kxKU/XTbcOgkdDQqsDPahF5FdDI0VnPn6pOQf3fQK+IPAz8BvAQUOP/iMg7ROR+Ebn/7Nmz1U83TDYLRUt/QT/0cx9i78ALuHj+IIUOmz95w+U48QtkplbxzNlJ3yOAsoB3tquftHtBP9ZkaKijTmjovNtnqM8Ti7deD7tuhl/4NPTvgmKdE9MZLXzRr9fkZS1VCMXgj6skFzAEruC27fmD7L5uLQ+MvJKfHNhNp3We9RtKemrY0OW6uhL89tOxy69CZTKkH3yQ4x/6FM98bQAZPQMoCrHO8gDx9EVtCHrdrpLnn+aU2oNhCv0bKk/Ug5u7OHt0HOW2HUhP5GpEuXoaAWjj96x7BdvfGauYTuaxKuWQsWIY6bJH8MOnz/HDg+d418u2+p6cUoqLX9H9W6YzBMPdw/zSwOu49PM/JnHllax62y+xuWczCsXJyZPcslU7up5H0Bu3OTeRJVsoguVQNOPE3SPfNwTFvE4D7qzVKeK79Wcb37EjlLBEjUdw8GDFUBdPMAY9nxioNASP3gYIDF/b8N903BCQV00M2gOu5xEMXdKNYQgnnr6oDUGVPgBuSNBO1fUI6hkC0Cmkmamibv1w7CdkVYcfMvKSIUxVKBeUJfvIZQoYU6Okrr6K17/3Kl721p0N7/NciCVsLrhptEm3p1HSTvrH/ZGxI3R2ac1SpesX4IVBI6Ehb+7AA8CPgfcCv9LA+44DGwL31wMVw1+VUmNKqV9WSl2B1gj60VlKVL3uk0qpvUqpvf39/dVPN0w2Z5KxsgjC5asv5xc3/ndSaaHQO05BpRnLj7C9bxiAoa7yweh9MS/0DJBxU808j6CrUbG4zpQyr8+QLxYP7IL/5/O6uZuTrG8IzupUOPp1yKAj7hmCqrkE9TwCp3y1eN0bt7EqfpaxTCe74vcgPa6zNvQ8OPWoNgIP/xOkBohdqq/qj77tPzPxk0coZE1OfeQLJCXNiTXXcvyAKxKnR3R4q3MIXNHrdG4rq9d3YAWu9EG3SS7kyz1WMhPlqmKPehoBaKPqXWn2d8SYzE/WtOi1TAOSSaxsBlUqUSop/vSu/azrSfDWF2z0X5d+6CFyhw+DbdcYgtyxY4zcdhvjX/oyb/ziSSSbZ80f/zFimmzp1llPHXYHN2y6Qf9N1xD0uMfEmTG9b2mzg5gyQQLtTSZ0plE9jyC2fbuu4dgVzknISJU1ApXLkXvmGX80KeCnkJqGlNOhDVN7kJPn4IHPwvZX6Tz5BvFO+Pkqj8A2aw2bHTPp39TJiacvMlqnmMwjYSbIFsv9i0qqRKFUqCsWg04hzU7lYWA3xZP7dZ8xV48zUp4hyFPIK5QSSPaRHU9jTFwk9cIXkOqO1YSowsZJmP6AJ88jSNkp3xAcHj1Mb48+RkqLaQi8uQPu721KqVcqpX7YwLbvA7aJyGYRcYA3AXcEXyAiPe5zAL8KfF8p1bL2FbmcxbidYbh7mKSd5NyYkJpyOGle5PZnbgfgzVdeSXfC5rJ15eyO2M5dYBiMrBryDYF3Zd+wR+BlDQXygf2mZ/XS08yYjs1Wc/aA/oJ2axvrZSPVeARBQ+BdVdvl19iOyY3b/53tXfdzaeJu6HYjcmv2aDf549fq/jKv/xixrVsxe3pI7t3Lls/+JQNXjDL54H4uf/ijOJLnjo88zL13HKI05XoEIrBqCyVlcHpiTYU+4NE9oE8+F90ulOnxPPF6HkEdjcDbZ8CvI0jZM6VNprnnidP87LlRfvsV28sFXcDFr3wFI5mk49prawzB2Y/8Nac++Iec+uAfMnXvvQy8733EtmhvZ7hrGMdwuHHzjX6mhxca6nbX54WHxlSShOgaDsMLjbiptfU8AiMWY+PnPsvqX//1mufmQrDvUmb/flQ+T+J5e/znvdBQd8Ku9EBinfDYl7U+cE1za3Hc/0VlaKikDXQd1m7t4dShUQrZYl2PAMAxnQpDkC/pizHbrH8xFkvZurvnwE6yJTcdusPV/tzCLdPdXkE5kFxN9uIUVjFDct++utsMm2DfM98jcEND2WKW5yaeY3WvvkgrTbXOEMx6FhORXwTuUkqNi8j/AK4C/pdS6sGZ3qeUKojIu4G70anVn1FKPS4i73Sf/wSwC/gHESkCT9CYpzFnsgWHC+aUPwryuZE0l2eLFDsSfORBnbB09drtPPj72yuEV7MjxYZPfpL7H5ggnfM8Am0IOhrOGqrVCC54fYZSdQQp04ZCHXHojM4Y8nqO+B5BtUZQERqa0IbFrFxrb3eOVyT/BJ247RqC9W7cfmAn/OJnoXcYA9j2/e+BbSMXDtG7dYqJwtXwyDO8JPljnrnq7dx/5xFOJv8Tr3j+E6QAVm3m/HOTFEoWQ1tqO5J4BVAXz6RZv1OHhlatrdyHpJUkU8hQUiUMKZ9APO/KNoXuhM1EfqLu0A6n070Snpzk9oefY6AzxuuvLMtUpclJxr5xF12veTUUipTylYagNDlJbNtWNn7mM4htl0Ng6JPSF17zBTZ0lp1eLzTU5ZjESnDgu8e5dKiT07kYjjgUk1X6AEBH/dyI5FVX1X18LgRDQ+mHtf6TuKJsCDyPwE8d9Yh1wvlTOrSy5WVN/U3fIyhUGoKkU//7snZ7Dw99U6dvV1cV+8sxY+QCXrJ3ezqPIJa0uHBiEvp3kVP6f+C4XQW8lFptCDrIqzh2so9cdpxkIV2/7XcL8GoJDFP8lNekneTU5CmOjh2lpEoM9GkPtpReRI0A+H3XCFwHvAr4HPDxRjaulLpTKbVdKXWJUuqP3cc+4RoBlFI/dr2MnW6r65GZtzg/MsU4o9akPwHsxLkx4sU8u4ef74cgNnRuqMy+cem47lpKPatIB0JDcduoG/Osh2UaxCyjJjRkGvpkVvuG6TyC/TqE5NKbtFndEaudkOZdIecntTFwakVErRm4wWvPIxjYBe/8Ebz9bugd9l8qjqOvFk0HEVjzazdi9vWRumQT179tN9e/bRen0xv54k9u5MTTF2HVFk7ndfhqaHOtR9DRE8OyDT10HciM5ytqCEB7BApFpsogdrhGtd/NtqqnEQDE3OEx6dExvvfUWV6xe7Dis5340Y9QU1P03HIL4jioXGXRjspmkWQSq7+/wgh47OrbVSFSe6GhlGWyN2sxdu85vvm9oxwuDWIUzcr9m8EjCBuxbSQWozgxQfrhh7GGhrAHywZoXY8+NrqTdQwB6I6XTWoV9TyCQkn56aPVrLmk21cVq6uK/W2aTn1DMI1GEE+WPYJMSX8fYl368zLcCXhG3h1XqWKQ7COfFywKfu+xVuONfU12Ob435nnCXuX62tXaC11sjcCLZdwEfFwpdTu6ynhJUSoUKagEWTPtG4ILp3STrudteRH9iX76E/0zTgeL22bAEBQaTh31qJ5Sdn4yS2/SKYcLgphOrUYwdUHHlvvLsePfvH4bn3rbXmrw5sp6YrFTe6KsaBcQ7DM/dJmfJlqD2wzO7oqx9Z67Wf3udwGwc18/t656HzGnxL9/7FEumts5ldtBIlGqaCfsIYbQPZBg9PQU+WyRQr5UUUMA+J/FdI3n+jtjZIoZCqpQkzUEkHAryB858BxTuSKv2F159Z1/TktWse3bXUNQ+f9WuRyG3fih7nkERhGe51Zu/+zxcxwyh8nlHeLB89v4KV3HkVrd8Pbng9HRQWlikvQjj5C44oqK5xKOSV/KqfUI4l0662nPm5v+e457gZQrVGcN1T/lxJK2HocJdNU5XvQ264eGphWLU7buYdWxjqyp/88xt928xDsQs4SR08dWngQq1k1BmTgJq2W1AzVrTJQNgUfKTjGZn+Tw6GEE8Q1BKzWCRuIaz4nI3wE3AH8qIjEaMyBtRc6tIM5ZaXau0ifS8bO6R0yst48PXfUhRjIzOyQJ2ySTCxqCxsJCHsmqmQTnJnL19QHQJ+JqQ+CWygc9gvW9Sdb3Tne1j+43lJ8sawYVr3FPnvHu8tXfbFjuegtZP+QAQGaUPvsYr3vZSf7lri7u/M4GCnmLwa3xab9UPQNJzp+Y9KuKq3u6+FWWhSn6KOfHBw2BV3hTXUcA0NGrDcEPHn2WjtgAL7ykMse+cPo0Eo9jdHUhto3KV3oEpXwOs6Pxbire0JHDj56jo6T3+fzxCbZfdgWZM12slkCV89gJ3T3WMOttKnSMVIrc0aPkn3uO3re+teb5t1yzkQ3Vx9GLf0dfRMTqXETMQlksLicK5oslHGv6E+wlVw5gGFKTWOAxnUdQr44AApW7mSK5jq1wFmK97nwAO4lhKwxvOI3Tj/fxO6mFu871+g15cwigrBEcHj3M2o61JDr1mhdVIwDeCNwI/LlS6qKIrEEXly0pvHmlnTE9BDqTLyIXdKdNa9Uqrlkze2lEwgl4BNnmPYKUUzml7PxEtpwxVI0Zg0KVIThTmTE0I75YPOl6BHWahXmPdTVRuuH1dSlWha3c9hJd/Z286tcu446PPIwqDXLprum33T2Y5PAj55gac9tLdNaKxTD9uMrVHeWGc6k6+9fVp6/+njh4kpfccGmFSAx6OLk1OICITOMR5BGn8ZOCGIJhCWeOjJG3hJNSpDsL2y5/IYfuO0ZcnSu/+MRDMHhpw9ueL0ZHivQDDwCQ2LOn5vn3vrLOMdVEumg1XmgomDVUKJam9QgA9r5mmL2vGZ5+m6bDaL5ceT9raMjrNzRZIJvQV9WeWIyTxLAURkYfP3lntT9IPt5VPzTVCjxjlQqMw0zaSQqlAk+NPMVw9zBGQq9HZRY3a2gKuB2YFJGNgA3sb9mKWsToOX31P+iKRM9dTDM8puO0wVS6mUhUhIbydDXpEXRUzS0+P5mrLxSDFourT7ZnD+ir+O4N9d8TpEIsnprGELivaWD8YHldnkdQZaS89hKJXtbv6OXaW92q1RkmNPUMJCmVFKePaG+tWiOobsDlEfQIvAKjeh5Btzucxs5leOWltaJs/vQZ7EGdmieOrYvKAh06VS7XlCEAsNwTYHpdnBNGkb6ScNW2SygQI55zWzlPXdBpwF7/+gXATHVoj8e2/XToVmLXqSPIF6fXCBrBMRxypYBHUJpdLAbITOXJbrih4jFsPZPASOtjr2CvJucmb8R6GuuwGgbelLJqjwDg0OghNndt9g3BooaGROQ3gD8ATgPep6qA57VsVS3g/gNHgFX0urN6nxtJs2X0BKWeXqzVjcVp47ZJJq9z0sczBYZmmGxVj1TM4uJU+UC+EGxBXU09sfj8QV3920j8MugR5Cfri5JeaKi7CY/AMLQxqM5o8hrOJfT/d8/LN3DJlf0zVmb2uCmkXufJaUNDVUVlvljcGWM8r3WeehrBqoFeSkBHMcdLdwzUPF84dYqEm53jnfBVLod4V2DZbNOGyQ/h7AAAIABJREFUwLQNyBRJ7uzmzNlRTISxZ932Ehl3WM+xe/XvjS9qatvzwQvjxXfuxIi3tloWAhpBVfqo02ByRT2mzRqaxSM4/uQIxw4VMS2jPPXMSWLYJYypceiCvN1L+rQbKu5buLlb9TwCLxW6pEps6dmij0HLWvTQ0HuAHUqp8y1bxQJgHHkKeAHJtD5BHh9JMzx2EntbY029QBsCgGyhxHgm37RG0BGzOD7iZsnki4xnC/RNF4+sJxbnJv3eNbNiOlqMzKf1++pqBF5oqAmPAHR4qHptviEoewCzled77RBOPaMNQaNisZeC6PUZAupmDfX393Ia2NFZm5mllKJw5gy2O0vBCBgCPEOQyyGx5gyBE7foHUqRX9/JGVOfBI/v1/+b+ORB7Uk9+2MwbFgXXorobHhtJuqFhVqBnzVUaCxrqKFtVmkEs4rF7kn23jsOYVoGu64NXAy5HoFMjWlDYPbAaX2KSwysmvMam6Vzlf6OBFuDePO6ATZ36ZCWkUgsulh8DGhwonr70r8+ifUf3+DUKn31f+L8ODeMnaJz9/UNbyPhZoVk8sU5ZQ3pKWU69ODXEHRMl51T52RbyDRuCET0iX7G0JD7WCOhpoq1ObXeSrocGmqUeIdNLGkxMZLFMAUnXhnDD4rFoMcSxswYu9dewr7hVVy5sZcfn6mdTubRs6qTw/EU19i1w2mKIyOofN5vmBf0CDxULucbiEZ5xa9cSqLTZlQUV1+6GvOBKb/yOs4F3dn16I9h7ZXlzK4FwMubr84YahV1K4sL9VtMNEp11tBsYnHPQJJrbt5CZ1+czc9bXTmwx07o0NCUKxab3RTOjAAGiaHaxn2tomcwyS/9yYt8gwDl0BDA5m7XEMTjLa0jaMQQHEJPKPt3wP8UlFJ/2bJVtYAXvfVdPPoXeznRcR0A488cJlYqkGiijD/hZjNMZAtM5YpNewSpWHmAvd9eYlqPIKY7eJZK5YHVxVw5a6cRvHGV04nFCffKJ1Av0BBmbFqxuGFDhe4f0z2Q5MyRMRIddk12UbVG8Af/8Qd02p38403/yJfeqQeIjB93p5PVCQ0ZhsHAtS8ge/DxmucKp3WLB2twZkMgTaSPgu4CCtAFfOo/7+PLp+/n9GEdh44b43D8Pi0Uv/D/bWq788ULDQULyVpJPbE4X5qfIYiZsUqNYJbQkBgyvfjshobEHVVbMDopnh8Dekiuqw0jtpKgEYDycd/ldLEqrr+jkkygFjk09Kz747AE6wc8xLYZ3bKTdc/u1xlDh9zh3Q22+YVyaOis2xqi0c6jHinHYjKn5xaf8xrOTecReGXzxSwY7pVjIePn8TeEN5MgP40hGP45eMu/wIYmy+nregQj4HSW190gPQMJzhwZq5hM5uG5yFP5KQqlAsfGjun+7cWsP5XKa0KWsuoLfMm9e5n41rdcYbj8Bc+7hsB7TGy3CV0ghbSUby5rqB596zvKhsDKwoP/oNuDb3zhvLbbLJ0vfSml8QnsdU2GAeeI12W0sulc/e6jjeIYVemjs4jFM+KGhpgaB0rkJUX+4gjQQ3wBPYJ6eBrB5u7N/sWRkUgubmjIm0YmIp36rqqd9LFEsK+8iuEvfo7HDxwndfwwJWP2weBBEq4h8JqJNdpwzsObW5zOF32PYMY6AtAnXC+EUMiW0zcbwUnp+QalQn2NwDBg+yub2ANvbfFaQ5C52FRYyMOLjVZnDEFl+uhzE89RUAVQ8MT5J7hy4EpAjy5MWknMafLxk3t1sV36gfuxX/Ma//HCKdcjGPKyhvTnUHI9AlUqQQiGoH992VOJD62HE25nlg2NdHIPj+Tzn0/y+c9fsL8nIjimQc6tI1BKUSipUEJDSilEZFaPYOaN6fRRlc1jSZY8STJjuu2HU6/SfwHxtDGvsSG0XiNopA31ZSLyEPAY8LiIPCAiC5cAHSLrX3ItBorD3/0P+s8eY3JwfVMxYC80dHZcZ8w0LxZ7/YaKXJjVI3DXFdQJCtnpK37rYSdhUo9IrFtZPFfqCdnpEUg0Hhby8HoOVQvFoGO/tmEzVZji6NhR//FHzjzi357IT9QNC3nEd+3ESCaZur9yllLhzGkwDD9jrBwayru/9f5JA4PjZ6JvvdYuYkkLY437tenfBcmFEyQXC8cy/NCQV1hWr/tow9tzvxOFkg6vzssQ2ElMuwQKbLIUVIzcZBZL5epX+i8gXuJDtSFY7BYTnwR+Wym1SSm1Cd2Guv5MvzZn3Yv2UjBMzv/4p2wePUlxc+NtdaHsEZwd1yfx5sXicivqR46P0hW3SE1TRemf8GsMQROhISep2wh7t8OiXmqrN5SmSWbyCMBtRZ1P+31XemO9PHK2bAjOp8/T5Uyf7ieWReKqq5i6r9IQ5E+fxurrQyz9mXhagGcAfEPgzO/qsG9dCsRNZRy8XD+4gPUDi4ltih8aKpT07+m6jzaCFw70BGMvNDSdWDwjTopYjzYoZilHvuTooTRGcZY3tp6+RB9/9dK/4tbtt/qPSXKRPQIgpZT6jndHKfVdYOEqLkLEiMc5vXYLwwceZCB9EWd74/oAlDWCM74haF4sBth/apy7HjvFm/ZtnL6niRkIDXkUs82LxZPuIJ96GsFcqdciO31RzyJoku6BBIYppHrrX3l7DbiOjh2lJ9bDteuu5eGzD6OUYjQ7yr0n72Xf0MwaR3LvXrJPP01hpNxCpHD6jC8UQ61YXDYE8wsNOXGL7v6ErpFY62bsbJp7xe5SosIjKHgewfxCQ1A2APPyCEyHZH8RRGEUc+RLNvlcCbu5r3TLuH7T9RWebqs1gkY+lUMi8vsiMuz+/A/qDI9ZKuR3P4+NEzpc0nvZ7qbe64WGPEPQaAtqD09c/ptvP40Av3zt8PQv9sVi1yMoldysoWbE4sBwmzr9+ueMNU3W0Bw8Aiducevv7uWyF9cXMb1xlUfHjrKpaxN7+vdwLn2OE5MnuOfoPeRKOW6+5OYZ/0Zyn46Npx8sd04vnD5dZQg8sdg1BFm9f82mj9Zj32s3s+f6DVoXeMu/wGVvmPc2lwK2afgeQd71COYVGnJFYc8AzFZHMCMiGKkk8VV5jFyefLpA3ojhxNqzjdqiawTA29GTw77q/qwGfrllK2oxvS8si3RDV13e1Ht9sXiOGoHnETx+Yoybr1jLmu4Z8sitKo/AO/E2oxEEw0Ghh4YCISul5mwIAPo3dvql9tV4HsGR0SO+IQCtE3z9ma+zpXuL3012OuKXXYbEYhXhofzp0xWtmKs9glJIGgHA9n1DbNs7qGs7tr9ywRrNLTZaLPY0As8QhOARFCs9gjmFhgDsJKn+LORy5MfTFK04TnUr7jbBSNTO3w51+7O9QCk1opT6TaXUVe7Pf2313IBWsuPl11JEGI+lSKypPxRkOuadNRTQA97x4ln0Cb+5m5vO6BmEZrKGgl5AqKEhp9IjyE/plMhE86Gh2UhYCS6kL3AmfYbN3ZvZ1ruNhJXg64e+zoNnHuR1l7xu1pbBhuOQ2LPHF4xL6TSlsbEKj8CoCQ3p/3uzdQQRZYKhoYIrFs8rfdQ1BL5GUMxhGVbF0KKmsBMkB3KYhRzZC6MUzHi5KV2bIa5HoFT12PdwaCRr6Jsi0hO43ysid7dkNQtA7+Aqjg4Mc3LNlqZ7jnuhofOTOWxTiFnNHYCeR/Di7f3sHJqln4mnBXgn3MIcPIJg5WrYoaGgRlCnvURYJO0kBy/qmo9NXZuwDIvLV1/OD577AYJw0+abGtvO3r1knniCwshIoJisXFdQXUcQlkawkqkIDYXgEXhise8RlHJzqyHwcFIk+nOYpSw51yOIdYfoOYeIkUiCUn7IMvTtN/Ca1Uqpi94d1xtoqPRORG4UkQMiclBE3l/n+W4R+ZqIPCIij4vIgoScVv/VX7Phz/+s6fd5J/5iSdEZr62EnY3Brjhv3reRD7y6gWpmv8unZwjcJm9zDg2F7BEskCFIWAk/FjzcNQzgh4f2De1jTUdjE746X/kKKJUY+8Y3yJ/WGtFMoSFPK4gMwdyxTfHTRsvpo/MIDRm1YvGc9AF/gUlMW+HEFEVMCmZiQTuPNkOrO5A28qmU3PbTAIjIJvz5htMjIibwt8Crgd3Am0WkOpj7LuAJpdQe4KXAXwSG2beMa67aylWXDTf9PhHxw0PNVhUDmIbwoTdczq41DXQ3rK4j8H43JRa3KDRkxStDQ16foTlkDc2GV24viD8f+IoBnX3zukte1/B24jt3Etuxg9Hbb9c1BFA3a8gvKHOvvOabPrqScaxajWC+TeegHBrKl/Lz9AjcgfbdFgUzrj2CdtUIkm4jxBbpBI0Ygt8DfiginxeRzwPfBz7QwPv2AQeVUoeUUjngNuCWqtcooFP0pXUHcAEo0MZ44aFmheKmqRaL5+IRBENDoRqCKrG4xR4BwNqOtcRdI3jduuv465f9Na/d8tqmttV9yy1kHnmUyZ/8BMBvOAfTp48aIYjFK5VgaKhQmn9BWU1oqJjDbrKlSeUC3dbcfUmK7nFW0ZiujfBao5cymVleOTcaEYvvAq4Cvgh8CbhaKdWIRrAO3bnU47j7WJCPAruAE8DPgPcopUpVr0FE3iEi94vI/WfPnm3gT7eOuBsearkhCEMs9k7+YpY9jFDWViUWZ9zmtE00nGsUr9x+U9cm/zFDDF628WXTtpWYjq7X3gSGwegdX8Po6MDsKBvH6sriUqQRzJtYRWVxa7KG5hUacj2C5JryBcx02WuLjZHQa23VTIKGPhWl1Dml1NeVUl9TKjhvb0bqmf7qkNKrgIeBtcAVwEdFpCZuopT6pFJqr1Jqb39/f4N/vjXEfY+gxS5kKGKxqxE4HY0Ns2l4bV5nVLcKMzdZ/jsh43kEnj4wH+yBAVLXXgv5fEVYCFpXULaSqScWzzSqcjZqDMF8xWL3++H0lFuY2/H2TO31QkOtakXdyuqJ40Cw0f169JV/kF8Gvqo0B9GFao33hV4EPI2g9R7BdGJxky0mgr/DojpslfcMQfhCm6cRBD2C+dB9i45OBjuRAohhgGXVpo9GhmDO2GZtr6GZhtfPRo1GUMzP0yPQx6uVKh+3sTYNDflzixdRLJ4r9wHbRGSzKwC/Cbij6jXPAtcDiMggsAM9/6Bt8Q3BHMTipqgWi32PoMkWExD+Cbp6gH1uUoefmvFWGsT3CLqHQ9le5/Uvx+jsxF5XO55TbLucPuqLxZEhmCu6jkAbgEIIHoGnEXhZZLlSbu7FZOB/P+xU2SNoW40g3tqsoWn3WkRmbI+olLowy/MFEXk3cDdgAp9RSj0uIu90n/8E8EfAZ0XkZ+hQ0u82EXpaFBILFhqarrK4yRYTwd9h4RkjTzD2JqCFGX5y2d67nXUd69i1KpyB60YiwfA//xNmb62wLY4ThYZCxDYNsoVKjyDMrKFcMedfKMxtgfq9VkcX3hDGtg8NtUgjmMn8PYCO6U8X65+1dadS6k7gzqrHPhG4fQKYQ0P8xSO+YKGhacTipuoIXE8g7Nh9jUcw0ZKwEMDl/Zdz1y/cFeo2Y1u31n1cHLumjiCMXkMrlXpi8XyG13t6QNAQdMfmkaCw4zWQHsHu6sXLa2lfsbi1GsG0e62U2tySv7jEKWsELfYITAvEqBWLm2oxsUAaQW4yfK9jETDsyCMIE11QFl4bas8jyLsXR/OuIxjcDa/6Y6yDfr3sitUIGtprEekFtgF+XEIp9f2WrKjNWTCxGCoreAtzCQ25bnPYV+s1YvFUyzyChUQcx/cESrmcDnVZ7XliWApUZg3Nv9eQIQaWYVV4BPOqI/DWGegBZsfaMzTk1xGkW1NHMOtRLiK/CrwHnfXzMPAC4MfAy1uyojbH0wiabUE9J8xYQCz2soaauALyTs5h9hny1gWVYnELUkcXGnGcQGVxDonFmm4jElHGsQwKJUWppMqhoSb7c1UTHGA/7/RRF+/kb8dNZJGnk02HGAZmdzfUllmFQiNns/cAzwd+opR6mYjsBP6wJatZAngaQddCGILgkPi5iMWmDYbdAo+gWiyeXBajF6vF4igsND+84rFcsRRK91GoHGA/74IyF8u9uGvXsJDH9nt/0rJtN2KeM0qpDICIxJRS+9FpniuSBdMIwPUIAmKxGGA0ebBe9guw+cXhrwvKXkpucnmEhmy7YmZxZAjmh9ekMV8slSuL5+kROGbZEMy7jsDFcvSa7DYViheCRvb8uNuG+t+Ab4rICLWFYSuGhLNALSZAX3kXAwVlZqz5FM03/F0L1uV6JcWARxB2+GkR0BpB0BC0ZwOypYLnEeSLqtx9dB51BKBDQ8GZxWGGhpw2TR1dCGY9mymlft69+UER+Q7QDYSbz7eEuHpTL9dtXc3qjgVoRlYhFudaUrA1J6yqquf8MvEIHIeS291R5bIY0VCaeeGHhgqlckHZPOoIoOwRKKVCE4tNy8AwpG2LyRaCRsTijYG73qziIXRV8Irj6k2r+MKvXjP7C8PAdCrF4mb0gVbii8UBjyDsFNVFIKgRlHK5UMZUrmScOqGheWsEpkOulKOgCihUKB4BgBUz27aGYCFoZM//nXJhWRzYDBwALm3huiKgchJYIdtcxlAr8T2CjNYwirllkjVkR2JxiHgtp3PFEvmSwjZl3llYjuGQLWb9WoIwNAKAVE+MjlUr1/A3EhqqmPAuIlcBv96yFUWUCYrFxWz7eQSFbKDz6NIPDRkVWUP5yBDMEycQGsoXSvPqM+QRM2Pki3lfMA7LELz+t65s2xqChaDpT0Yp9SA6nTSi1VSIxdnmqopbiRUIDeXdkvdlUFkcpY+GSzA0VHA9gvlimzbZYtavJZhX07kAyS5nRRuCRjSC3w7cNdBDahZ3OsxKoUIszrSRWFzPI1gGoaFgi4lsFqNz6e/TYhIUi/PF0ryG0nh4BWVhewQrnUY0gs7A7QJaM/hKa5YTUUGFWJxrv9BQMacbzsHyEIuDbahzuajh3DzxPIKcKxbPN2MIyllDnkcQlli80mlEI1ixVcSLToVYnIF4A0PvFwKvIV4ho1tQw7LQCMRxKAXrCKL00XkRrCMoFFUoHoFXWRy2WLzSmWkewdeoHS3po5S6uSUriijTrmIx6LUst9CQ40A+jyqVKOUjjWC+VIjFpXAMgVdQ5hWVRYYgHGbyCP7c/f0GdN3AF9z7bwaOtHBNER6mXSkWt4tGAOWwlTemcpmIxQAqn4+yhkKgoo6gUApFLPZDQ8VwxeKVzkzzCL4HICJ/pJQKNqv5moisyBbUC44VKzd281pMtAte2GoZpY8GB9irbDYqKJsn3olfZw2Fkz5aoxFEHkEoNPLJ9IuIP41MRDYD/Y1sXERuFJEDInJQRN5f5/n3icjD7s9jIlKcbUTmisIMpo+2UYsJ0EapkF1mGoG+ulS5XNRrKAQ8jyBbKJErhpM+WpM1FInFodBI1tBvAd8VEW+o/DANFJSJiAn8LfAK4Dhwn4jcoZR6wnuNUurDwIfd178O+K3ZZiGvKLyrbqXaq8UElGsc/Kyh5WAIAh5BVEcwbxwzUEcQUvqo5wFMuiHJyCMIh0ayhu4SkW3ATveh/UqpbAPb3gccVEodAhCR24BbgCemef2bgX9uYLsrBzMGKCgV26vFBLhicU6HhsRoLyM1R8TWHkApnQalovTReVLZdE6Fkz5qVBqCMJrORcycNfRypdS3ReQNVU9dIiIopb46y7bX4U2E1hwH6nZrE5EkcCPw7mmefwfwDoCNGzfWe8nyxDvIi9n2yxrywlb5Kd2CehlM8vJO/KUJ7eWI00ahuCVIUCzOFUt02vNv6uZ5AOO5cX0/Cg2FwkyfzEuAbwOvq/OcAmYzBPXODNOlo74O+NF0YSGl1CeBTwLs3bt32pTWZYenCeQm9Yi6thSLJ5ZFWAjKoaGyIYhOMvOhoo6gFF5lMcBEXn9GUWgoHGbKGvoD9+avKqWKc9j2cWBD4P56ph9o8yaisFAt3kGe1Vc/7SUWO5BPa7F4GVQVQ/nEX4wMQSh44nDWCw2FMA/YCwVNuNpU5BGEQyMm+rCIfFJErpfmesjeB2wTkc0i4qBP9ndUv0hEutHex+1NbHtl4J34s2Pu/TYKDVlxVyxeHkNpIOgRTFbcj5gbIoJjGn5oaL5jKiHyCFpFI5/MDuD/Au9CG4WPish1s71JKVVAx/zvBp4EvqSUelxE3iki7wy89OeBe5RSk80vf5njhYIyniFoo4PecrRYnJ9cFlXFUC80FAmR88U2hbzrEdgheATVhiASi8OhkayhNPAl4Esi0gt8BPgeMGvPVqXUncCdVY99our+Z4HPNrzilYR3kPuhoTbyCMxY2SOI9yz2akLB6y1UnND/byMqKJs3jmUEms7N3yPwKoknchMIgiUrd6pYmDT0yYjIS0TkY8CD6Cllb2zpqiI0NaGhNjoxBSuLl01oyE0fjUJDoWG7oaF8SE3nPI9gMj+JYzrznngWoWlkHsFh4GG0V/C+KISzgFSLxe2UNeTNShBz+RgCO8oaChvbNMgVvKyhcHoNgU4fjYTi8GjEr9qjlBpr+UoiamlrjyCum86p0vIxBJ5GMBl5BGER80JDIY2qDFYWR/pAeMxUUPY7Sqk/A/5XPfdLKfWbrVxYBHXE4nYyBJ5HkFtGhkCfWDyNICoomz+2aZD32lBb4VUWj+fHWZ1YPe/tRWhm8giedH8/sBALiajDUhCLQVcWLwOMmvTR6IpzvnhicaFYwg5peD1AoVSIQkMhMlNB2dfc359buOVEVNDWoaHAl3DZeASVGkHUa2j+2KaQyRcpKUJtOld9O2J+RBPK2hnvQPdCQ+0kFge9k2VWWRyJxeFhmwZTOd2YIKyZxf62o6E0oRFNKGtnfI+gHVtMBNayXArKLAsMIzIEIeJYBiNT7jSxkOYR+NuOPILQiCaUtTNmtSFoI41gGYaGQLeiLnpZQ1FB2bxxTIPJrPYIwggNBb2AyBCER0snlEXME18sbsMWE0GPYBnMK/YQx4FCoXw7Yl7YpkE674WG5m8IRMQXiSOxODxaNqEsIgTauulc0CNYHqEhqDz5e4NqIuaOYxlMZrVhDaPXELhzi0u5qI4gRFo5oSxivlSHhiKxuOX4hsC2kRDSHVc6tmmQLZT822HgmA7kI48gTBrt2HQ12hOwgD3uhLJ/aNmqIjSGAYYFpQIYtr7fLlSIxctII3BrB4zIGwgFJ9B6OoysISgLxpFGEB6N9Br6PHAJut+QN6BGAZEhWAhMRxuCdgoLQWVoaJkUlEG5diASisPBCZz8nTA9AiJDECaNeAR7gd1KqZUzIrKdMB09F7idhGJYvh6B23guEorDIRgOCkMshrIBiOoIwqORT+YxdB1BxGLgCcZt5xF4hkDATizqUsLEE4gjQxAOrQgN+VlDkUcQGo14BKuBJ0Tkp4AvEkeVxQuEd+XdTsVkUF6Pk4Jl1BPeMwCRIQiHoEcQVmjI1wgisTg0GjEEH5zrxkXkRvREMxP4lFLqf9d5zUuBvwJs4JxS6iVz/XvLEi8k1E4ZQ1Buf7GMwkIQMASx6CQTBhUeQYjpo8HfEfOnkfTR781lwyJiAn8LvAI4DtwnIncopZ4IvKYH+Bhwo1LqWREZmMvfWtZ4B3u7egTLqJgMyobAsKOTTBg4LdQIIkMQHjM1nRunftM5AZRSqmuWbe8DDiqlDrnbuw24BXgi8Jq3AF9VSj2L3uiZJta+MvANQZtpBJ6HsoyKySAKDYWN3YKsIS80FInF4TFTr6HOeW57HXAscP84cE3Va7YDtoh8F+gEPlKvPkFE3gG8A2Djxo3zXNYSwxeL2+zEFNQIlhGRIQgXxzL922GJxZ4BiDyC8GhlhVK9T73aw7DQxWo3Aa8Cfl9Ette8SalPKqX2KqX29vevsDZH7eoR+IZguYWGoqyhMAl6BGFVFkdicfg0Wlk8F44DGwL31wMn6rzmnFJqEph0u5ruAZ5q4bqWFlabZg0tV7HYSx+NCspCISgWh9GGGiKNoBW00iO4D9gmIptFxAHeBNxR9ZrbgZ8TEUtEkujQ0ZNElDHbNGtIRK9tGVUVQzA0FMWfwyASi5cGLfMIlFIFEXk3cDc6ffQzSqnHReSd7vOfUEo9KSJ3AY8CJXSK6WOtWtOSpF1DQwBWYtl5BEakEYRKMBwUlkcQhYbCp5WhIZRSdwJ3Vj32iar7HwY+3Mp1LGnaVSwGeN3/gYHdi72KUPHTRyNDEAoVoaGQmiZGlcXh01JDEBEC7ewRXPYLi72C0CmHhtosFLdEqew1FGkE7Uob9TWOqEu7isXLlKjpXLg4VvhZQ1HTufCJDEG7065i8TIlqiMIF8cs1xGEnj4aeQShERmCdqddW0wsUyJDEC626xEYAmZIvYb8grJILA6NyBC0O+3ahnqZUm5DHYUdwsBLHw0rdRRge+92NnRuYCAVtSYLi0gsbnd8jyC6+lkI/KyhqKAsFLxwUFiD6wEuXX0pd77hztlfGNEwkUfQ7kQewYIStZgIFy991LaiU007E3067U4kFi8okUYQLn5oKKQagojWEH067U4kFi8ofmVxNI8gFDxPIKyq4ojWEBmCdicKDS0o0YSycPEMQFipoxGtIfp02p1ILF5QYlu3krzmGuK7l1frjMWinDUUeQTtTJQ11O60c4uJZYjZ08Omz312sZexbBARbFNCm04W0RqiT6fd6dsK8R7oWWGT2SKWDY5pRB5BmxN5BO3O4G54/9HFXkVExJyxLSPKGmpzok8nIiKipdimEYWG2pzo04mIiGgpUWio/WmpIRCRG0XkgIgcFJH313n+pSIyKiIPuz//s5XriYiIWHgcywi111BE+LRMIxARE/hb4BXoIfX3icgdSqknql76A6XUa1u1joiIiMXFMQ2cyCNoa1opFu8DDiqlDgGIyG3ALUC1IYiIiFjGvOvlW+lJRN1c25lWGoJ1wLHA/ePANXVe90IReQQ4Afw3pdTHlnNoAAAGc0lEQVTjLVxTRETEAnPznrWLvYSIWWilIajnC6qq+w8Cm5RSEyLyGuDfgG01GxJ5B/AOgI0bo3z6iIiIiDBppYJzHNgQuL8efdXvo5QaU0pNuLfvBGwRWV29IaXUJ5VSe5VSe/v7+1u45IiIiIiVRysNwX3ANhHZLCIO8CbgjuALRGRIRMS9vc9dz/kWrikiIiIiooqWhYaUUgUReTdwN2ACn1FKPS4i73Sf/wRwK/BfRKQApIE3KaWqw0cRERERES1Eltp5d+/ever+++9f7GVERERELClE5AGl1N56z0VVHhERERErnMgQRERERKxwIkMQERERscJZchqBiJwF5tqXeTVwLsTlLDbLaX+ifWlPon1pT+ayL5uUUnXz75ecIZgPInL/dGLJUmQ57U+0L+1JtC/tSdj7EoWGIiIiIlY4kSGIiIiIWOGsNEPwycVeQMgsp/2J9qU9ifalPQl1X1aURhARERERUctK8wgiIiIiIqqIDEFERETECmfFGILZ5ie3MyKyQUS+IyJPisjjIvIe9/FVIvJNEXna/d272GttFBExReQhEfm6e39J7ouI9IjIl0Vkv/v5vHAJ78tvucfXYyLyzyISX0r7IiKfEZEzIvJY4LFp1y8iH3DPBwdE5FWLs+r6TLMvH3aPs0dF5F9FpCfw3Lz2ZUUYgsD85FcDu4E3i8juxV1VUxSA9yqldgEvAN7lrv/9wLeUUtuAb7n3lwrvAZ4M3F+q+/IR4C6l1E5gD3qflty+iMg64DeBvUqpy9Adg9/E0tqXzwI3Vj1Wd/3u9+dNwKXuez7mnifahc9Suy/fBC5TSj0PeAr4AISzLyvCEBCYn6yUygHe/OQlgVLqpFLqQff2OPpksw69D59zX/Y54PWLs8LmEJH1wE3ApwIPL7l9EZEu4MXApwGUUjml1EWW4L64WEBCRCwgiR4ktWT2RSn1feBC1cPTrf8W4DalVFYpdRg4iD5PtAX19kUpdY9SquDe/Ql62BeEsC8rxRDUm5+8bpHWMi9EZBi4ErgXGFRKnQRtLICBxVtZU/wV8DtAKfDYUtyXLcBZ4P9zw1yfEpEUS3BflFLPAX8OPAucBEaVUvewBPeliunWv9TPCW8HvuHenve+rBRD0Mj85LZHRDqArwD/VSk1ttjrmQsi8lrgjFLqgcVeSwhYwFXAx5VSVwKTtHfoZFrc2PktwGZgLZASkbcu7qpaypI9J4jI76HDxf/oPVTnZU3ty0oxBLPOT253RMRGG4F/VEp91X34tIiscZ9fA5xZrPU1wbXAzSJyBB2ie7mIfIGluS/HgeNKqXvd+19GG4aluC83AIeVUmeVUnngq8CLWJr7EmS69S/Jc4KIvA14LfCfAtMc570vK8UQzDo/uZ1x5zp/GnhSKfWXgafuAN7m3n4bcPtCr61ZlFIfUEqtV0oNoz+Hbyul3srS3JdTwDER2eE+dD3wBEtwX9AhoReISNI93q5Ha1FLcV+CTLf+O4A3iUhMRDYD24CfLsL6GkZEbgR+F7hZKTUVeGr++6KUWhE/wGvQSvszwO8t9nqaXPt1aFfvUeBh9+c1QB86E+Jp9/eqxV5rk/v1UuDr7u0luS/AFcD97mfzb0DvEt6XPwT2A48BnwdiS2lfgH9G6xt59FXyr8y0fuD33PPBAeDVi73+BvblIFoL8M4BnwhrX6IWExERERErnJUSGoqIiIiImIbIEERERESscCJDEBEREbHCiQxBRERExAonMgQRERERK5zIEERETIOI9InIw+7PKRF5zr09ISIfW+z1RUSERZQ+GhHRACLyQWBCKfXni72WiIiwiTyCiIgmEZGXBuYofFBEPici94jIERF5g4j8mYj8TETucluDICJXi8j3ROQBEbnba3sQEdEORIYgImL+XIJuq30L8AXgO0qpy4E0cJNrDP4GuFUpdTXwGeCPF2uxERHVWIu9gIiIZcA3lFJ5EfkZeqDLXe7jPwOGgR3AZcA3dRsfTHT7gIiItiAyBBER8ycLoJQqiUhelYW3Evo7JsDjSqkXLtYCIyJmIgoNRUS0ngNAv4i8EHRLcRG5dJHXFBHhExmCiIgWo/R41FuBPxWRR9CdI1+0uKuKiCgTpY9GRERErHAijyAiIiJihRMZgoiIiIgVTmQIIiIiIlY4kSGIiIiIWOFEhiAiIiJihRMZgoiIiIgVTmQIIiIiIlY4/z+Txo9M83JOGwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -537,9 +581,9 @@ } ], "source": [ - "plt.plot(IndShockExample.history['cNrmNow'][:,0:5])\n", - "plt.xlabel('Time')\n", - "plt.ylabel('Individual consumption paths')\n", + "plt.plot(IndShockExample.history[\"cNrmNow\"][:, 0:5])\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Individual consumption paths\")\n", "plt.show()" ] }, @@ -549,7 +593,7 @@ "source": [ "## Other example specifications of idiosyncratic income shocks consumers\n", "\n", - "$\\texttt{IndShockConsumerType}$-- and $\\texttt{HARK}$ in general-- can also represent models that are not infinite horizon. \n", + "$\\texttt{IndShockConsumerType}$-- and $\\texttt{HARK}$ in general-- can also represent models that are not infinite horizon.\n", "\n", "### Lifecycle example\n", "\n", @@ -568,48 +612,44 @@ }, "outputs": [], "source": [ - "LifecycleDict={ # Click arrow to expand this fairly large parameter dictionary\n", + "LifecycleDict = { # Click arrow to expand this fairly large parameter dictionary\n", " # Parameters shared with the perfect foresight model\n", - " \"CRRA\": 2.0, # Coefficient of relative risk aversion\n", - " \"Rfree\": 1.03, # Interest factor on assets\n", - " \"DiscFac\": 0.96, # Intertemporal discount factor\n", - " \"LivPrb\" : [0.99,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1],\n", - " \"PermGroFac\" : [1.01,1.01,1.01,1.02,1.02,1.02,0.7,1.0,1.0,1.0],\n", - " \n", + " \"CRRA\": 2.0, # Coefficient of relative risk aversion\n", + " \"Rfree\": 1.03, # Interest factor on assets\n", + " \"DiscFac\": 0.96, # Intertemporal discount factor\n", + " \"LivPrb\": [0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],\n", + " \"PermGroFac\": [1.01, 1.01, 1.01, 1.02, 1.02, 1.02, 0.7, 1.0, 1.0, 1.0],\n", " # Parameters that specify the income distribution over the lifecycle\n", - " \"PermShkStd\" : [0.1,0.2,0.1,0.2,0.1,0.2,0.1,0,0,0],\n", - " \"PermShkCount\" : 7, # Number of points in discrete approximation to permanent income shocks\n", - " \"TranShkStd\" : [0.3,0.2,0.1,0.3,0.2,0.1,0.3,0,0,0],\n", - " \"TranShkCount\" : 7, # Number of points in discrete approximation to transitory income shocks\n", - " \"UnempPrb\" : 0.05, # Probability of unemployment while working\n", - " \"IncUnemp\" : 0.3, # Unemployment benefits replacement rate\n", - " \"UnempPrbRet\" : 0.0005, # Probability of \"unemployment\" while retired\n", - " \"IncUnempRet\" : 0.0, # \"Unemployment\" benefits when retired\n", - " \"T_retire\" : 7, # Period of retirement (0 --> no retirement)\n", - " \"tax_rate\" : 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", - " \n", + " \"PermShkStd\": [0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0, 0, 0],\n", + " \"PermShkCount\": 7, # Number of points in discrete approximation to permanent income shocks\n", + " \"TranShkStd\": [0.3, 0.2, 0.1, 0.3, 0.2, 0.1, 0.3, 0, 0, 0],\n", + " \"TranShkCount\": 7, # Number of points in discrete approximation to transitory income shocks\n", + " \"UnempPrb\": 0.05, # Probability of unemployment while working\n", + " \"IncUnemp\": 0.3, # Unemployment benefits replacement rate\n", + " \"UnempPrbRet\": 0.0005, # Probability of \"unemployment\" while retired\n", + " \"IncUnempRet\": 0.0, # \"Unemployment\" benefits when retired\n", + " \"T_retire\": 7, # Period of retirement (0 --> no retirement)\n", + " \"tax_rate\": 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", " # Parameters for constructing the \"assets above minimum\" grid\n", - " \"aXtraMin\" : 0.001, # Minimum end-of-period \"assets above minimum\" value\n", - " \"aXtraMax\" : 20, # Maximum end-of-period \"assets above minimum\" value\n", - " \"aXtraCount\" : 48, # Number of points in the base grid of \"assets above minimum\"\n", - " \"aXtraNestFac\" : 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", - " \"aXtraExtra\" : [None], # Additional values to add to aXtraGrid\n", - " \n", + " \"aXtraMin\": 0.001, # Minimum end-of-period \"assets above minimum\" value\n", + " \"aXtraMax\": 20, # Maximum end-of-period \"assets above minimum\" value\n", + " \"aXtraCount\": 48, # Number of points in the base grid of \"assets above minimum\"\n", + " \"aXtraNestFac\": 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", + " \"aXtraExtra\": [None], # Additional values to add to aXtraGrid\n", " # A few other paramaters\n", - " \"BoroCnstArt\" : 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", - " \"vFuncBool\" : True, # Whether to calculate the value function during solution \n", - " \"CubicBool\" : False, # Preference shocks currently only compatible with linear cFunc\n", - " \"T_cycle\" : 10, # Number of periods in the cycle for this agent type \n", - " \n", + " \"BoroCnstArt\": 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", + " \"vFuncBool\": True, # Whether to calculate the value function during solution\n", + " \"CubicBool\": False, # Preference shocks currently only compatible with linear cFunc\n", + " \"T_cycle\": 10, # Number of periods in the cycle for this agent type\n", " # Parameters only used in simulation\n", - " \"AgentCount\" : 10000, # Number of agents of this type\n", - " \"T_sim\" : 120, # Number of periods to simulate\n", - " \"aNrmInitMean\" : -6.0, # Mean of log initial assets\n", - " \"aNrmInitStd\" : 1.0, # Standard deviation of log initial assets\n", - " \"pLvlInitMean\" : 0.0, # Mean of log initial permanent income\n", - " \"pLvlInitStd\" : 0.0, # Standard deviation of log initial permanent income\n", - " \"PermGroFacAgg\" : 1.0, # Aggregate permanent income growth factor\n", - " \"T_age\" : 11, # Age after which simulated agents are automatically killed \n", + " \"AgentCount\": 10000, # Number of agents of this type\n", + " \"T_sim\": 120, # Number of periods to simulate\n", + " \"aNrmInitMean\": -6.0, # Mean of log initial assets\n", + " \"aNrmInitStd\": 1.0, # Standard deviation of log initial assets\n", + " \"pLvlInitMean\": 0.0, # Mean of log initial permanent income\n", + " \"pLvlInitStd\": 0.0, # Standard deviation of log initial permanent income\n", + " \"PermGroFacAgg\": 1.0, # Aggregate permanent income growth factor\n", + " \"T_age\": 11, # Age after which simulated agents are automatically killed\n", "}" ] }, @@ -629,17 +669,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "First element of solution is \n", + "First element of solution is \n", "Solution has 11 elements.\n" ] } ], "source": [ "LifecycleExample = IndShockConsumerType(**LifecycleDict)\n", - "LifecycleExample.cycles = 1 # Make this consumer live a sequence of periods -- a lifetime -- exactly once\n", + "# Make this consumer live a sequence of periods -- a lifetime -- exactly once\n", + "LifecycleExample.cycles = 1\n", "LifecycleExample.solve()\n", - "print('First element of solution is',LifecycleExample.solution[0])\n", - "print('Solution has', len(LifecycleExample.solution),'elements.')" + "print(\"First element of solution is\", LifecycleExample.solution[0])\n", + "print(\"Solution has\", len(LifecycleExample.solution), \"elements.\")" ] }, { @@ -665,7 +706,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAD4CAYAAAAn3bdmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXhjd3X//7paLMm75N3yvtsztiXPZBKSNDvZEyAFQhYopSyFFr6FFr6/li2spaVQKJRAgPJjmUADBTJZCIRCSFhCmLG877st2ZYXWd6038/3j6vRzCQzGXnGnvXzeh4/9jO+9+rKHr91dM77nKMIIZBIJBLJ+YHubN+ARCKRSJJHirZEIpGcR0jRlkgkkvMIKdoSiURyHiFFWyKRSM4jDDtx0dzcXFFRUbETl5ZIJJILkkOHDi0KIfJOdtyOiHZFRQUHDx7ciUtLJBLJBYmiKJPJHCfTIxKJRHIeIUVbIpFIziOkaEskEsl5hBRtiUQiOY+Qoi2RSCTnEUm5RxRFmQDWgBgQFULs3cmbkkgkEsnx2Yrl71ohxOKO3YlEIpFITopMj0gkEslZZmJxI+ljk420BfALRVEE8DUhxEMvPkBRlLcDbwcoKytL+gYkEonkYmUjFOU/fz3CN54bT/qcZEX7SiGEW1GUfOBpRVEGhBDPHn1AXMgfAti7d6/crCCRSCQnQAjBY12zfPqJfuZWg9zltPPvSZ6bVHpECOGOf/YCPwH2neK9SiQSyUVN/+wqb3joed7zfRc56Sn8zztfwefvdiR9/kkjbUVR0gCdEGIt/vWNwMdP/ZYlEonk4sO/GeHzTw/y3ecnybIY+dRrdvOGS8rQ65QtXSeZ9EgB8BNFUQ4f/7AQ4qmt37JEIpFcfMRUwSMHp/nszwdZ2Qxz36Xl/P2NdWSnppzS9U4q2kKIMaD1lK4ukUgkFzGuKR8fPdBL14yfSyqsPHDnPnYVZ53WNXdkNKtEIpFczCyshfiXpwb40aEZ8jNMfPENDu5sLSaesTgtpGhLJBLJNhGJqXz79xN88ZfDBKMx3nF1Fe++rpZ00/ZJrRRtiUQi2QZ+P7LIRw/0Muxd5+q6PD5yRxPVeenb/jhStCUSieQ0cK8E+NQTfTzZPUepzcLX37SXGxrztyUVcjykaEskEskpEIzEeOjZMb7yzAgAf//KOt52VRVmo35HH1eKtkQikWwBIQRP983ziSf6mF4OcGtzIR+8rQl7tuWMPL4UbYlEIkmS0YV1PvZYH88OLVCbn87+t17KFTW5Z/QepGhLJBLJSVgPRfnSr4b5r9+OYzbo+fDtTbzpFeUY9Wd+UKoUbYlEIjkBQgge7fDw6Sf78a6FeN2eEj5wcwN5Gaazdk9StCUSieQ49Hr8PHCglz9N+GgpyeKrb9xDW5n1bN+WFG2JRCI5mpXNMP/2i0Ee/uMU2akpfOauZl6/txTdFgc7JYsQgud860kfL0VbIpFI0AY7/eBPU/zbzwfxByK86RUVvPeGOrJSjTvyeBFV8KjXx4PTXnrXg0mfJ0VbIpFc9ByaXOajB3rpca+yr9LGx+7cRWNR5o481lo0xnc9S3xjZgFPKEJdqpl/byjl3iTPl6ItkUguWryrQT7zswF+7HJTmGnmP+5xckdL0Y50M7qDYb4xs8D3PEusxVSuzE7ns/WlXGfLQFEUKdoSiURyIsLR+GCn/x0mHFV51zXV/M21NaRt42Cnw/SuB3hwystPvT4EcGdeNn9dlk9rRuopXU+KtkQiuah4bniBBw70MrqwwXUN+Xzk9iYqctO29TGEEPzGt8aDUwv8xrdGml7HX9nzeGtpHqXmU1t+cBgp2hKJ5KJgenmTTz7Rx8975ynPSeWbf7GX6xsLtvUxwqrKo94VHpzy0rcRpCDFwAerinhjcQ7Zxu2RWynaEonkgiYYifHgM6N89Tej6BSF999Uz19dWbmtg51WjyouzoYi1KeZ+UJDKXcVWEnRbW/XpBRtiURyQSKE4Oe983zi8T7cKwFubynin25tpHgbBzu5g2G+Hi8ursdU/syazufqS7k2XlzcCaRoSySSC44R7zofe6yX54YXqS/I4Ptvu4xXVOds2/V71jZ5cHqBR+PFxVflW/nr0jxaTrG4uBWkaEskkguGtWCE//jfYb71uwksKXoeuKOJ+y8rx7ANg52EEDyzvMaD016e9a0niotvK82j5DSLi1tBirZEIjnvUVXBT1xuPvPUAIvrIV6/p5T331xPbvrpD3YKqyo/jRcX+zeCFKYY+VC8uJi1TcXFrSBFWyKRnNf0uP185NEe2qdWaC3N5htv2ktrafZpX9cficaLi4vMhSM0ppn5j8YyXp2fve3Fxa0gRVsikZyX+DbCfPYXg3z/hSly0lL419e28Nq2ktMe7DQTLy7ujxcXr7Km8+8NpVyzg8XFrSBFWyKRnFfEVMHDf5zk334xxHooyl9eXsn/uaGWLMvpDXbqXtvkq9ML/NTrA+DV8eJi8xkoLm4FKdoSieS84YVxbbBT/+wqr6jK4WOv2kVdQcYpX08Iwa/jxcXn4sXFt5bk8baSM1tc3ApStCUSyTnP/GqQTz/Zz6MdHoqzzPznvW3c2lx4yumKsKryk/kVHpz2MrARpMhk5MPVxdxfZDsrxUVVjSR9rBRtiURyzhKOqvzX78b50v8OE1EF776uhndeU01qyqlJlz8S5TueJb55jhQXg0EPbs8P8HgeSfocKdoSieSc5JlBLx9/rI+xxQ1uaMznw7c3UZ5zaoOdpoNhvjG9wPdml9iIFxe/0FjK1dYzX1wUQmV5+bfMuPezuPgrQJCTcw3wx6TOl6ItkUjOKaaWNvn44338sn+eytw0vvWXl3Btff4pXatrbZMHp7wcWFhB4UhxcfdZKC5GIj48sz/C7X6YQGAKo9FGefk7sBe/AYulBPhmUteRoi2RSM4JAuEYX3lmhK89O4ZBp/B/b27gLVdWYDJsbbCTEIJfLa/x4JSX366sk67X8faSPN5akof9DBcXhRCsrnYw496P1/sEqhomO+sSqirfS37+Teh0W2/+SVq0FUXRAwcBtxDi9i0/kkQikRwHIQQ/65njk4/34fEHeZWjmH+8pZHCLPOWrnO84uJHqou5vziHzC0K/+kSi20yN3eAGfd+1tf70OvTKSp6PSX2e0lPrz+ta28l0v4/QD+wM4vTJBLJRcfQ/BoPHOjl96NLNBRm8IU3ONlXadvSNQ7vXPx6fCzq2Swurm8M43bvZ3b2J8Ri66SnN1Bf/wkKC+7EYEjflsdISrQVRSkBbgM+BbxvWx5ZIpFctKwGI3zh6WG+/YcJ0k0GPv6qXdy7r2xLg53mQhG+PrPAd9yLiZ2LOz0W9XioapiFhaeZce9nZeWPKEoKBfm3YC+5j6zMtm2/l2Qj7S8AHwBO6GJXFOXtwNsBysrKTv/OJBLJBYeqCn7UPsO/PjXA0kaYN1xSxvtvqseWlnyueXAjyINTXv5n3kdMCO7Iz+Zdp7Fz8VQJBj243d/HM/sI4fAiZnMp1dUfoLjotaSkbN8Y2BdzUtFWFOV2wCuEOKQoyjUnOk4I8RDwEMDevXvFtt2hRCK5IOicXuGjB3rpmF6hrSybb715H80lWUmdK4Tgef8GX5ny8vTSKhadwhuLc3hHaR7lltOf5Jcsml3vOWbcDyfserk512IvuY8c21Uoys6nY5KJtK8A7lQU5VbADGQqivI9IcT9O3trEonkQmBpPcRnfz7Ifx+cJifNxOde18prnPakBjvFhOBnC37+c8qLa20Tm1HPByoLebM9F9sZ7FwMh5eZnf0Rbs/343a9nBfZ9c4cJ33WQoh/BP4RIB5p/4MUbIlEcjKiMZXvPT/J558eYjMc46+u0AY7ZZhPPtgpEFN5ZG6Zr057GQ+EqbCk8C91Jby+0IZlGxYaJMMRu9738HqfPGLXq3of+Xk3odOdndkk0qctkUi2nefHlnjgQC8Dc2tcWZPLA3c2UZN/8sFOy5Eo35pZ5L/ciyxFojgzUvnGrmJuyctCf4aKi9HoBvPzB5hxP5yw6xUX3Y3dfs9p2/VeTCQSYWhoiI6OjqTP2ZJoCyGeAZ7Z2m1JJJKLhVl/gE8/OcBjnR7s2Ra+en8bN+06+WCnyUCIr00v8P3ZZQKqyitzMnlXWT6XZaWdMSfImbDrgRbBezweOjo66O7uJhgMkpGR/KRCGWlLJJLTJhSN8Y3nxvnyr0aICcF7rq/lnVdXY0l5+aaWzrVNvjLl5THvCnpF4c8LrLyzLJ/6tK011pwqml3vF8y4Hz7Krncr9pJ7t92ut7a2RldXFx0dHSwsLGAwGGhoaMDhcFBVVcU//MM/JHUdKdoSieS0+NXAPB9/rI+JpU1ubCrgw7c3UWo7sf3u8Azrr8TbzDP0Ot5Zls9bS3IpMp2ZPPHx7Ho11R+gaJvtetFoNJH+GB4eRghBSUkJt99+O7t27cJisWz5mlK0JRLJKTGxuMHHH+/jVwNeqvLS+M5b9nFVXd4Jj4+ogp96fXwlviD3cJv5G4tzyDgDbeYvtetBbu612O33brtdb3Z2NpH+2NzcJD09ncsvvxyHw0Fe3ol/RskgRVsikWyJzXCU//z1CF9/dhyjXuGfbm3gzZdXkmI4vuitR2N8z7PEQzMLeEIRGtLMfLGhjNcUnJk284Rdz/19AkHNrldR/g6Ki+/BYrFv2+NsbGzQ3d1NR0cHc3Nz6PV66uvrcTgcVFdXo9dvzwuTFG2JRJIUQgge75rl00/2M+sPcpfTzv93SwP5mcfPP88fbjP3LLIaVbk8O53P1pdy3RloM9fsei5mZvbjXYjb9bL3UV399+Tl3bhtdr1YLMbIyAgdHR0MDg6iqipFRUXccsstNDc3k5q6/V2aUrQlEslJGZhb5YEDvTw/tkxTUSZfusfJ3orjD3Ya2wzxlSkvj8wtExWC2/K0NnNn5s63mR+x6+1nfb3/KLvevaSn123b43i9Xjo6Oujs7GRjY4PU1FT27duHw+GgsLBw2x7neEjRlkgkJ8QfiPDvTw/x3ecnyTAb+OSrd3PPvjL0x+lm7Fjd5MtT8zyx4MekU7inyMY7y/KpOANt5uvrQ7jdDzM7d9iu1xi3670Kg+HUtt28mEAgQE9PDy6XC4/Hg06no66uDofDQW1t7balP06GFG2JRPISVFXwyMFp/vXng6xshrn30jL+/pX1WF802EkIwXO+db40Nc9zvnUyDTreU17AW0tyyUs5eefj6d1jGO/Cz3G7H2Zl5YWEXa+k5D4yM53bkoJRVZWxsTFcLhcDAwPEYjHy8/O56aabaG5uJj19+/zbySJFWyKRHEPH9AoffbSHzhk/e8utPHDnPnbbjx3sFBOCJxf8fGlqnq61AAUpBj5cXcybzoATJBBw4/F8H7fnESKRpR2x6y0uLibSH2tra1gsFvbs2YPD4aCoqOiM75U8GinaEokEgIW1EP/61AA/PDRDfoaJL9zt4FWO4mMEKqSq/HBOs+2NBUJUWUx8rr6U1xZaMe2gE+SIXW8/i4u/BjS7Xon9Pmy2P9sWu14wGKS3t5eOjg6mp6dRFIWamhpuvvlm6uvrMRjODbk8N+5CIpGcNSIxle/+YZJ/f3qIYDTGO66q4t3X15JuOiIPa9EY3/Es8dC0l/lwlJYMC1/fVcGtOzwTRLPr/RC3+wdH2fX+Grv9Hszm4tO+vqqqTExM0NHRQV9fH9FolNzcXG644QZaW1u31F5+ppCiLZFcxPx+dJEHDvQyNL/OVXV5fPSOJqrzjuRplyNRvjGzwDdnFvFHY1xlTefLjQVcaU3fsRSBEAL/ajvumYePsutduq12PZ/Pl0h/rKysYDKZaG1txel0Yrfbz2r642RI0ZZILkLcKwE+/UQ/T3TPUmqz8NAb9/DKpoKEWHlDEb46vcD/71lkM6Zya24W7ykvwLGDtr1odIO5+Udxux8+Ytcrvht78fbY9cLhMH19fXR0dDAxMQFAVVUV119/PQ0NDRiNO1s43S6kaEskFxHBSIyvPzvGfz4zghDw3hvqeMfVVZiNWvHQHQzzlSkv+2eXCKuCVxdYeXdZPo3pW5+RkSwvtes10VD/SQoK7jxtu54QgpmZGVwuFz09PYTDYaxWK9dddx2tra1kZSW3OedcQoq2RHIRIITgl/1ePvF4H1PLm9yyu5AP3tZIiVWLnCcCIb40Oc8jcz4EgtcV2nh3WQFVqTvjsX6xXU+nSyE//1ZK7Ntj11tbW6Ozs5OOjg4WFxcxGo3s2rULp9NJWVnZOZ3+OBlStCWSC5yxhXU+/ngfzwwuUJOfzvf+6lKurM0FtCW5X5qc58fzPow6hfuLc3hXWT6l5p2Ztvdiu57FXEZN9f+N2/WO32GZLNFolOHhYVwuV2KiXmlpKXfeeSe7du3CZDpzuyR3EinaEskFykYoypd+NcI3fzuG2aDnQ7c18heXV2DU6+hZ2+QLk1r3okWv4+2lebyzNJ8C0/bndY9v17subte78rTtevPz84mi4uGJeldccQUOh4Pc3NzteArnFFK0JZILDCEEBzo9fPrJfuZXQ7x2TwkfuLme/AwzPWub/NvEHE8trpKh1/F35QW8tSSPnJTtl4LjT9fbHrve8VrK6+vrcTqd2zpR71xEirZEcgHR59EGO70wsUyzPYuv3LeHPeVW+tcD/GPPOE8s+Mk06Hh/RSFvLckla5s3mh9Zhrsfr/eJxHS9qurTX4arqirj4+N0dHTQ399PNBolPz+fm2++mebmZtLStmfGyLmOFG2J5AJgZTPM558e4nvPT5JlMfLPdzXz+r2ljAZCvKN3ggPeFdL0Ot5XUcA7SvK2XaxjsU3m5h/DPbOftfXebV2Ge9hT3dHRgd/vx2w243Q6cTqdZ72l/GwgRVsiOY+JqYL//tM0n/35AP5AhDdeVs77XlnPIjHeMzDFj+d9WPTaEKe/Ls3Dus1ivbExyox7P3NzPyYaXSM9rX5bluGGw2EGBgZwuVyMj48DUF1dzQ033HBeeap3AinaEsl5yqFJHw8c6KXb7WdfpY2P3bkLS7aJD094+NGcD5NOx7vK8nlXaf625qxVNcLC4i9xu/fj8/0BRTGSn38LJfb7yMrac8qRrxACt9ud8FSHQiGsVivXXnstra2tZGdnb9tzOJ+Roi2RnGd414L8y88G+Z/2GQoyTXzxDQ4cdTl8ccrLfw8uY1QU3laax9+W5W/reNRgaA6P+79xe35AOOzFbLZTXfV+iotfS0rKqbs01tfX6erqwuVyJbaU79q1C4fDQXl5ObozsJLsbCJUQcSznvTxUrQlkvOESEzl27+f4Au/HCYUjfHOa6r581eU8dDcEn/zwgB6ReEv7bm8u6xg26x7Qgh8vt/H7Xq/RAiVnJyrKbF/ipycq1GUU3NpxGKxYzzVqqpSUlLCHXfcwa5duzCbj7/C7EJBRFSCYysE+5YI9C+jroaTPleKtkRyHvDb4UUeeKyXEe8619Tn8d5b6jmwscENHcPEBNxfnMt7yvIp3qammEjEz+zcj3G797O5OY7RaKWs9K+w2+/BYik75eu+eE1XWloal112GU6n87S3lJ/rxDYiBAeWCfYvERzyIcIqSooec70Vc6MN/iW560jRlkjOYWZ8m3zy8X6e6p2jzJbKV+5vYzxDx93DU/ijMV5baOUDlUXb1sG4utrNjHs/8/OPoapBsjKdNDV9jvy8W9DrT62jMBgMJjzVbrc7sabL6XRSU1NzQXuqo4sBAv1LBPqWCE+sggBdZgqpznwsTTmYqrJRjFtL/0jRlkjOQYKRGF/9zSgPPjOKosD7bqwjp87Kh6fmcS9EuNaWwYeqi9m1DYOcYrEg897HcbsfZnW1E53OQmHhqymx30dGRtMpXfN4c6rz8vK48cYbaWlpOStrus4EQhWEp9cIxoU66g0AYCxMI+PaUixNORjtpzfWVoq2RHIOIYTgF33zfOLxPmZ8AW5rLuKay0t5cGGJvuEZWjMsfLGxjCutpz+cf3NzArf7YTyzPyIa9ZOaWkNd7UcoKroLg+HUrr+yspLwVB+eU+1wOHA6nRQXF1+QnmoRiREcXiHQt0RwYBl1PQI6BVNVFmmXFmFpzMFg274cvRRtieQcYcS7zsce6+W54UXqCzL4xL0OfhoL8O4JN+XmFL7aVM6d+dnoTkP4VDXK0tKvmXHvZ3n5ORTFQF7ejZTY7yM7+9JTEtVIJJLwVI+NjQFQWVnJddddR2Nj4wXpqY6thwn2LxPoXyY07ENEVBSTHnODDUujDXO9DZ1lZ+RVirZEcpZZC0b40q9G+K/fjmNJ0fPum+vozzHw/sUFcowGPlVr543FOaSchvUtFFrA49HseqHQLCZTIVWVf0dx8d2YTPlbvp4QAo/Hg8vloru7m1AoRFZWFtdccw2tra1YrdZTvtdzlYh3M572WCY8peWn9dkmUvcWaPnpyiwUw9Z/R0IIFqcnkz7+pKKtKIoZeBYwxY//kRDio1u+M4lEcgxCCH7a4ebTTw6wsBbizjY7hvos/t3nx7is473lBbyrLP+Ut5sLIVhZeYEZ934WFn6OEFFs1iupr/sIOTnXodNtPWbb2NhIeKq9Xi8Gg4HGxkacTicVFRUXlKdaqILw5CqB/iWCfctEF+P5aXs6mdeXYW7KwViUdkrvTtaWF5nq7mSyy8Vkdweb/pWkz03mtxYCrhNCrCuKYgR+qyjKz4QQz2/5TiUSCQA9bj8PHOjl4KSP3fYsrrmhkh+HNgj6/NxXlMM/VBSSf4pe62h0jdm5n+J272djYxiDIYvSkr/Abr+H1NTKLV8vFosxMjKCy+ViaGgIVVWx2+3cfvvt7Nq1C4tl57banGnUcIzQkE/LTw8uo25EQa9gqs4m/YpizI05GLK37qIJBwNM93Yz2e1isquDZfc0AJbMLMqbHZQ3O/iHR55I6lonFW0hhAAOt+sY4x9iy3ctkUjwbYT5t18M8vALU1hTU7jzukp+lRrj4OYat+Vl8Y9VRdSknlrRam2tH7d7P3PzjxKLbZKZ0UJjw79QUHAbev3WhXVhYSHhqV5fXyc1NZVLL70Up9NJfv7WUyrnKrHVsBZN9y8THPFBVKCYDVgarJibcjDXWdGZt/auRFVjeMfHmOxyMdHVjmdwADUWxZBioqRxF7uvfSXlzQ7yyipQtvjuJKk7UbS2p0NADfCfQog/HueYtwNvBygrO3XzvURyIRJTBQ+/MMXnfjHIWjDK1Y4iBotSeCQW5rLUNL5dXcyerK2PFlXVEF7vU8y49+P3H0KnM1FQcEd8bVfLlq8XDAbp7e3F5XIxMzODoigJT3Vtbe0F4akWQhCd34z7p5eJTK8BoLeZSb+0CHNTDqaKTBT91sR0dXEhLtIupro7CK5r182vrGbv7a+mvMVJcV0jhpTT89QrWiCd5MGKkg38BHi3EKLnRMft3btXHDx48LRuTCK5UPjTxDIffbSXvtlVdpVlE2zIpFeJUZ9m5oNVRbwyJ3PLedFAYAa35/t4PI8QiSxjsVRQYr+PoqK7MBq3NlhJCMHk5CQul4u+vj4ikQi5ubk4nU5aWlrIyDh9e+HZRsQEoQl/om08thwEwFiagaXRhqUpB0NB6pZ+D+FggJm+Hia62pnsdLHsmQEg3WqjvKWN8lYn5btbSc1K7vehKMohIcTekx23pZhfCLGiKMqvgZuBE4q2RCIB72qQf/7ZAD9xucnPNOG8qpQ/mGMUmBQ+X1XK3YU29FsQCSFiLC09y4x7P0tLzwAKeXk3YLffh816+ZbXdvn9/oSn2ufzkZKSQktLCw6Hg5KSkvPeU60GowSHfJpQD/oQgSgYFMw1VjKuLsHSaEOfmXx+Wqgq8+OjWvGwy4V7sP9IyqNpNy033Ex5i5Ockp1dHJyMeyQPiMQF2wK8kqS75CWSi49wVOVbvxvnP/53mHBMZY+zkEO5OrwGwXtLC/nbsnzStuAICYeX8MTXdgWD06Sk5FFZ8bcUF9+N2Vy0pXuLRCIMDg7icrkYHR0FoKKigmuuuYbGxkZSTvOt+9km6g8lounQ6ArEBLpUQyKaNtVa0ZmS/9mvLi5oxcNOF5M9nQTXVgHIr6hmz+2vpmKbUh5bIZlIuwj4djyvrQMeEUI8vrO3JZGcn/xmaIGPPdbL2MIGjZVW3JWp/M4Ir87P5oPVxUnPCBFC4F9txz3zMPPeJxEijDX7MmpqPkBe7ivR6ZJ3lgghmJ2dTXiqg8EgmZmZXHXVVTgcDmy209uCfjYRQhCZ3UgIdcSteSYMuRbSryjG0phDSnkmii65yDcSDDLd381kp5abPuzySLPaqG67hPIWJ+XNjqRTHie7d783wOzoCrMj/qTPS8Y90gU4T+fmJJILnenlTT7+eB9P981TaLVQemUxrjQFR0Yq36gpZl92crM2YrFN5uYeZca9n/X1fvT6dOz2N2C330t6Wu2W7mljY4Pu7m5cLhfz8/Po9fqEp7qysvK89VSLqEpo3K/Z8vqXia2EQIGUskwyb67Q8tN5lqRSFEJV8U6MMXE45THQp6U8jCmUNO2m+bobqWhxklNaftopDzWmsjizzuyIn9mRFTyjfgLxkaymtOQz1VsqRCaLLERKLhYC4RgPPjPCV58dQ68olO3OpTNXT6E5hQ9WF/HnBdak2s43N8eZmfkes3P/o63tSm+kxH4/BQV3YDAk7yqJxWKMjo7icrkYHBxEVVWKi4txOBw0Nzeft55qNRAlOKi1jQcHlhGhGIpRh6kmG0tTDuYGG/qM5N7FrC0tHuPyCMRTHnkVVZQ3O6hoacPe0HTaKY9IKMb8uB9PXKTnxleJhmIAZOaaKarOpqgmi6KabKwFqej0uu0vREokEg0hBE/1zPHJJ/pxrwSorbEyXGJi0GLgvaX5SeWthYixuPhrZtzfi88BMZKffzMl9vu3vLZraWkJl8tFZ2cna2trpKamsm/fPhwOB4WFhaf7dM8Kifx03xKhUT+oAl26EUtzrpafrslGl3Ly/HQkGGSmvycRTS/NTAGQlm2l0rmXihYnZc0O0rJPr/U+sBZmdsSPJ57uWJxaQ1UFKJBjT6fxFUWaSFdnk249tTG3IEVbItkyw/NrPPBYL78bWUdBKN0AACAASURBVKIwN5X0VxTSnann1fnZfKi6mJKT5K3D4SU8nh/i9jxMMOiOzwF5L8X2N2DawtqucDhMX18f7e3tTE1NoSgKNTU13HLLLdTV1WEwnF9/3gn/dK8m1Mfkp//MjqUph5TSjJPmp4Wq4p0cj7s82nEP9BGLaikPe+Mudl9zA+WtbeSeRspDCMHqYkAT6RFNpFfmNwHQG3QUVGbivLGMoppsCquzMG3j8Kjz67cqkZxFVoMRvvjLYb79+wlMKXoKHHlM5BlxZKXxrVo7l7xMc4wQgtXVTmbc32V+Pl5YtL6C2poPkpt7fdJzQI5eftvd3U04HMZms3H99dfT2tpKZmbmdj3dM4KICcKTfgJ9ywT6lhL+6ZSyjER+2pifetLrrC0vMtnVkZjlEVjVCnt5ZRU4b7mT8hYn9oYmjCmnFuGqqmBpZj0h0LOjK2z64/noVANF1Vk0Xl5EUU02+WUZ6Le42GArSNGWSE6Cqgp+7HLzmZ8NsLQeoqTGynCpCWO6mS+dJG8diwWZn3+cGfd3WVvr0QqLxXdjL7lvS4XFw4Oa2tvbj1l+63Q6KS8//SLZmUQNxwgN+wj0xudPb2rzPcw12XH/dA76zJd/txINh3EP9DHeeYjJzvbElLzUrGwqW9sob22j/DRSHpFwDO/4KrOjK3hG/MyN+YkEtXx0us1ESb2VoppsiqqzsBWlJe1O2Q6kaEskL0P3jJ+PHOjBNbVCQX4aoiWL6awU3leWz9+U5ZN2grbuQGCKGfd+PJ4fEY2ukJZWS33dxygsfDUGQ3JOElVVE0XFgYGBYwY17d69+7xafpuYP923RHB4BaKqNt+j0Ya5yabN9zCdWI6EEPhmPUx0HmKis53p3m6i4RB6gwF7wy6uuuo6KlrbyC2rOKUXsMB6OB5Ba0XDhak11Fg8H12cRv2+QopqtXx0xjYuNDgVpGhLJMdheSPMZ38+wA/+NE2axYjFkcNkvonXFFj54Any1kKoLC39hhn391ha+g2KoiMv90ZKSu7f0oKB5eXlRKfi6uoqFouFffv24XQ6KSgo2O6numNEFwME4oXE8OSR+dPp+wq1+R6VLz/fIxzYZKqnKyHUfu88ANaiYs2K19pGaVMzxi2+eAkhWFsKara7uLPDN6flo3UGhYLyTBw3lFFUk0VhVRbmtHNriYMUbYnkKKIxlf1/1AY7rYeiZNdkM1tqwWFL5zsnyFtHIit4Zn+Ie+ZhAsEpUlJyqaj4G+zFb0i6YzESidDf34/L5WJ8fByAmpoabrrpJurr68+LoqJQBRH3uibUvUtEvZoQGovSyLiuDMuul58/fbiAONHZzkTnITyD/aixGEazhbLdLey948+paG0ju2BrbhhVFSy51xO56NnhFTbi+egUi5aPrr+sUMtHl2dgMJ6ZoVjRpSUC3d0Eu3sI9HQnfd65/z9BIjlD/HFsiY8e6GVgbo2cwjQC1TayclL5clURdx0nb7261sPMzPeYnz+AqobIytpLVfX7yM+7CZ0uOY/v0dtfgsEg2dnZXHvttTgcDrKysnbiaW4rIqoSGtX2Iwb6l1FXw6ADU0UWaZdWnXQ/4uaqX/NMdxxiosuVWAaQV1HF3ttfQ0VrG8X1jegNyUe70XAM7+QqnmFNpOdG/YTj+ei0bBPFtdlaPromG1txGrozkI+Ora0R7O09RqSjnlntmzodpurqpK8lRVty0TPnD/LpJ/s50OkhPT0FnDaWCiy8t7zgJXlrVQ3j9f6M6Znvsrrqim8ufw0l9vvJyGhM6vECgUBi+8vc3Bx6vZ6mpqbzZvtLotGlb4ngoE9rdEnRYa7T5k9bGmzoUo8vsmoshmd4gMnOdsY72pkfHwEhMGdkUtHipKK1jYrWti0VEEOBKLMjK1q6Y9iPd3JVy0cD1qI0ai8piIt0Fhk2844XbdVQiFB/P4HuHgLdXQS7ewjH3z0BGEtLSXU4MN//RizNuzE3NaFLS4Mk70uKtuSiJRSN8c3fjvPlX40QjqmYarNYLE/lruIc/qmq6Ji8dSi0gNv9MG7Pw4TDi1gsFdTWfoiiwj/HaDy5zU5VVcbHx3G5XPT39xOLxSgsLOTWW289LzoVoyuh+H7EYxtdUlvztEUB1dkoJ7C5rS56tZRHRztTPZ2ENjdQdDqKahu44nX3UdHaRn5VNTpdcmmJDX/oKH/0Cosz6yBAp1PIK8+g9bpSimqzKarKwpy+s/loEY0SGhk5JoIODQ1DNAqAIS8Pc3MzWXfegXl3M+bduzCc5v5MKdqSi5JfD3j5+ON9jC9ukF6cxkZ1Oo6CTD5Ra2fvUXlr/2onM9Pfjg9tipCTcw2lJX+BzXZlUqNQV1ZWEkXFlZUVzGYze/bswel0UlS0tQl9Z5ITNrrknbzRJRIO4Y7PmR7vaE8MXcrIyaPusiuocOyhbHcr5rSTu2i0JpZ40XB4Bc/ICn6vtqvRkKKjsCqLS26rpLgmi4LKLIxbmOC3VYQQRCYnCXT3EOzpJtDVTbC/HxHUvOW6zEwsu3eR/pa3YGlpxtzcjHEHCsdStCUXFZNLG3z8sT7+d8BLamYK4T05GO0ZfOmovLWWAnmK6Zlvs7raER/adC+lJW9MasdiNBplcHCQ9vb2xPjTyspKrr/+ehoaGjAazy03wmGEKghPrCYcH7HloDaIqfTlG12EECx7Zpjo0AqIM309RCNh9EYjJY27abn+Jipa27DZS0+amhCqYHl24yiR9rOxEgLiTSw12TRdWUxxbTZ5ZRnot7hdJumfhRBE5+cTEXSwp5tATy/qqjanRDGbMTc1Yb379Zh3N2Np3o3xDPnlpWhLLgo2w1G+8utRvvbsKOgUqM9isyKd91ZoG8/T9HpC4UXc7u/jdu8nHF4gNbWSurqPUlR4V1Le6vn5edrb2+nq6iIQCJCZmcnVV1+Nw+HAeppviXcKEVUJjqwQ6Fkk2L+MuhHRFgVUZ5NxTbzR5TiDmEKbG0x1dzLR2c545yHWFhcAsBWX0HLDzVQ49lDSuAuj6eXteLGYyuLUeiKKnh1dIbShpRbSslIoqs2muCab4trsHW1iifp8BHt6NXGO56JjC4vaNw0GTHW1ZN5yi5aDbm7GVF2NcpYcPVK0JRc0Qgie6J7lU0/0M+sPYrSnsVaTwV3luXywqgi7OYX19SH6p7/F3PxPUdVwPAXyJmy2PztpCiQYDNLT00N7ezsejwedTkdDQwNtbW1UVVWdk0VFNRQlOOAj0LtIcMCHCMdQTHrMDTYsu3Iw17+00eXwCNPxDs0z7RnqR6gqKZZUyna3ctlr7qaitY3MvJdf+BsJx5gfX01E0nNjfqJhFYCsPAtVrXkUxUU6M3dniobqxgbBvr4jaY7uHiLTWgoHRSGlspL0yy9PRNCmxkZ0plMf8LTdSNGWXLAMzq3xwIFe/jC2hCk7hdC+XBrLrHyi1s6ezFR8vt/TMfANlpafRaczU1T0OspK//KkKZDDOxXb29vp6+sjGo2Sn5/PzTffTHNzM2lpW1/Qu9MkOhJ7lwgO+7SNLulGUh15mHfFC4mGY19gNv0rTBxlxzs8z6OgqoZ9r3otFa1tFNU2oH+ZiDO0GUl0GXqGV/BOHtVpaE+n8fLiuAUvi7Ss7RdGEQ4THBxKiHOwu4vQ6Bio2guFsbgYc3NzIs1h3r0LfXpyHavbyWp4NeljpWhLLjj8gQhf+OUQ3/n9JDqjjkhjFtk12Xy6uphX5aWx4H2cFwb/i/X1AVJScqmqfC92+72kpLz8BpfV1VU6OztxuVwsLy9jMplobW2lra2N4uLic27+R9QX1AqJvYuEJ+IdiVYT6a8oxrLrpRtdYtEos0MDjMc7EL3jWj4+NSubitY2baZHi/Nlt7YknB3xdMeSO+7s0Cvkl2fguKE0MbPDdAJb4KkiYjHCY2PHRNChgQFEJAKA3mbD3LybjBtvwty8G0tzM4acnG29h5MRU2NMrU0x5BticHmQId8QQ74hZjdmk76GXIIguWBQVcGPDs3wmacGWN4IQ2ka1GXyNzVFvL3IhG/uB0zPfJdw2EtaWh1lpX9FYeEd6HQnjvBisRhDQ0O4XC6Gh4cRQlBeXk5bW9s5t1NRCEHUu0mg50WOj4JULLtysOzOfUlH4vrykibSrkNMdncQ2txAp9dTXNeY8EznV1ShHCfNc9jZ4RleSUTS/oVjnR2HG1kKKjMxJjH7ekvPdXaWQFeX5uLo6iLY14e6GW9HT0vDvHu3loOOpzkMZ/iF1R/yM+wbZtA3qH1eHmRkZYRgTHOb6BU9lVmV1FnrqLPW8daWtya1BEGKtuSCoGN6hY8+2kPnjB+91cRmQyZ31Rbw9yUGovPfwu3+AaoawGb7M8pK3xLPV5/4D3hhYSGxVGBjY4P09HQcDgdOp5OcMxydvRxCCCIz6wR6Fwn0LBFd1EQzpSxDy0/vysWYe8QDrsZieIb6Ge84xHjHIRYmxgBIt+VQ6dhDpWMvZc2tmFJfmuI57OxIFA2Pagc3pRkoqtZy0cU12eSWpW+rsyO2vqFFz51dcaHuTBQKlZQUTI0NWHY3axF0SwspFRXHfaHZCQ5Hz4O+QYaWh44bPWebsqm31lNn0wS63lpPVXYVJv2RgEFRFLm5RnLhs7ge4l+fGuCRgzPozXrCzVZa63P4UKkBm+8hJg79GIhRUHAH5WVvJz29/oTXCoVC9Pb24nK5mJ6eRqfTUVdXR1tbG9XV1ehPMNHvTCNUQXhqlUD3IoHeJW1Hog5MVdnaMtumHPRH5YfXfctMxEV6ssuVaG6xNzTxZ/e+mUrn3uMuBDg8Q9o95EsIdcLZkW2iuM5KcXxd1nY6OxINK52aOAe7ugiNjEI8wEypqNAKhS0tWFpaMdfXoZyhdzz+kD8hykO+IYaWh44bPTvzndxtvZt6Wz111jryLHnbFuVL0Zacl0RjKt99fpLPPT3ERihKtCKd7EYbHyvX07r+Nby9jzGnM1Bc/DrKy96GxVJ63OscXirQ3t5OT08P4XCY3NxcXvnKV9La2kr6WShKHQ8RE4TGV7TUR+8i6lpEm0FdayXzhnIsTUdax9VYjJmBXk2oXYfwTmi56XSrjdpLr6DSuYfyZsdLomk1prIwtY572BdPefgJBzSRzsw1U9mah71Wi6YzcrbP2RGZmzsi0J1dBHp7EQHtHYM+OxtzawsZN9+MpaUVS0sz+jMwkyWmxphcm0wI85BviEHfIHMbc4ljDkfPr6t/nRZFW+uozq4mRb+zLyBStCXnHX8YXeKjB3oYml+HXDPikhzeVmXg5shDrI89yZI+lbLSv6Ss7K2YTMe3oG1ubiaWCni9XoxGI7t378bpdFJaevImkDOBiKoER1cIdC8S7FtC3YyiGLUZH5bmXMwNNnRm7U94Y8XH+AuHo+l2QhvxaLq+iSvv+QsqHXvIK6885nnFoireyTU8wz48QyvMjvqJxBfPZhekUrM3PyHS6dbtmSGtpTl6EimOYFc3Ua8XAMVoxNTUSPZrX4ulpQVLawvGM/C7eHH0fDj3HIppTT2Ho+e2/DYttbED0fNWkKItOW/wrAT41BP9PNE9iz7VQNhh45raFO7n25hmnyBoyKSy4t2Ulv4FRuNLm1lUVWViYoL29vbE/A+73c4dd9zBrl27zomlAiISIzjk0yLq/iVE8CgP9e5czUOdokeNxZgdHoznpg8mnB5pVhu1+y6n0rGHsmbHMa3i0UgM78Qq7qG4R3rUTzSiWd9sxWnUX1ao5aRrs7fFfidisXiao5NAVxfBzi5Co6NH7HblZaReemlCoE0NDeh2MM2RiJ6PipyHfEPHRM9Wk5U6Wx2vr3/9GY2et4IUbck5TzAS4xvPjfGlX48QVgWR6gzsjRm8JeVHVPh/gNGYQ1n1Byix34vBkPGS81dXV+no6MDlcuHz+RLzP9ra2s6JTeVqOKZNzeteJDiwjAirKBYDll25WHbnYK6xohh1bKz46P/DM4y7DjLZ5SK4sY6i01Fc18CVb3gTlc69x0TTkXCM6YFlPHGRnh9fJRZVEx7ppiuLKa7TCoeW43Q9bpXI/DyBTi0HHTic5oi7OfRZWZhbWsi48UYsrS2Ym5tPe3DSy3Eq0XO9tZ5cS+458S7r5ZCiLTmn+d/+eR54rJfp5QBqgZmUxizeZn2eV2z8BxaRRUXth7AX34Nef2yUHIvFGBkZob29naGhIYQQVFRUcO2119LY2HjW53+ISIzgoI/N7kWC/UuIsIouzUiqMx/L7lxMVVkIRTA7PMTEj59kvOMQ82MjAKRlW6neexmVzr2UtxyJpsPBKNN9y7iHV/AMrSRGlCoK5JZmsPsaO/a4Be90t7GoGxsEenuPCHRXF9F5bbMMRiPmhgayX/MaLK0tWFpadmwuR8K5Efc8n6/R81aQoi05Jxlf3OBjj/XyzOACSrqB8J4cbimZ4vbA+7GFVMqq/g+lJW/GYDi2mLa8vIzL5aKjo4O1tTXS0tK44oorzgmrnoioBId8bHYvEOxbRoRj6NIMmlA352GqzCKw7me04xDjT2pOj+D6Goqio6iugSvufiOVzr3kl1ei6HSJOdKeoTncw9peQ6EKFJ3WyNJ6fWnCJ22ynPqfuojFCI2OHiPQoeHhI2mO0lJS9+5NCPROtX0Ho0GGfcMM+AYYXB5kYHmAId8QgWi8aHlU9Hw473xeRM9qDFamkj5cirbknGIjFOXLvx7h68+NoSoQqc+ksTrAPbEHqApNU1r+ZsrL3obReKQrLxqN0t/fT3t7O+Pj4yiKQk1NDbfeeit1dXVn1aonoirBYR+BrkUCfUuIUAxdqoHU1jwsLbkYKzKYHx+hr/1xxr95iPmxYUDrQqzes48Kxx7KW5xY0jMIbkTwDK/wu/8ZxTO8wuL0GiLebVhQkUnbjWUU12VTWJVFivnU/7Rjq6taHtrVQaCjg0BXF+q61qijy8rC0txMxvXXY25pxtLSgsH28p2kp4Iv6GNgeSDxMbg8yPjqOKrQXijSjenU2+q5q/Yu6q31NNgazv3oObQOSyOwOAyLQ/GPYe3f4mmbZJDNNZJzAiEEBzo9fPLJfhZWQ8SKLWQ2mrjX8E0u4/eU2N9ARfm7jnGDeL1e2tvb6ezsJBAIkJ2djdPpPOuruhKuj84FTaiDMW3z+O4cUlvyiOUpTPa4GHcdZKLLRXBtVYuma+u1BhfnXvIrqghuRPEMryTSHUserSVcb9BRUJlJcV029tpsCqqyTrnbUKiq1vrd0cFmhybS4RGtqIlOh6muDoujFYvDgaW1VWta2caoVRUq7jU3A74B+pf6GfRpEbR305s4pjCtkAZrA/U2TZzrbfWUpJecm9GzELA2d6woH/68OnPkOEUH1grIrYPcWsipRdn7ZtkRKTk/6J9d5cOP9nBwwgeZRtSGTG6z/pzbxQ+pLLyVysr3YLGUABAOh+nt7eXQoUPMzMyg0+lobGykra2NysrKszZVT8RUQqN+NrsWCPQuIQJRFLMeS1MO5uYcVpRFxrsOMdFxkLkxbcVWYqaHYw/lrW0oihnP8Aozgz7cgz6WPRsAGIw6Cqu1lnB7XTb5FZmnvHw2tr6uRdEdHQQ6Ogl0diZmROuzsjA7Wkl1OLA4HJibW9Cnb9/wq3AszMjKSCK1MbA8wKBvkI2I9jwPpzcabA0Jca631mM1n4NjbaNhWB47vjiH144cl5KuifJhcc6t0z5sVWA4NoWUbEekFG3JWcO/GeFzTw/y3ecnwagjXJOJs2SA+/gGu/P2UFX1d6Sl1QBaVH3w4EG6uroIBoPk5OSwZ88eWltbz9pUPREThMZWtNRH76LmozZpQq2vTcOzOsx49yHGO9sJrq2CohyJph17sRaWMzu2mhDpw2uzDou0vd6Kvc5KfnkGesPWX4yEEITHJ+ICrX2Ehoe1aFBRMNXUaBG0w4HF6SSlcvuiaH/InxDnQd8g/cv9jK+MExVas06qITUhyodFujq7GrPh7Nsuj2Fz+aXpjMUh8E2AiB05LtN+rCgf/jqjKOndj1K0JecsMVXwyMFpPvPUAP5AhGhJGgU1G7zJ+HWutlmpqnofmZnNRCIR+vr6OHjwINPT0+j1ehobG9m7dy/lZ2hLyIsRqiA05ifQvUCgZxF1I4qSosfcaCNSGGNiqYexzj8xNzyEECqWzCwqW9uocO7FXt/CilfFPahF04cLhzqDQmFlFiUNmkgXVGSiP8G+xZdD3dgg0N2tCXQ8Hx3za+NUdRkZWFrjaQ6nA0tLC/qMl9ojt/zzEALPhieRdz4cQR89dyPPkke9rZ5GW2MixVGaUYouiXVtZwQ1BiuTcUEePlacNxePHKc3QU7NiyLnWu3fTKf/s9w20VYUpRT4DlAACOAhIcQXX+4cKdqSE9E+5eNDP+2hz7OKak3B0GDmtRn/zV0Zs9TXfACr9VIWFhY4dOgQHR0dBINBbDYbe/bsweFwnJWoWlvD5Weza1ET6vUISoqOlLps1tL9jM61M9b5J9aXlwBt3nSl8xLKW9oQIh/PsB/3oI/5Cc2Cp9Mp5FdkxkVaKxwatpiTFkIQmZo6kot2dRAaGko4OlKqq7E4Wkl1OrE4HKRUHX9S31aIqBHGVsaOSW0MLA+wFk8HKChUZFXQYG2gIaeBBmsDdbY6ci25p/W420ZoHZaGj1MIHD22EJia+9J0Rm4tZJdBksuHT4XtFO0ioEgI0a4oSgZwCHi1EKLvROdI0Za8GO9akM/8bIAft7tRTDrCdZlcVfhb3mh6hraad5KbewvDwyO88MILjI+PJ3LVe/bsobKy8oxH1UIIIp4NNju8BDoXiK2GUYw69BWpLBnnGJx6nqn+TmLRKCkWC+XNTipa95Bmq2N5FtyDPubGtGYWRYG8sgzs9VZK6q0UVm/d3aEGAvEoupOAy0Wgs5PY8jKgjSG1tLZgcTiPRNGnWYjdjGwy5Buib6mP/uX+RHNKRNVmU5v15kRTyuH0Rk12DanGl+6QPONsLMHiICwMasJ8+LN/+sgxig6slccX59Ttd8Mkw46lRxRFeRT4shDi6RMdI0VbcphITOXbv5/gc78cIhCOEa1Ip6rKw1uM+7mm4jZycl5PR4eWAvH7/WRmZnLJJZfgdDrPyrCmyGKAQIeXzc4FogsB0CuIIj3zYoresWdZ9EwCYC0uodKxB2vxLiLhfGZH1pgdja/OUiC3JB17nSbSRbVb90lHFxbYbHcRaD/E5qF2gv39ENNyqCkVFVjiEbTF4cBUU41yGrbGtfAaA8uae6NvuY/+pX7G/eMING2wmW2JwuDhKLo8oxz9DkadJ0UIWHW/VJgXBo9NaRgskFcHufXxz/GvbZUvKQSebXZEtBVFqQCeBXYLIVZf9L23A28HKCsr2zM5ObmV+5VcgPxuZJEPPdrD+MIGsVwT6Q1wX+p3uauohPS0e2hvH6G7u5tYLEZlZSX79u07K77q2GqIzc5FNju9RGY0P3LEGsMTHaN75FdsbK6gNxgoaWomv7IFfUolvjkjnpEVIkFNSG3FaQmRLq7bWsehEILw2Bib7e0EDrWz2d5OZEprtlBMJm02R1ubFkW3tp5W+/dKcIX+5f5EBN2/1M/U2pHGjvzUfJpsTTTmNNKU00SjrZH81PyzZ6+LRbWi30si5xe5NMzZkNdwlEDXawKdVQrn4J7OaExl1h9k2rfJ9PIm08sB3n9zw/aKtqIo6cBvgE8JIX78csfKSPviZsa3yccf7+MXvfNg0RNrSOe23J/xJussFt1dHDo4x8zMDEajkdbWVvbt20d+/ssvhN1u1ECUQM8imx1eQmN+EBBKDTG9OUjf1HMEYuukW22UNDmxZNUR2ChgdnQzMU86uyAVe112wuGRmpl8U4caDhPs6dWi6HYXgfZ2YisrgLYSy9LmJLVtD6l72jA3Np7yrOjFwCL9S/1HRHqpH8+GJ/F9e7qdRltjQqAbbA1nL/8cCWr55hdHzksjEAsfOS6jKC7I9ccKdFpe0i6NM8VaMMLkkibKUy/6cPsCRNUj2qvXKYz9823bJ9qKohiBx4GfCyE+f7LjpWhfnAQjMb72m1G+/MwoEVUQqUrHUd7L21J/TR7X8ac/BVhZ8WOz2di3bx8Oh+OMTtYTkRiB/mU2OxYIDi5DTBAyBJlY62F0ycVa1EdhVR02+y7QVbDoNrO6qA23T8s2UdpopaTBhr3OSro1+bfWMb+fTZcrEUUHu7sRYU2IUioqsOxpI7WtDUtb2yk1rwghmN+cPya90b/UjzdwpEGlPLP8GIFutDWSZToLDUhBPywMvTRyXpmEeLcjig6yy48TOdeC+ew1Tb2YmCqY9QeYWj4izEeLtG8zcszx2alGymypiY/So74uyjJjNOi3rRCpAN8GloUQf5fMk5GifXEhhODpvnk+8lgvcytBYgUWcuvWeWv6IzTEKjl0MJXNzRClpaVcccUV1NXVnbEmGBEThEZX2HB5CfQsQEQQVoJM+HuYWOtl07BGQU0z5vRaAhuFLM6oCFVgMOmx12VT2mCjtNGGtSg1KTEVQhBxuwm0t7N5qJ1A+yFCw9qgJwwGzLuaElG0xenc8mJZIQTudXcitXE4zbEcjBclFR2VmZU05jTSaDsSQaennMH6gBCwsQALAy+NnNeOWmCrT9Hsci+OnHNqwHhu+LXXQ1Gmlg5HyBvxzwGmlzeZ8W0SiR3RT4NOwW61HCPI5fGvS22pZFlePmW2ne6RK4HngG4g/lLIPwkhnjzROVK0Lx5GF9b58KM9/H5kCZFuQN9g4nU5P+GqcICu9gJCIT0NDQ1cfvnllJWVnZF7EkIQnlpjo32OjY55lBBERIip9QGm1vuIWCGroBFVlLE8n0k0pE3CyyvPpKzJRmmjlYLKrKQaWkQ0SnBwUIuiXVpO+vBQf116OhanUxPotjYszc3oLJaTXPEIqlCZWp06RqD7lvsSFjvD/2vvzqPjPut7j7+fWTSaRTOSESFIVQAAIABJREFUZqTRvkvWZnmR5UWW7awQCCShlEAKlFJ2CGXpQnu59wDnthRoS5tSIOUWyiXcsjUJhCQEErI4XmRLXrTLsi1LsixrX2eRZnvuH7+RZMV2LCdSxrKe1zlzZhyPR8+ZY3/ON99nEwYKEwuXBHRJUskbt4IjEtG2Zo+cujygZycX3xdn0/rLr6ycE3NBH9vjj8IRydD07GVtjN5o9TzuDSx5v8N8SbXstCypnNMd8Rhex72YanONsqo8cyEe+v1pfnDgHGEdhAoT2Jt9kHsDTZxrziAYTGTTpk3U1tbicr0xfdLgqJ+pw314jw+h9wvCMsQF72n657oIOuMxWPPxTqXj92hVnN0VT3aZVklnbkha1uRhZG4Of1MTvoYG/MeO4z95cuEGcENGOpat1VpPuroaU1HRsld1zFfQbWNttI220TbWRvtYO56gNjFq1BkpSSpZEtDFScVLLoZdNfPhPNwJIx1aKA9Hn6Nb0AFtfXPKhssrZ3tGTPvNnrnQQiCfj7Yw5l/3T/gJhCML79XrBBmJ8eQmW5e0L+YfDsvqHemrQltZFVJKfnVygK881c6EJ0Ao00J+0UXer38CT2sygUAONTU1bN++nYQV2HF3LSFPgNH9XfiODxHniSMiIwzP9jIQ6sHrMBGIZDEz6UJgxGQxkLkhKRrUSThSrl2RRnw+fCdO4GtowNfYyGxTMzIY1LaBl5Rgqa7GvHUrlq1bMGZkLHvcQ94h2sbaaB1tpX2snbaxNibntOrUoDOwIWkDFc4KKlwVlDvLKXQUYtSv8hngUmprmYc7o5VzpxbOo10Q8Cy+z+bWqubUsmhIl2qPGK1vjkQkQzOzS8J4YdJvzMfYK6rlhHgDuU7LK9oYVq1aTozHuIK3yF8PdRu7suLaBqb4m1+20tw3ScRuxLLdwHvtPyWpy8/YVBW7dtWyc+fOVZ9cDPkDXHi+Cf+JESwzVnRCh29ukm4uMBKnYyqUSii0G/2kDneBnYq9yWSVJZOaa0d3jRvDwzMzWj+6oQFvQwOzbe0QCoFeT3x5OUnvfz+Wmm1Ytm5d9gaW8dlx2kbbaB1rpX1UC+gR/wigHZJUmFjIbTm3aSHtrKA4qXh1jxi93nDe8r5oOEdDOgbh7AuEFkJ4oWKOBnP/+NJqWScgI1HrLb+pwn1ZxZxouYGPb10GFdrKNU36AnztmVP8rKGPiEEgK2y8NeM5NvV2MdVVQVnNbmprazFfR7/2evlmpul//hi+k6PYvUnE6UzoQ4JeurkQlox6nQhdJbZ4Ext2JpNT6SSrNPmam1pCExNaSB9twNfQwGxnp9YOMBoxV1bi/NM/xVJTg3nLlmWdeDcdmKZ9rH2xgh5tW1hmN7/Ne2f6TipcWkBvSN6A2bBK39saC+dJX4CeMR+9Y176xnz0jGmTfz1jPkZmlp43nWAykOO0sMGdwJ1li8Gc67SQkWiOWbX8RlDtEeWqwhHJT4728tVnTuGbCxHKtlJV2MlbJl7E31fIli23UFtbu2rngYwP9NNz4BhzTWMkzaVgMyQSigQZiozS6w8xHHKiN8SRXpRIboWTnIpkkjOsr7rKIzQ6iq+xEV9DI76GBu28DkDExWHevBnLtm1Yttdg3rTpmpOGvqCPjvEOWkdbF3rQvdOLm8qyE7IXqucKVwVlyWWrs4pjPpwXes2dixODr9rWeGPDWUrJ8MwcPaNerUoe89Ezpq3I6Bn1Mj0bWvJ+t91ErtNKbjSMc6KvtWrZeGOep/06qJ628ro09ozzhcdbODvkIZIUR3Kpj3eLX2I6k0R5+Zuoq6tb8W3mkUiYgc4Ouo80Mtc6Rmo4C2d8BlJGGAlP0esPMxiyY3Wayal0kluhTSC+2jkewaGhhSra19hIoLsbAGE2Y9myRWt11NQQX1X1qjeBByNBzkycoWW0heaRZtrG2uie6l64SSXNmrYkoCucFSu/DlpKbcncUDsMt9+Q4RwKRxiYnKVnbD6YtUq5b8xH77iX2eDSSb/MRDO5Ti2U85zWaLWsPZtf48UOa5UKbeU1GZ6e5StPdfBU0wAyXoeuxMR9SU+Rf9ZDUcE91NXtwW63r9jPCwbm6Gs5yZkj9fhbR0k3FJBuzkcn9EyGvJyfg0HicRYnklOeTG6lk0T31ddMh0ZH8R45gq++Hu+RowvbwXU2G+bqrVhrarBs20Z8RQXiKpf7zh832jLSQvNoM62jrXSMdTAb1jbaJJmSqHRVLjzKneUrv5PQN65VzcPtlzy3a5tT5sUonGeDYc6P+xZbGdHXfWNe+l+x089k0C0EsRbMWsWctw7aGNdLhbZyXQKhCD84eI5vPtdFIBQhlGdld14Du/rbKUy9lz17biExMfHaH7QMfs8M5443cOZoPTOdg2SbSsi2lmLUmfCHg5wPSiZtZlyVLnIqtB2IRtOVq67wzIw2aXi4Hl99vXbIP1pIW7Zvx7K9Bsu2GuLLSq+6/G46ME3rSCstoy0Lj/nNKia9ibLkMipdlVSlVLHRtZFMW+bK/a95wLfYa54P5uGOpZtQ4h2QWh59lC0+r2I4T88GF9oXvWNLWxkXp2aXvDch3qBVyU5tM8n86zynldQE0zUnfxWNWj2iLNv+rhG+8MsWLo77CaeYyNkwwtunHyd/cje33/sPK7LOenp0hLON9ZxpqGey6wK51jI22DZhde0hGIkwGJbMplhwVqewtcJFovvKy/Eis7P4jx/He7ge75EjzLa2QiSCMJmwVG/F/va3Y925g/jycoTh8r/ewXCQrokumkebaRnRArpnumfh9/Md+dRl1lHlqqIypZKSpBKMuhVYahcOauc2v7JyHj8H0dP0MMRrlXLBLYsh7S6/rttPlktKyZg3QO+Yl55R39JWxhU2lbhsJvKcFnYVOsmLVs050YC+GfvLNzJVaa9j58d9fPGJVvZ3jhCx6DFvELzD9DTFExncfuu7ycvLe82fLaVkrL+PMw31nGk4zGTPADm2MvISNpEcl6L9vhCEs+24dmeQWZ58xYsAZDCIv6UV35F6vIfr8Z84oa2TNhgwb9yIdddOLDt2Yt6y+bKetJSS/pn+heq5ebSZzrFOAhEtkJzxTjambGSjS3tUuipJiHuda8ulhMm+yyvn0a7Fg4+ETtuqnVoGqRWL1XNy/ooesi+lZMIX5NyoNxrOXs6NaZN+PaNeZuYWJ/50AtIdZvJcFnKStfaF1mvW+stWk6rvVpuqtJWrmg2G+dYLZ3j4pbOEkMgiC3dkvkz1hRn2lH2IysrK13Q2iIxEuHjmFKePHub00cPMDA2RbimkxL6dtJxMdEKHRyeYzrPj2pvFpg1Jl1VoMhJhrqtLq6TrD+NvaFzYcWgqKyPpfe/DunMH5uptly3B8wQ8NI820zTSRMtIC62jrUzMTQDaof3lznIeKH1gIajTremvr0L0jcNQa3RisC0a1J1Ljwx1ZGuhXHTHYlvDVbKiZ2tM+gKcG/XSE62ae+YD+hUrMnQCspK0MH7H1kzynFbyXFq1nJVkIe413EOpvPFUaK8jUkqeaR3kfzzRwsRMkHCamfKis9w5doLt1vvZ9YHdGK8yOXc1kUiYC53tnD5yiK76g3gnx0kypVNo30lObj4mnZGgXhDMc5ByaxZZRZefBR0cGMBz4ADeQ4fxHTlCeEIL2ri8POz33oN1x04sO7YvOUdaSknPVA9NI02cHDlJ00gTZybOIJEIBIWJhdySfctCL7oosQiD7jX+dQ8HtSNCh9pgsEV7HmqDmcVjTjEng7sCNv/RJX3n0hU7lW7KH9Qq5DFvtHL2LQT15CWnyQkBmYlm8pxW7tmcQZ7TSr7LSp7LSrYK5puCCu114szwDH/xWDMneyaJ2AwkbwtxX+RRasRe9r3zG9e1fC8cCtHf3krXkQN01R9m1jNFvN5Orr2W/KwSHEYzEQHk2Enam4ml1InQL1a0Eb8fX0ODFtQHDi4swzO43dj27sWyayfWnTsxpqUt/Blf0MeJwQZODmsB3TTStLDtO8GYQFVKFXfm3smmlE1sdG187W0O7+jSYB5q0ZbUzbc2dEZtxUb+Xi2k3RXgrgRb6uvuO8/MBukZ9XEuWinPh3TP2NIesxCQEW1lvHVjOvlOLZTzXdq2bJNhfS2VW29UaN/kZmaDfOPZLn58qIeIXqAvjeftzt9R60/jjlu/TEpKyrI+JxQM0td6kq76Q5w+epiAz4NexJORsJP8jDLSTHYEINwWHLvSsVSloIseriOlZPbUKbwHDuI9eABf4zFkIKBNHtbUkHj/u7DV1RFXWIgQQutFe/pp6n6SpmEtoLsmughL7ZaYfEc+t2bfyqaUTWxK2URBYsH13+wdCmh95vlgng9pz9Die2xpWigX3AppG7XXzmIwvPZt0L5AiO4R7yUtjPkVGl5GPUsn/9Id8eQ5rby5Io08pyUazFqPOd6ognm9UqF9k4pEJI8e7+fLT7fh9YUJZ5rZWXCSOyaHuaP8oxQWFl7zM4KBOXqajtNVf5CzDUcIzvkRwkSSZTMFaVXkWpIxSBA2I7Ztbixb3RhTtVUfoYkJZp4/hPfAAbwHDxIa0c7aMBUXkfRHf4S1rg7Ltmp08fHMhmZpG2unqe2HC5X02Kx2s7nFYGFjykY+tPFDCyF9XZtWpATP8NJgHmrTqufoJbXo47TqufB2SKtcrJ6tr23VTCgc4cKkn+4RL92jXrpHPJwb9dI94mVweulyObfdRJ7Tyh1lbnKdWrWc57KSm2xdd5tLlOVRoX0Tar0wxWcfPcmZAQ8Rh5Gs7RPcF/gtd2a8l01vqXnVScbArJ9zJ45xqv4A5441EArOIXTxmOPKKUndTKEjFXNIgl5grnRhrXZjKkqEcAh/UxMT/6W1PGbb2kBKdA4H1tpd2OrqsO7ejTEtjWHfMAeGj9PU/BBNI010jHcQimgTZjkJOdRm1LIpZRObUzdTlFi0/AtkI2FtWd1gs/a42Ky1Oi696DUhQwvm4ju1YHZXgrMQrvMEPSkl494A3aNezo14OTvq4Vw0pPvGfEsOMLLHGyhIsVFb5KTAZSXfZYv2mS1Y4tQ/QeX6qCV/N5Fxb4AvPdXOr49fQMbpMBUL3mF7lrsS69i9+27irrJNOzg3S/fxRjoPvkT3iUYioSBCZ8FgKCHLsYnSlCwSZkMICXE5CViq3ViqUgjPjOPdvx/PSy/hPVxPxOMBvR5zVRXWut3Y6uowVVQw4B+kcaiRY0PHODZ0jPMz5wFtRUeFq0IL6JTNVKVU4TQv8yaX4Ky2YmOwJRrOzVoFHdRWmqAzahOCaVXR6jlaQV/nhpTZYJhz0ZUY3SOeaOWsvb50ZUacXkeu00K+y0pBio0Cl5WCFK2dkWyNU+uYlWtSOyLXkVA4wg/re/mH33YwG5SQHc+t2Ye5V5fIHXs/cMVzrUPBID0nj9Fx4CXOHjtKODiH0FnQGYtJtW+iMjOXJH8IEYigt8dh2erGvMVFeLgHz4sv4nnxRa2aBgzp6VolXVeHZecO+uTYkpAe8ml9YofJwdbUrVS7q6l2V7MhecPyNq74J5aG82B0cjDa48Zk13rOaRu1kE6v0g7fX2bvORKRXJj0LwTzuVHvQjgPTPm59J9IuiM+GsxaxVyQYqXQZSMzyYxe7fxTXgcV2uvEke4xPvfYSQZGZwknmygt6eF+2cs9tZ/C7U5b8t5wKERfy0k6DrzE6YZ6QnN+EGb0xiIcjio2FRSTMhdBTM2BQYe5wom5wkFoqA3PSy/ieeklwiOjIATmzZux3XILln176HVJjg0fXwjp+bXRLrOLbe5tCyFdmFj46hOGUsL0hcW2xnyLY6pv8T0J6UvDOW0jJObBMtaVz1fNZ0c8nBn2cHbEy5lhD90jHuZCi+2MBJNhoUouSLFdEtJW1c5QVo0K7Zvc4NQsf/1EMy+2jSDj9ThKArw7fj/3b/xjiourFt4XiYQ539ZC58H9dNUfJOD3gjChNxZhsVewpWwj6QAXPCAhLteOqcBIaPAk3pdfwHfkCDIYRGezYd1Th3XfPoaqMjnib+fo4FGODx1fuBIr05ZJtbt6IaizE7Kv3haY3zk4cAIunow+N4N/PPoGofWaLw3ntCptad01TPmCnBmZWRLMZ0c8nB/3MX+WkRCQlWSmKMVGYYqNwlStpZGfYiXFZlLtDOUNp0L7JhUIRfj2S2f4t+dPE5Kgy4vjrWkv8/607Wzf9lZ0Oh0yEuHCqXY6D73MqYMvM+udBmFEZyzEZC2jcuMW8sxx6M/PIP0h9PY4jBkRwoPH8Bx4hsCZswDE5edju2UfMzWlHEv1cmS0kYbBhoX10Xn2PC2k07ZRnVpNui39yoOer6AHTlzyOLkY0PP95/RN2iOtSus/m66+dlxKycDULGeHPQuhPP986dK5OIOOApeVwlQbRSk2ilK1kC5Isaplc8oNRW1jvwk93znMXzx+gvGpEOEUE9VFHXwwwcBdu7+IyWRiuKeb9v3P03FgP76pcRAGdIZ8TPZ9FG+qZoPLRvxFL6HzXjD4MKSECc0eY+aJ/yY8OQEGA5aabejueTPtG8wc1HVzZPB3DJ//MZwHt8XN3qy97Ejfwfa07aRZ06480OmLrwjoE4srOIRe2y1YejdkbNEe7gowXPmC2nBE0jvmpWvIw5nhxer57IgHXyC88D6H2UhRqo3bSlMpSl0M56wki+o1KzcVFdprQN+Yj88+doLjZyeJWPSkbfHyJ7YGHqj9FIaIoOmZX9P6wvNMXOwDdOiMecTZdpJbWU15gRPH1Bxzpyag30/EFoZgM97nf05kegydzYZxzy4Gt2TwcpaHQ5Mn6Jv5HvRo50ZvT9/O9rTt7EzfeeV2h2f48oCe36AidNoZzyVvXhrQxstvhAlHJOfHfXQNzXB62EPX0AxdQ1rlHLik35zhiKcw1cb927KXhLPLplZoKOuDao/cwPyBMF97tpMfHewhIgRxBTr+IOUgf1r8doJD07S9+Dz9HS2AROjT0ZvKyCqtoawqG3coTKBllPB0AAxhpOcU/qOPEx7vRed04ttVwcmyeJ5K7OWUR2uH2Iw2trm3aZV0+naKEouWThyG5rS+c39D9NF4ySSh0I4VzdgC6Zu157SNELf0iNX5lRrzoaw9z3B2xLPkVpPMRDPFbhsl7gSKU7XnolSbOm1OuWmpnvYaJqXkV00DfPGJZry+CJE0E3vyT/AeYUGe9dDdeIRwKIDQOdDFlZGSt42K2lJyLEbCHWPMdU8Bkoi/j7mW3xC62ATpLgaqc9hfOMdT5tPMESROF8dW91Z2pO9gR9oOypxli4cqSQmTvVow9zdqIT3YvHgGhyMbsrZB5jbI3Kr1oS/pQc/3nLsGZxYC+nS0vXFpWyPNHr8QziVuG8XRkE6IX4EzrBVlDVE97TXq1OA0D/7iGKcv+IgkGMmvHuZd/hbkrwfpmplEiHh0cWXYXRsp37OVknwHht5pfAf78QUkMjBJ4MwLBPsOM5tuprPawZPZiTTZR0GMUZRYxLszHqA2o5ZqdzXxhugRoXMz0HtosYLubwCvtvUcg1kL5p2fgKwaLajti5OOvkCIU4MzdA720XFxms6LM3QMTjNzyeaTlAQTJW6trVHiTmBDmo2i1AQcZhXOinI9VGjfIKZng3zpqRYeb7yI1AuspZL79L8h+cke5uYi6Az5xDv2UbRjO+Wb03F4A3jr+5lrHGI2EiTU30Cw9yCjydMcLRE8edsMQ0keEk1BdqXX8oeZtexK34Xb6tZ+oGcYTj0DfYe1x2ALRC+pxVmknf+ctU0L6dRy0BuJRCT9E346zk/TefE0nYPTdFycpnfct7ABxRqnpzTdzj2bMihNS2BDmp0St41Ey2s/ZElRlEWqPRJjkYjkkYY+/u7pVubmQGTFcbv7MGX7W9CNJ6OPKyOrfDsVu/PITDAye7iPuW4vIAiPdxPsPUC/4RTPFU7zcnGIaYeRzambqc2opTajljJnGToEjHdr4dwbDelxrY+NwayFc85OyN4BmdVgSWZmNkjX0AztF2fovDhN5+AMpwZn8ERvOxECcpMtlKXbKU2zU5qeQFmanawks7oTUFFeA9XTXgNO9E3wiZ/WMzgeIeIwUlHczS3tR4g7m0dyRg2V+8opKk0icrwP3/ERZMhIZG6aUF895wONPJPdx+FSgTkzm7rMOnZn7qYmrQarPl67UaX3MPQdgr76xRUd5iTI2bXwkOlVDHgitPRPLgR0x+A058f9C+NMiDdQlmanLD2B0nQ7pWkJlLgT1KSgoqwgFdo3sMGJGR585EUaBwQyTk9ysZ97Zl4kpbWSyto6SndmYh0cYeaFM4Q9FkASHu7gwvRBfpPaxJEyQfaGavZl7WNP1h7ybTmIoRY49zKc26+F9PyVV44cyN2lVdI5tQyZcmi+MENL/yTNF6Zo6Z9iLHrAvk5AvstKabqdsrQErYpOt5PhiFfL6RRllanQvgEFQ2H+90+e58eds4QjOgw5Bu5yHKJ2oIqavbvJShbM/PoEcwOg01uJ+CcYGTvEc/ZDHKkMU1Z1C3uy9lCbthP71IXFkO49ALNT2g9xbYC8OsitZSx5K00zVpr7tXBuvjDFyMwcoAV0iTuBjZkOqrIcVGY6KEu3q12CihIjKxbaQogfAG8DhqWUlcv54Sq0L/eLZ07w5UPn8AZMRJxGavI6eHfIzR21byL80jE8TWMYjZnISBjveAuH4w5ytNpP+dY72Ju5h0oRj77noBbSPQcWdxgm5UH+XkI5e+g0b+LoSBzH+yY40TfJhUmtxSEEFKXY2JjpYGOWFtLl6Q51yL6i3EBWMrT3Ah7gRyq0r19X9xAfeeQFev0JyHg9GcXjfDhhgrv15Uy/0EV8JAddnI2Qf5TOwCFaN0+Te8vt7HEUkzbQGg3pl2HmovaB9kzI38t02k6O6zZyeMzCsd4JWi5MLZxUl+6IZ2tuEluyE6nKSqQ8w45N9Z8V5Ya2Yuu0pZT7hRB5KzGo9cQ3G+TT3/41z4/FESGB+AJ4T1IDd5804hpPJ+QwYNaVMDjbzOnMIZxv28EebuOungPw3DdhpEP7IGsKkdw6BpK3c0RW8NJIAse7Juk/4gcGMeoFlZkO3rczl605SWzNTSTdcfk2cUVRbg4rVn4JIT4KfBQgJydnpT52TXr45wf559YR5gImSDWyL6OJP6mfoli/F2E044sfpNt2hPjb06nBQE33Gfjv/9RuXdHHEc7exfmc+3g5UsUzw0kcb5nCHwwDHtz2IFtzkvjArjy25iZSkeFQfWhFWUeWNREZrbSfVO2RV3e8pZdPPFbPkN9GxGqgqGiAT569wA7PXmQkxEhcD/rNASpMpzB2Pw8TPQCEkwoYcO3msNjM4xP5NA7MEQxLhIDSNDvb85Kozktma04imYlmtZJDUW5Cahv7G2jK4+fD//YrGqZsSF0C9uIgHwyf5L6mWiLShS/3NAX2Q+T0Pg2tPqTRynjqThod7+LRqQ08O2ghchGMesHGzHg+VJfJ9vwkqnOT1TZvRVGWUKH9Okgp+cuHfswvxxyEggno0g28NaWJj7aVYDPlkZ79C+JHfoYYDhH0uGlJuZunAlv48WA2nrN69DrBluxEHrzNxc6CZLZkJ6kVHYqivKprhrYQ4ifALYBLCNEPfElK+f3VHtiN7he/+i1fPTHFxGwyMsHAprJz/Nk5qPZ4sBs+hz4yzpS/gBcT7+eRyUoOj+cgx3WUpiVw/w4XdcVOtuc71aoORVGuy3JWjzzwRgxkrTjX18+nvv8C7YFkpMFGygYPD3rbeFfHISy6Ri7aK/il8V4emaigezaDdEc8eypd/EuRi9pCFykJV76hRVEUZTlUmbdMwWCIz//9j3k64CIUSiYuS/CH1iP8Ve+jDNvSeci4hcd9H2BsNIktOUm8syaV20pTKU1LUBOHiqKsGBXay/AfD/8X/zpkYdqfgkw0sCurnU8MPMuzg2XcFvoiYZLZtyGV/1Gawr6SVJKt6hhSRVFWhwrtV9HUcJw//00XZ3wOpElHdtkotw0f5TetO/jb1C9w2+5UHt6QSnVuEga97tofqCiK8jqp0L4Cj9fHp7/+E14Mu4lEErDmhbmFo4zP3kl+bR2PlbnJTrZc+4MURVFWmArtV/jq33+PRwJu/IE0hFPPre4W7sy7k7dU36XaHoqixJwK7ahnn3qOL5+Y4IInE2nWU1Lez5c3FbN701/GemiKoigL1n1oj46M8snvPMnRuRQkFpIKZvlYykU+ft+n1KoPRVFuOOs2tKWU/M3fPsxj4UwCsynoUwV3u1r4+rs+hdlsi/XwFEVRrmhdhvZPfvQo/3QeRr05SKuezWXdfPO2WynMfmush6YoivKq1lVo95zp5sGfHqTVm4zUC9KKpvhCPvzB7Z+M9dAURVGWZV2Edjgc5s/+9ns8E84mHEjGlCG5P6mNLz3weQyGdfEVKIpyk7jpE+u73/m/fHfczrQ/B+x6avNP8W9/8ADJjrfFemiKoijX7aYN7RONJ/iLZzs4O+VCGnXkFY3wd1syqav+TKyHpiiK8prddKHt8/v55D8+wkuBDCJBB7asIB9y9vG593xaLeFTFGXNu6lC+6v/+O884k/D781ElyR4s6udb73vk5hMasu5oig3h5sitJ975nm+dHKEC5NZSJOO8qIL/PNtOygtUEv4FEW5uazp0B4fH+djD/+SBq8bGbHhzPHx2Swvf3zPh2M9NEVRlFWxZkP7C1/7No8Fcgj63BhccG9iO9/44OfR69Udi4qi3LzWXGj//KeP8fWeCGOTeWDWsbXwHN99xztwu+6O9dAURVFW3ZoJ7b7ePj7xsxdom3QhhSAjd5KvlNt50z61m1FRlPXjhg9tKSUPfu07PDOXS3jWRbw7zHsdZ/mfH/ysWsKnKMq6c0OH9nf//Yd8Z8LOzFQewibYk3+a//MnHyHedE+sh6YoihITN2RoN584yWcR2A3FAAAFaUlEQVR/30b3WApSLyjMG+GfasvZUqWW8CmKsr7dUKE9NzvLRx/6Ifu92UQCiTjS5/iYa5hPvffjsR6aoijKDeGGCe2vPvQwP/KmMzudjc4Od6ed4lsf+4xawqcoinKJmIf2c8/+nv/VPMLASDYYBZW5Azx8z51kZ6olfIqiKK8Us9CeGJ/gw//53xybzECGEkjJ8PKFPMm71G5GRVGUq4pJaP/VP/0rj/vzCXoyMCZFeGfCGb72yc/FYiiKoihryhsa2j/7xc/5eq+O8dFCMAlqsnv5/h8/gD3h7W/kMBRFUdasNyS0+/v6+Mijv6djNBUZgazMKb66NY19uz/xRvx4RVGUm8aqh/bHv/ktfufJJ+JLxeIK8QHHeb7wkQdX+8cqiqLclJYV2kKIu4CHAD3wH1LKr13rz3z7B9/n4bFkZsYKEBa4NfMs3/v4JzAaja9zyIqiKOvXNUNbCKEHvg3cCfQDDUKIJ6SU7Vf7M6eGx/nGmTQQUJw5ykN3VFNRppbwKYqivF7LqbS3A2eklN0AQoifAvcCVw3tQFBPonOWT6dO8+H3f3BlRqooiqIsK7QzgfOX/Lof2PHKNwkhPgp8FCAlM4umP3/nigxQURRFWaRbqQ+SUn5PSrlNSrktJ829Uh+rKIqiXGI5oX0ByL7k11nR/6YoiqK8wZYT2g1AsRAiXwgRB7wHeGJ1h6UoiqJcyTV72lLKkBDiQeC3aEv+fiClbFv1kSmKoiiXWdY6bSnl08DTqzwWRVEU5RpWbCJSURRFWX0qtBVFUdYQFdqKoihriAptRVGUNURIKVf+Q4WYAU6t+AevTS5gNNaDuAGo72GR+i4Wqe9i0QYpZcK13rRaR7OeklJuW6XPXlOEEI3qu1Dfw6XUd7FIfReLhBCNy3mfao8oiqKsISq0FUVR1pDVCu3vrdLnrkXqu9Co72GR+i4Wqe9i0bK+i1WZiFQURVFWh2qPKIqirCEqtBVFUdaQFQ1tIcRdQohTQogzQoi/XsnPXkuEED8QQgwLIVpjPZZYE0JkCyFeEEK0CyHahBCfifWYYkUIES+EOCqEaIp+F1+J9ZhiTQihF0KcEEI8GeuxxJIQokcI0SKEOHmtpX8r1tOOXgDcxSUXAAMPvNoFwDcrIcRewAP8SEpZGevxxJIQIh1Il1IeF0IkAMeA+9bp3wsBWKWUHiGEETgAfEZKWR/jocWMEOLzwDbALqV8W6zHEytCiB5gm5TymhuNVrLSXrgAWEoZAOYvAF53pJT7gfFYj+NGIKW8KKU8Hn09A3Sg3Tu67kiNJ/pLY/SxblcCCCGygLuB/4j1WNaSlQztK10AvC7/cSpXJoTIA7YAR2I7ktiJtgNOAsPAs1LKdftdAP8C/BUQifVAbgAS+J0Q4lj0kvSrUhORyhtCCGEDHgU+K6WcjvV4YkVKGZZSbka7a3W7EGJdts+EEG8DhqWUx2I9lhtEnZRyK/AW4FPRFusVrWRoqwuAlSuK9m8fBf6flPKxWI/nRiClnAReAO6K9VhiZDdwT7SX+1PgNiHEj2M7pNiRUl6IPg8Dj6O1m69oJUNbXQCsXCY6+fZ9oENK+c1YjyeWhBApQojE6Gsz2qR9Z2xHFRtSyr+RUmZJKfPQsuJ5KeX7YjysmBBCWKOT9AghrMCbgKuuPFux0JZShoD5C4A7gJ+v1wuAhRA/AQ4DG4QQ/UKID8V6TDG0G3g/WiV1Mvp4a6wHFSPpwAtCiGa0IudZKeW6XuqmAOAGDgghmoCjwFNSymeu9ma1jV1RFGUNURORiqIoa4gKbUVRlDVEhbaiKMoaokJbURRlDVGhrSiKsoao0FYURVlDVGgriqKsIf8fFwgDTqAIz5sAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAD4CAYAAAAn3bdmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXhjd3X//7paLMm75N3yvtsztiXPZBKSNDvZEyAFQhYopSyFFr6FFr6/li2spaVQKJRAgPJjmUADBTJZCIRCSFhCmLG877st2ZYXWd6038/3j6vRzCQzGXnGnvXzeh4/9jO+9+rKHr91dM77nKMIIZBIJBLJ+YHubN+ARCKRSJJHirZEIpGcR0jRlkgkkvMIKdoSiURyHiFFWyKRSM4jDDtx0dzcXFFRUbETl5ZIJJILkkOHDi0KIfJOdtyOiHZFRQUHDx7ciUtLJBLJBYmiKJPJHCfTIxKJRHIeIUVbIpFIziOkaEskEsl5hBRtiUQiOY+Qoi2RSCTnEUm5RxRFmQDWgBgQFULs3cmbkkgkEsnx2Yrl71ohxOKO3YlEIpFITopMj0gkEslZZmJxI+ljk420BfALRVEE8DUhxEMvPkBRlLcDbwcoKytL+gYkEonkYmUjFOU/fz3CN54bT/qcZEX7CiGER1GUfOBpRVEGhBDPHn1AXMgfAti7d6/crCCRSCQnQAjBY12zfPqJfuZWg9zltPPvSZ6bVHpECOGJf/YCPwH2neK9SiQSyUVN/+wqb3joed7zfRc56Sn8zztfwefvdiR9/kkjbUVR0gCdEGIt/vWNwMdP/ZYlEonk4sO/GeHzTw/y3ecnybIY+dRrdvOGS8rQ65QtXSeZ9EgB8BNFUQ4f/7AQ4qmt37JEIpFcfMRUwSMHp/nszwdZ2Qxz36Xl/P2NdWSnppzS9U4q2kKIMaD1lK4ukUgkFzGuKR8fPdBL14yfSyqsPHDnPnYVZ53WNXdkNKtEIpFczCyshfiXpwb40aEZ8jNMfPENDu5sLSaesTgtpGhLJBLJNhGJqXz79xN88ZfDBKMx3nF1Fe++rpZ00/ZJrRRtiUQi2QZ+P7LIRw/0Muxd5+q6PD5yRxPVeenb/jhStCUSieQ0cK8E+NQTfTzZPUepzcLX37SXGxrztyUVcjykaEskEskpEIzEeOjZMb7yzAgAf//KOt52VRVmo35HH1eKtkQikWwBIQRP983ziSf6mF4OcGtzIR+8rQl7tuWMPL4UbYlEIkmS0YV1PvZYH88OLVCbn87+t17KFTW5Z/QepGhLJBLJSVgPRfnSr4b5r9+OYzbo+fDtTbzpFeUY9Wd+UKoUbYlEIjkBQgge7fDw6Sf78a6FeN2eEj5wcwN5Gaazdk9StCUSieQ49Hr8PHCglz9N+GgpyeKrb9xDW5n1bN+WFG2JRCI5mpXNMP/2i0Ee/uMU2akpfOauZl6/txTdFgc7JYsQgud860kfL0VbIpFI0AY7/eBPU/zbzwfxByK86RUVvPeGOrJSjTvyeBFV8KjXx4PTXnrXg0mfJ0VbIpFc9ByaXOajB3rpca+yr9LGx+7cRWNR5o481lo0xnc9S3xjZgFPKEJdqpl/byjl3iTPl6ItkUguWryrQT7zswF+7HJTmGnmP+5xckdL0Y50M7qDYb4xs8D3PEusxVSuzE7ns/WlXGfLQFEUKdoSiURyIsLR+GCn/x0mHFV51zXV/M21NaRt42Cnw/SuB3hwystPvT4EcGdeNn9dlk9rRuopXU+KtkQiuah4bniBBw70MrqwwXUN+Xzk9iYqctO29TGEEPzGt8aDUwv8xrdGml7HX9nzeGtpHqXmU1t+cBgp2hKJ5KJgenmTTz7Rx8975ynPSeWbf7GX6xsLtvUxwqrKo94VHpzy0rcRpCDFwAerinhjcQ7Zxu2RWynaEonkgiYYifHgM6N89Tej6BSF999Uz19dWbmtg51WjyouzoYi1KeZ+UJDKXcVWEnRbW/XpBRtiURyQSKE4Oe983zi8T7cKwFubynin25tpHgbBzu5g2G+Hi8ursdU/syazufqS7k2XlzcCaRoSySSC44R7zofe6yX54YXqS/I4Ptvu4xXVOds2/V71jZ5cHqBR+PFxVflW/nr0jxaTrG4uBWkaEskkguGtWCE//jfYb71uwksKXoeuKOJ+y8rx7ANg52EEDyzvMaD016e9a0niotvK82j5DSLi1tBirZEIjnvUVXBT1xuPvPUAIvrIV6/p5T331xPbvrpD3YKqyo/jRcX+zeCFKYY+VC8uJi1TcXFrSBFWyKRnNf0uP185NEe2qdWaC3N5htv2ktrafZpX9cficaLi4vMhSM0ppn5j8YyXp2fve3Fxa0gRVsikZyX+DbCfPYXg3z/hSly0lL419e28Nq2ktMe7DQTLy7ujxcXr7Km8+8NpVyzg8XFrSBFWyKRnFfEVMHDf5zk334xxHooyl9eXsn/uaGWLMvpDXbqXtvkq9ML/NTrA+DV8eJi8xkoLm4FKdoSieS84YVxbbBT/+wqr6jK4WOv2kVdQcYpX08Iwa/jxcXn4sXFt5bk8baSM1tc3ApStCUSyTnP/GqQTz/Zz6MdHoqzzPznvW3c2lx4yumKsKryk/kVHpz2MrARpMhk5MPVxdxfZDsrxUVVjSR9rBRtiURyzhKOqvzX78b50v8OE1EF776uhndeU01qyqlJlz8S5TueJb55jhQXg0EPbs8P8HgeSfocKdoSieSc5JlBLx9/rI+xxQ1uaMznw7c3UZ5zaoOdpoNhvjG9wPdml9iIFxe/0FjK1dYzX1wUQmV5+bfMuPezuPgrQJCTcw3wx6TOl6ItkUjOKaaWNvn44338sn+eytw0vvWXl3Btff4pXatrbZMHp7wcWFhB4UhxcfdZKC5GIj48sz/C7X6YQGAKo9FGefk7sBe/AYulBPhmUteRoi2RSM4JAuEYX3lmhK89O4ZBp/B/b27gLVdWYDJsbbCTEIJfLa/x4JSX366sk67X8faSPN5akof9DBcXhRCsrnYw496P1/sEqhomO+sSqirfS37+Teh0W2/+SVq0FUXRAwcBtxDi9i0/kkQikRwHIQQ/65njk4/34fEHeZWjmH+8pZHCLPOWrnO84uJHqou5vziHzC0K/+kSi20yN3eAGfd+1tf70OvTKSp6PSX2e0lPrz+ta28l0v4/QD+wM4vTJBLJRcfQ/BoPHOjl96NLNBRm8IU3ONlXadvSNQ7vXPx6fCzq2Swurm8M43bvZ3b2J8Ri66SnN1Bf/wkKC+7EYEjflsdISrQVRSkBbgM+BbxvWx5ZIpFctKwGI3zh6WG+/YcJ0k0GPv6qXdy7r2xLg53mQhG+PrPAd9yLiZ2LOz0W9XioapiFhaeZce9nZeWPKEoKBfm3YC+5j6zMtm2/l2Qj7S8AHwBO6GJXFOXtwNsBysrKTv/OJBLJBYeqCn7UPsO/PjXA0kaYN1xSxvtvqseWlnyueXAjyINTXv5n3kdMCO7Iz+Zdp7Fz8VQJBj243d/HM/sI4fAiZnMp1dUfoLjotaSkbN8Y2BdzUtFWFOV2wCuEOKQoyjUnOk4I8RDwEMDevXvFtt2hRCK5IOicXuGjB3rpmF6hrSybb715H80lWUmdK4Tgef8GX5ny8vTSKhadwhuLc3hHaR7lltOf5Jcsml3vOWbcDyfserk512IvuY8c21Uoys6nY5KJtK8A7lQU5VbADGQqivI9IcT9O3trEonkQmBpPcRnfz7Ifx+cJifNxOde18prnPakBjvFhOBnC37+c8qLa20Tm1HPByoLebM9F9sZ7FwMh5eZnf0Rbs/343a9nBfZ9c4cJ33WQoh/BP4RIB5p/4MUbIlEcjKiMZXvPT/J558eYjMc46+u0AY7ZZhPPtgpEFN5ZG6Zr057GQ+EqbCk8C91Jby+0IZlGxYaJMMRu9738HqfPGLXq3of+Xk3odOdndkk0qctkUi2nefHlnjgQC8Dc2tcWZPLA3c2UZN/8sFOy5Eo35pZ5L/ciyxFojgzUvnGrmJuyctCf4aKi9HoBvPzB5hxP5yw6xUX3Y3dfs9p2/VeTCQSYWhoiI6OjqTP2ZJoCyGeAZ7Z2m1JJJKLhVl/gE8/OcBjnR7s2Ra+en8bN+06+WCnyUCIr00v8P3ZZQKqyitzMnlXWT6XZaWdMSfImbDrgRbBezweOjo66O7uJhgMkpGR/KRCGWlLJJLTJhSN8Y3nxvnyr0aICcF7rq/lnVdXY0l5+aaWzrVNvjLl5THvCnpF4c8LrLyzLJ/6tK011pwqml3vF8y4Hz7Krncr9pJ7t92ut7a2RldXFx0dHSwsLGAwGGhoaMDhcFBVVcU//MM/JHUdKdoSieS0+NXAPB9/rI+JpU1ubCrgw7c3UWo7sf3u8Azrr8TbzDP0Ot5Zls9bS3IpMp2ZPPHx7Ho11R+gaJvtetFoNJH+GB4eRghBSUkJt99+O7t27cJisWz5mlK0JRLJKTGxuMHHH+/jVwNeqvLS+M5b9nFVXd4Jj4+ogp96fXwlviD3cJv5G4tzyDgDbeYvtetBbu612O33brtdb3Z2NpH+2NzcJD09ncsvvxyHw0Fe3ol/RskgRVsikWyJzXCU//z1CF9/dhyjXuGfbm3gzZdXkmI4vuitR2N8z7PEQzMLeEIRGtLMfLGhjNcUnJk284Rdz/19AkHNrldR/g6Ki+/BYrFv2+NsbGzQ3d1NR0cHc3Nz6PV66uvrcTgcVFdXo9dvzwuTFG2JRJIUQgge75rl00/2M+sPcpfTzv93SwP5mcfPP88fbjP3LLIaVbk8O53P1pdy3RloM9fsei5mZvbjXYjb9bL3UV399+Tl3bhtdr1YLMbIyAgdHR0MDg6iqipFRUXccsstNDc3k5q6/V2aUrQlEslJGZhb5YEDvTw/tkxTUSZfusfJ3orjD3Ya2wzxlSkvj8wtExWC2/K0NnNn5s63mR+x6+1nfb3/KLvevaSn123b43i9Xjo6Oujs7GRjY4PU1FT27duHw+GgsLBw2x7neEjRlkgkJ8QfiPDvTw/x3ecnyTAb+OSrd3PPvjL0x+lm7Fjd5MtT8zyx4MekU7inyMY7y/KpOANt5uvrQ7jdDzM7d9iu1xi3670Kg+HUtt28mEAgQE9PDy6XC4/Hg06no66uDofDQW1t7balP06GFG2JRPISVFXwyMFp/vXng6xshrn30jL+/pX1WF802EkIwXO+db40Nc9zvnUyDTreU17AW0tyyUs5eefj6d1jGO/Cz3G7H2Zl5YWEXa+k5D4yM53bkoJRVZWxsTFcLhcDAwPEYjHy8/O56aabaG5uJj19+/zbySJFWyKRHEPH9AoffbSHzhk/e8utPHDnPnbbjx3sFBOCJxf8fGlqnq61AAUpBj5cXcybzoATJBBw4/F8H7fnESKRpR2x6y0uLibSH2tra1gsFvbs2YPD4aCoqOiM75U8GinaEokEgIW1EP/61AA/PDRDfoaJL9zt4FWO4mMEKqSq/HBOs+2NBUJUWUx8rr6U1xZaMe2gE+SIXW8/i4u/BjS7Xon9Pmy2P9sWu14wGKS3t5eOjg6mp6dRFIWamhpuvvlm6uvrMRjODbk8N+5CIpGcNSIxle/+YZJ/f3qIYDTGO66q4t3X15JuOiIPa9EY3/Es8dC0l/lwlJYMC1/fVcGtOzwTRLPr/RC3+wdH2fX+Grv9Hszm4tO+vqqqTExM0NHRQV9fH9FolNzcXG644QZaW1u31F5+ppCiLZFcxPx+dJEHDvQyNL/OVXV5fPSOJqrzjuRplyNRvjGzwDdnFvFHY1xlTefLjQVcaU3fsRSBEAL/ajvumYePsutduq12PZ/Pl0h/rKysYDKZaG1txel0Yrfbz2r642RI0ZZILkLcKwE+/UQ/T3TPUmqz8NAb9/DKpoKEWHlDEb46vcD/71lkM6Zya24W7ykvwLGDtr1odIO5+Udxux8+Ytcrvht78fbY9cLhMH19fXR0dDAxMQFAVVUV119/PQ0NDRiNO1s43S6kaEskFxHBSIyvPzvGfz4zghDw3hvqeMfVVZiNWvHQHQzzlSkv+2eXCKuCVxdYeXdZPo3pW5+RkSwvtes10VD/SQoK7jxtu54QgpmZGVwuFz09PYTDYaxWK9dddx2tra1kZSW3OedcQoq2RHIRIITgl/1ePvF4H1PLm9yyu5AP3tZIiVWLnCcCIb40Oc8jcz4EgtcV2nh3WQFVqTvjsX6xXU+nSyE//1ZK7Ntj11tbW6Ozs5OOjg4WFxcxGo3s2rULp9NJWVnZOZ3+OBlStCWSC5yxhXU+/ngfzwwuUJOfzvf+6lKurM0FtCW5X5qc58fzPow6hfuLc3hXWT6l5p2Ztvdiu57FXEZN9f+N2/WO32GZLNFolOHhYVwuV2KiXmlpKXfeeSe7du3CZDpzuyR3EinaEskFykYoypd+NcI3fzuG2aDnQ7c18heXV2DU6+hZ2+QLk1r3okWv4+2lebyzNJ8C0/bndY9v17subte78rTtevPz84mi4uGJeldccQUOh4Pc3NzteArnFFK0JZILDCEEBzo9fPrJfuZXQ7x2TwkfuLme/AwzPWub/NvEHE8trpKh1/F35QW8tSSPnJTtl4LjT9fbHrve8VrK6+vrcTqd2zpR71xEirZEcgHR59EGO70wsUyzPYuv3LeHPeVW+tcD/GPPOE8s+Mk06Hh/RSFvLckla5s3mh9Zhrsfr/eJxHS9qurTX4arqirj4+N0dHTQ399PNBolPz+fm2++mebmZtLStmfGyLmOFG2J5AJgZTPM558e4nvPT5JlMfLPdzXz+r2ljAZCvKN3ggPeFdL0Ot5XUcA7SvK2XaxjsU3m5h/DPbOftfXebV2Ge9hT3dHRgd/vx2w243Q6cTqdZ72l/GwgRVsiOY+JqYL//tM0n/35AP5AhDdeVs77XlnPIjHeMzDFj+d9WPTaEKe/Ls3Dus1ivbExyox7P3NzPyYaXSM9rX5bluGGw2EGBgZwuVyMj48DUF1dzQ033HBeeap3AinaEsl5yqFJHw8c6KXb7WdfpY2P3bkLS7aJD094+NGcD5NOx7vK8nlXaf625qxVNcLC4i9xu/fj8/0BRTGSn38LJfb7yMrac8qRrxACt9ud8FSHQiGsVivXXnstra2tZGdnb9tzOJ+Roi2RnGd414L8y88G+Z/2GQoyTXzxDQ4cdTl8ccrLfw8uY1QU3laax9+W5W/reNRgaA6P+79xe35AOOzFbLZTXfV+iotfS0rKqbs01tfX6erqwuVyJbaU79q1C4fDQXl5ObozsJLsbCJUQcSznvTxUrQlkvOESEzl27+f4Au/HCYUjfHOa6r581eU8dDcEn/zwgB6ReEv7bm8u6xg26x7Qgh8vt/H7Xq/RAiVnJyrKbF/ipycq1GUU3NpxGKxYzzVqqpSUlLCHXfcwa5duzCbj7/C7EJBRFSCYysE+5YI9C+jroaTPleKtkRyHvDb4UUeeKyXEe8619Tn8d5b6jmwscENHcPEBNxfnMt7yvIp3qammEjEz+zcj3G797O5OY7RaKWs9K+w2+/BYik75eu+eE1XWloal112GU6n87S3lJ/rxDYiBAeWCfYvERzyIcIqSooec70Vc6MN/iW560jRlkjOYWZ8m3zy8X6e6p2jzJbKV+5vYzxDx93DU/ijMV5baOUDlUXb1sG4utrNjHs/8/OPoapBsjKdNDV9jvy8W9DrT62jMBgMJjzVbrc7sabL6XRSU1NzQXuqo4sBAv1LBPqWCE+sggBdZgqpznwsTTmYqrJRjFtL/0jRlkjOQYKRGF/9zSgPPjOKosD7bqwjp87Kh6fmcS9EuNaWwYeqi9m1DYOcYrEg897HcbsfZnW1E53OQmHhqymx30dGRtMpXfN4c6rz8vK48cYbaWlpOStrus4EQhWEp9cIxoU66g0AYCxMI+PaUixNORjtpzfWVoq2RHIOIYTgF33zfOLxPmZ8AW5rLuKay0t5cGGJvuEZWjMsfLGxjCutpz+cf3NzArf7YTyzPyIa9ZOaWkNd7UcoKroLg+HUrr+yspLwVB+eU+1wOHA6nRQXF1+QnmoRiREcXiHQt0RwYBl1PQI6BVNVFmmXFmFpzMFg274cvRRtieQcYcS7zsce6+W54UXqCzL4xL0OfhoL8O4JN+XmFL7aVM6d+dnoTkP4VDXK0tKvmXHvZ3n5ORTFQF7ejZTY7yM7+9JTEtVIJJLwVI+NjQFQWVnJddddR2Nj4wXpqY6thwn2LxPoXyY07ENEVBSTHnODDUujDXO9DZ1lZ+RVirZEcpZZC0b40q9G+K/fjmNJ0fPum+vozzHw/sUFcowGPlVr543FOaSchvUtFFrA49HseqHQLCZTIVWVf0dx8d2YTPlbvp4QAo/Hg8vloru7m1AoRFZWFtdccw2tra1YrdZTvtdzlYh3M572WCY8peWn9dkmUvcWaPnpyiwUw9Z/R0IIFqcnkz7+pKKtKIoZeBYwxY//kRDio1u+M4lEcgxCCH7a4ebTTw6wsBbizjY7hvos/t3nx7is473lBbyrLP+Ut5sLIVhZeYEZ934WFn6OEFFs1iupr/sIOTnXodNtPWbb2NhIeKq9Xi8Gg4HGxkacTicVFRUXlKdaqILw5CqB/iWCfctEF+P5aXs6mdeXYW7KwViUdkrvTtaWF5nq7mSyy8Vkdweb/pWkz03mtxYCrhNCrCuKYgR+qyjKz4QQz2/5TiUSCQA9bj8PHOjl4KSP3fYsrrmhkh+HNgj6/NxXlMM/VBSSf4pe62h0jdm5n+J272djYxiDIYvSkr/Abr+H1NTKLV8vFosxMjKCy+ViaGgIVVWx2+3cfvvt7Nq1C4tl57banGnUcIzQkE/LTw8uo25EQa9gqs4m/YpizI05GLK37qIJBwNM93Yz2e1isquDZfc0AJbMLMqbHZQ3O/iHR55I6lonFW0hhAAOt+sY4x9iy3ctkUjwbYT5t18M8vALU1hTU7jzukp+lRrj4OYat+Vl8Y9VRdSknlrRam2tH7d7P3PzjxKLbZKZ0UJjw79QUHAbev3WhXVhYSHhqV5fXyc1NZVLL70Up9NJfv7WUyrnKrHVsBZN9y8THPFBVKCYDVgarJibcjDXWdGZt/auRFVjeMfHmOxyMdHVjmdwADUWxZBioqRxF7uvfSXlzQ7yyipQtvjuJKk7UbS2p0NADfCfQog/HueYtwNvBygrO3XzvURyIRJTBQ+/MMXnfjHIWjDK1Y4iBotSeCQW5rLUNL5dXcyerK2PFlXVEF7vU8y49+P3H0KnM1FQcEd8bVfLlq8XDAbp7e3F5XIxMzODoigJT3Vtbe0F4akWQhCd34z7p5eJTK8BoLeZSb+0CHNTDqaKTBT91sR0dXEhLtIupro7CK5r182vrGbv7a+mvMVJcV0jhpTT89QrWiCd5MGKkg38BHi3EKLnRMft3btXHDx48LRuTCK5UPjTxDIffbSXvtlVdpVlE2zIpFeJUZ9m5oNVRbwyJ3PLedFAYAa35/t4PI8QiSxjsVRQYr+PoqK7MBq3NlhJCMHk5CQul4u+vj4ikQi5ubk4nU5aWlrIyDh9e+HZRsQEoQl/om08thwEwFiagaXRhqUpB0NB6pZ+D+FggJm+Hia62pnsdLHsmQEg3WqjvKWN8lYn5btbSc1K7vehKMohIcTekx23pZhfCLGiKMozwM3ACUVbIpGAdzXIP/9sgJ+43ORnmnBeVcofzDEKTAqfryrl7kIb+i2IhBAxlpaeZca9n6WlZwCFvLwbsNvvw2a9fMtru/x+f8JT7fP5SElJoaWlBYfDQUlJyXnvqVaDUYJDPk2oB32IQBQMCuYaKxlXl2BptKHPTD4/LVSV+fFRrXjY5cI92H8k5dG0m5Ybbqa8xUlOyc4uDk7GPZIHROKCbQFuIOkueYnk4iMcVfnW78b5j/8dJhxT2eMs5FCuDq9B8N7SQv62LJ+0LThCwuElPPG1XcHgNCkpeVRW/C3FxXdjNhdt6d4ikQiDg4O4XC5GR0cBqKio4JprrqGxsZGU03zrfraJ+kOJaDo0ugIxgS7VkIimTbVWdKbkf/ariwta8bDTxWRPJ8G1VQDyK6rZc/urqdimlMdWSCbSLgK+Hc9r64BHhBCP7+xtSSTnJ78ZWuBjj/UytrBBY6UVd2UqvzPCq/Oz+WB1cdIzQoQQ+Ffbcc88zLz3SYQIY82+jJqaD5CX+0p0uuSdJUIIZmdnE57qYDBIZmYmV111FQ6HA5vt9Lagn02EEERmNxJCHXFrnglDroX0K4qxNOaQUp6Joksu8o0Eg0z3dzPZqeWmD7s80qw2qtsuobzFSXmzI+mUx8nu3e8NMDu6wuyIP+nzknGPdAHO07k5ieRCZ3p5k48/3sfTffMUWi2UXlmMK03BkZHKN2qK2Zed3KyNWGyTublHmXHvZ329H70+Hbv9Ddjt95KeVrule9rY2KC7uxuXy8X8/Dx6vT7hqa6srDxvPdUiqhIa92u2vP5lYishUCClLJPMmyu0/HSeJakUhVBVvBNjTBxOeQz0aSkPYwolTbtpvu5GKlqc5JSWn3bKQ42pLM6sMzviZ3ZkBc+on0B8JKspLflM9ZYKkckiC5GSi4VAOMaDz4zw1WfH0CsKZbtz6czVU2hO4YPVRfx5gTWptvPNzXFmZr7H7Nz/aGu70hspsd9PQcEdGAzJu0pisRijo6O4XC4GBwdRVZXi4mIcDgfNzc3nradaDUQJDmpt48GBZUQohmLUYarJxtKUg7nBhj4juXcxa0uLx7g8AvGUR15FFeXNDipa2rA3NJ12yiMSijE/7scTF+m58VWioRgAmblmiqqzKarJoqgmG2tBKjq9bvsLkRKJREMIwVM9c3zyiX7cKwFqa6wMl5gYtBh4b2l+UnlrIWIsLv6aGff34nNAjOTn30yJ/f4tr+1aWlrC5XLR2dnJ2toaqamp7Nu3D4fDQWFh4ek+3bNCIj/dt0Ro1A+qQJduxNKcq+Wna7LRpZw8Px0JBpnp70lE00szUwCkZVupdO6losVJWbODtOzTa70PrIWZHfHjiac7FqfWUFUBCuTY02l8RZEm0tXZpFtPbcwtSNGWSLbM8PwaDzzWy+9GltUxBsUAACAASURBVCjMTSX9FYV0Z+p5dX42H6oupuQkeetweAmP54e4PQ8TDLrjc0DeS7H9DZi2sLYrHA7T19dHe3s7U1NTKIpCTU0Nt9xyC3V1dRgM59efd8I/3asJ9TH56T+zY2nKIaU046T5aaGqeCfH4y6PdtwDfcSiWsrD3riL3dfcQHlrG7mnkfIQQrC6GNBEekQT6ZX5TQD0Bh0FlZk4byyjqCabwuosTNs4POr8+q1KJGeR1WCEL/5ymG//fgJTip4CRx4TeUYcWWl8q9bOJS/THCOEYHW1kxn3d5mfjxcWra+gtuaD5OZen/QckKOX33Z3dxMOh7HZbFx//fW0traSmZm5XU/3jCBigvCkn0DfMoG+pYR/OqUsI5GfNuannvQ6a8uLTHZ1JGZ5BFa1wl5eWQXOW+6kvMWJvaEJY8qpRbiqKliaWU8I9OzoCpv+eD461UBRdRaNlxdRVJNNflkG+i0uNtgKUrQlkpOgqoIfu9x85mcDLK2HKKmxMlxqwphu5ksnyVvHYkHm5x9nxv1d1tZ6tMJi8d3YS+7bUmHx8KCm9vb2Y5bfOp1OystPv0h2JlHDMULDPgK98fnTm9p8D3NNdtw/nYM+8+XfrUTDYdwDfYx3HmKysz0xJS81K5vK1jbKW9soP42URyQcwzu+yuzoCp4RP3NjfiJBLR+dbjNRUm+lqCabouosbEVpSbtTtgMp2hLJy9A94+cjB3pwTa1QkJ+GaMliOiuF95Xl8zdl+aSdoK07EJhixr0fj+dHRKMrpKXVUl/3MQoLX43BkJyTRFXVRFFxYGDgmEFNu3fvPq+W3ybmT/ctERxegaiqzfdotGFusmnzPUwnliMhBL5ZDxOdh5jobGe6t5toOITeYMDesIurrrqOitY2cssqTukFLLAejkfQWtFwYWoNNRbPRxenUb+vkKJaLR+dsY0LDU4FKdoSyXFY3gjz2Z8P8IM/TZNmMWJx5DCZb+I1BVY+eIK8tRAqS0u/Ycb9PZaWfoOi6MjLvZGSkvu3tGBgeXk50am4urqKxWJh3759OJ1OCgoKtvup7hjRxQCBeCExPHlk/nT6vkJtvkfly8/3CAc2merpSgi13zsPgLWoWLPitbZR2tSMcYsvXkII1paCmu0u7uzwzWn5aJ1BoaA8E8cNZRTVZFFYlYU57dxa4iBFWyI5imhMZf8ftcFO66Eo2TXZzJZacNjS+c4J8taRyAqe2R/innmYQHCKlJRcKir+BnvxG5LuWIxEIvT39+NyuRgfHwegpqaGm266ifr6+vOiqChUQcS9rgl17xJRryaExqI0Mq4rw7Lr5edPHy4gTnS2M9F5CM9gP2oshtFsoWx3C3vv+HMqWtvILtiaG0ZVBUvu9UQuenZ4hY14PjrFouWj6y8r1PLR5RkYjGdmKFZ0aYlAdzfB7h4CPd1Jn3fu/0+QSM4Qfxxb4qMHehmYWyOnMI1AtY2snFS+XFXEXcfJW6+u9TAz8z3m5w+gqiGysvZSVf0+8vNuQqdLzuN79PaXYDBIdnY21157LQ6Hg6ysrJ14mtuKiKqERrX9iIH+ZdTVMOjAVJFF2qVVJ92PuLnq1zzTHYeY6HIllgHkVVSx9/bXUNHaRnF9I3pD8tFuNBzDO7mKZ1gT6blRP+F4Pjot20RxbbaWj67Jxlachu4M5KNja2sEe3uPEemoZ1b7pk6Hqbo66WtJ0ZZc9Mz5g3z6yX4OdHpIT08Bp42lAgvvLS94Sd5aVcN4vT9jeua7rK664pvLX0OJ/X4yMhqTerxAIJDY/jI3N4der6epqem82f6SaHTpWyI46NMaXVJ0mOu0+dOWBhu61OOLrBqL4RkeYLKznfGOdubHR0AIzBmZVLQ4qWhto6K1bUsFxFAgyuzIipbuGPbjnVzV8tGAtSiN2ksK4iKdRYbNvONFWzUUItTfT6C7h0B3F8HuHsLxd08AxtJSUh0OzPe/EUvzbsxNTejS0iDJ+5KiLbloCUVjfPO343z5VyOEYyqm2iwWy1O5qziHf6oqOiZvHQot4HY/jNvzMOHwIhZLBbW1H6Ko8M8xGk9us1NVlfHxcVwuF/39/cRiMQoLC7n11lvPi07F6Eoovh/x2EaX1NY8bVFAdTbKCWxuq4teLeXR0c5UTyehzQ0UnY6i2gaueN19VLS2kV9VjU6XXFpiwx86yh+9wuLMOgjQ6RTyyjNova6UotpsiqqyMKfvbD5aRKOERkaOiaBDQ8MQjQJgyMvD3NxM1p13YN7djHn3LgynuT9TirbkouTXA14+/ngf44sbpBensVGdjqMgk0/U2tl7VN7av9rJzPS340ObIuTkXENpyV9gs12Z1CjUlZWVRFFxZWUFs9nMnj17cDqdFBVtbULfmeSEjS55J290iYRDuONzpsc72hNDlzJy8qi77AoqHHso292KOe3kLhqtiSVeNBxewTOygt+r7Wo0pOgorMriktsqKa7JoqAyC+MWJvhtFSEEkclJAt09BHu6CXR1E+zvRwQ1b7kuMxPL7l2kv+UtWFqaMTc3Y9yBwrEUbclFxeTSBh9/rI//HfCSmplCeE8ORnsGXzoqb62lQJ5ieubbrK52xIc23UtpyRuT2rEYjUYZHBykvb09Mf60srKS66+/noaGBozGc8uNcBihCsITqwnHR2w5qA1iKn35RhchBMueGSY6tALiTF8P0UgYvdFISeNuWq6/iYrWNmz20pOmJoQqWJ7dOEqk/WyshIB4E0tNNk1XFlNcm01eWQb6LW6XSfpnIQTR+flEBB3s6SbQ04u6qs0pUcxmzE1NWO9+PebdzViad2M8Q355KdqSi4LNcJSv/HqUrz07CjoF6rPYrEjnvRXaxvM0vZ5QeBG3+/u43fsJhxdITa2kru6jFBXelZS3en5+nvb2drq6uggEAmRmZnL11VfjcDiwnuZb4p1CRFWCIysEehYJ9i+jbkS0RQHV2WRcE290Oc4gptDmBlPdnUx0tjPeeYi1xQUAbMUltNxwMxWOPZQ07sJoenk7Xiymsji1noiiZ0dXCG1oqYW0rBSKarMprsmmuDZ7R5tYoj4fwZ5eTZzjuejYwqL2TYMBU10tmbfcouWgm5sxVVejnCVHjxRtyQWNEIInumf51BP9zPqDGO1prNVkcFd5Lh+sKsJuTmF9fYj+6W8xN/9TVDUcT4G8CZvtz06aAgkGg/T09NDe3o7H40Gn09HQ0EBbWxtVVVXnZFFRDUUJDvgI9C4SHPAhwjEUkx5zgw3LrhzM9S9tdDk8wnS8Q/NMe4b6EapKiiWVst2tXPaau6lobSMz7+UX/kbCMebHVxOR9NyYn2hYBSArz0JVax5FcZHOzN2ZoqG6sUGwr+9ImqO7h8i0lsJBUUiprCT98ssTEbSpsRGd6dQHPG03UrQlFyyDc2s8cKCXP4wtYcpOIbQvl8YyK5+otbMnMxWf7/d0DHyDpeVn0enMFBW9jrLSvzxpCuTwTsX29nb6+vqIRqPk5+dz880309zcTFra1hf07jSJjsTeJYLDPm2jS7qRVEce5l3xQqLh2BeYTf8KE0fZ8Q7P8yioqmHfq15LRWsbRbUN6F8m4gxtRhJdhp7hFbyTR3Ua2tNpvLw4bsHLIi1r+4VRhMMEB4cS4hzs7iI0Ogaq9kJhLC7G3NycSHOYd+9Cn55cx+p2shpeTfpYKdqSCw5/IMIXfjnEd34/ic6oI9KYRXZNNp+uLuZVeWkseB/nhcH/Yn19gJSUXKoq34vdfi8pKS+/wWV1dZXOzk5cLhfLy8uYTCZaW1tpa2ujuLj4nJv/EfUFtUJi7yLhiXhHotVE+iuKsex66UaXWDTK7NAA4/EORO+4lo9PzcqmorVNm+nR4nzZrS0JZ0c83bHkjjs79Ar55Rk4bihNzOwwncAWeKqIWIzw2NgxEXRoYAARiQCgt9kwN+8m48abMDfvxtLcjCEnZ1vv4WTE1BhTa1MM+YYYXB5kyDfEkG+I2Y3ZpK8hlyBILhhUVfCjQzN85qkBljfCUJoGdZn8TU0Rby8y4Zv7AdMz3yUc9pKWVkdZ6V9RWHgHOt2JI7xYLMbQ0BAul4vh4WGEEJSXl9PW1nbO7VQUQhD1bhLoeZHjoyAVy64cLLtzX9KRuL68pIm06xCT3R2ENjfQ6fUU1zUmPNP5FVUox0nzHHZ2eIZXEpG0f+FYZ8fhRpaCykyMScy+3tJznZ0l0NWluTi6ugj29aFuxtvR09Iw796t5aDjaQ7DGX5h9Yf8DPuGGfQNap+XBxlZGSEY09wmekVPZVYlddY66qx1vLXlrUktQZCiLbkg6Jhe4aOP9tA540dvNbHZkMldtQX8fYmB6Py3cLt/gKoGsNn+jLLSt8Tz1Sf+A15YWEgsFdjY2CA9PR2Hw4HT6STnDEdnL4cQgsjMOoHeRQI9S0QXNdFMKcvQ8tO7cjHmHvGAq7EYnqF+xjsOMd5xiIWJMQDSbTlUOvZQ6dhLWXMrptSXpngOOzsSRcOj2sFNaQaKqrVcdHFNNrll6dvq7Iitb2jRc2dXXKg7E4VCJSUFU2MDlt3NWgTd0kJKRcVxX2h2gsPR86BvkKHloeNGz9mmbOqt9dTZNIGut9ZTlV2FSX8kYFAURW6ukVz4LK6H+NenBnjk4Ax6s55ws5XW+hw+VGrA5nuIiUM/BmIUFNxBednbSU+vP+G1QqEQvb29uFwupqen0el01NXV0dbWRnV1NfoTTPQ70whVEJ5aJdC9SKB3SduRqANTVba2zLYpB/1R+eF13zITcZGe7HIlmlvsDU382b1vptK597gLAQ7PkHYP+RJCnXB2ZJsorrNSHF+XtZ3OjkTDSqcmzsGuLkIjoxAPMFMqKrRCYUsLlpZWzPV1KGfoHY8/5E+I8pBviKHloeNGz858J3db76beVk+dtY48S962RflStCXnJdGYynefn+RzTw+xEYoSrUgnu9HGx8r1tK5/DW/vY8zpDBQXv47ysrdhsZQe9zqHlwq0t7fT09NDOBwmNzeXV77ylbS2tpJ+FopSx0PEBKHxFS310buIuhbRZlDXWsm8oRxL05HWcTUWY2agVxNq1yG8E1puOt1qo/bSK6h07qG82fGSaFqNqSxMreMe9sVTHn7CAU2kM3PNVLbmYa/VoumMnO1zdkTm5o4IdGcXgd5eREB7x6DPzsbc2kLGzTdjaWnF0tKM/gzMZImpMSbXJhPCPOQbYtA3yNzGXOKYw9Hz6+pfp0XR1jqqs6tJ0e/sC4gUbcl5xx9Gl/jogR6G5tch14y4JIe3VRm4OfIQ62NPsqRPpaz0Lykreysm0/EtaJubm4mlAl6vF6PRyO7du3E6nZSWnrwJ5EwgoirB0RUC3YsE+5ZQN6MoRm3Gh6U5F3ODDZ1Z+xPeWPEx/sLhaLqd0EY8mq5v4sp7/oJKxx7yyiuPeV6xqIp3cg3PsA/P0Aqzo34i8cWz2QWp1OzNT4h0unV7ZkhraY6eRIoj2NVN1OsFQDEaMTU1kv3a12JpacHS2oLxDPwuXhw9H849h2JaU8/h6Lktv01LbexA9LwVpGhLzhs8KwE+9UQ/T3TPok81EHbYuKY2hfv5NqbZJwgaMqmseDelpX+B0fjSZhZVVZmYmKC9vT0x/8Nut3PHHXewa9euc2KpgIjECA75tIi6fwkRPMpDvTtX81Cn6FFjMWaHB+O56YMJp0ea1UbtvsupdOyhrNlxTKt4NBLDO7GKeyjukR71E41o1jdbcRr1lxVqOena7G2x34lYLJ7m6CTQ1UWws4vQ6OgRu115GamXXpoQaFNDA7odTHMkouejIuch39Ax0bPVZKXOVsfr619/RqPnrSBFW3LOE4zE+MZzY3zp1yOEVUGkOgN7YwZvSfkRFf4fYDTmUFb9AUrs92IwZLzk/NXVVTo6OnC5XPh8vsT8j7a2tnNiU7kajmlT87oXCQ4sI8IqisWAZVcult05mGusKEYdGys++v/wDOOug0x2uQhurKPodBTXNXDlG95EpXPvMdF0JBxjemAZT1yk58dXiUXVhEe66cpiiuu0wqHlOF2PWyUyP0+gU8tBBw6nOeJuDn1WFuaWFjJuvBFLawvm5ubTHpz0cpxK9FxvrSfXkntOvMt6OaRoS85p/rd/ngce62V6OYBaYCalMYu3WZ/nFRv/gUVkUVH7IezF96DXHxslx2IxRkZGaG9vZ2hoCCEEFRUVXHvttTQ2Np71+R8iEiM46GOze5Fg/xIirKJLM5LqzMeyOxdTVRZCEcwODzHx4ycZ7zjE/NgIAGnZVqr3Xkalcy/lLUei6XAwynTfMu7hFTxDK4kRpYoCuaUZ7L7Gjj1uwTvdbSzqxgaB3t4jAt3VRXRe2yyD0Yi5oYHs17wGS2sLlpaWHZvLkXBuxD3P52v0vBWkaEvOScYXN/jYY708M7iAkm4gvCeHW0qmuD3wfmwhlbKq/0NpyZsxGI4tpi0vL+Nyuejo6GBtbY20tDSuuOKKc8KqJyIqwSEfm90LBPuWEeEYujSDJtTNeZgqswis+xntOMT4k5rTI7i+hqLoKKpr4Iq730ilcy/55ZUoOl1ijrRnaA73sLbXUKgCRac1srReX5rwSZssp/6nLmIxQqOjxwh0aHj4SJqjtJTUvXsTAr1Tbd/BaJBh3zADvgEGlwcZWB5gyDdEIBovWh4VPR/OO58X0bMag5WppA+Xoi05p9gIRfnyr0f4+nNjqApE6jNprA5wT+wBqkLTlJa/mfKyt2E0HunKi0aj9Pf3097ezvj4OIqiUFNTw6233kpdXd1ZteqJqEpw2Eega5FA3xIiFEOXaiC1NQ9LSy7Gigzmx0foa3+c8W8eYn5sGNC6EKv37KPCsYfyFieW9AyCGxE8wyv87n9G8QyvsDi9hoh3GxZUZNJ2YxnFddkUVmWRYj71P+3Y6qqWh3Z1EOjoINDVhbquNerosrKwNDeTcf31mFuasbS0YLC9fCfpqeAL+hhYHkh8DC4PMr46jiq0F4p0Yzr1tnruqr2Lems9DbaGcz96Dq3D0ggsDsPiUPxjWPu3eNomGWRzjeScQAjBgU4Pn3yyn4XVELFiC5mNJu41fJPL+D0l9jdQUf6uY9wgXq+X9vZ2Ojs7CQQCZGdn43Q6z/qqroTro3NBE+pgTNs8vjuH1JY8YnkKkz0uxl0HmehyEVxb1aLp2nqtwcW5l/yKKoIbUTzDK4l0x5JHawnXG3QUVGZSXJeNvTabgqqsU+42FKqqtX53dLDZoYl0eEQraqLTYaqrw+JoxeJwYGlt1ZpWtjFqVYWKe83NgG+A/qV+Bn1aBO3d9CaOKUwrpMHaQL1NE+d6Wz0l6SXnZvQsBKzNHSvKhz+vzhw5TtGBtQJy6yC3FnJqUfa+WXZESs4P+mdX+fCjPRyc8EGmEbUhk9usP+d28UMqC2+lsvI9WCwlAITDYXp7ezl06BAzMzPodDoaGxtpa2ujsrLyrE3VEzGV0Kifza4FAr1LiEAUxazH0pSDuTmHFWWR8a5DTHQcZG5MW7GVmOnh2EN5axuKYsYzvMLMoA/3oI9lzwYABqOOwmqtJdxel01+ReYpL5+Nra9rUXRHB4GOTgKdnYkZ0fqsLMyOVlIdDiwOB+bmFvTp2zf8KhwLM7IykkhtDCwPMOgbZCOiPc/D6Y0GW0NCnOut9VjN5+BY22gYlseOL87htSPHpaRronxYnHPrtA9bFRiOTSEl2xEpRVty1vBvRvjc04N89/lJMOoI12TiLBngPr7B7rw9VFX9HWlpNYAWVR88eJCuri6CwSA5OTns2bOH1tbWszZVT8QEobEVLfXRu6j5qE2aUOtr0/CsDjPefYjxznaCa6ugKEeiacderIXlzI6tJkT68NqswyJtr7dir7OSX56B3rD1FyMhBOHxibhAax+h4WEtGlQUTDU1WgTtcGBxOkmp3L4o2h/yJ8R50DdI/3I/4yvjRIXWrJNqSE2I8mGRrs6uxmw4+7bLY9hcfmk6Y3EIfBMgYkeOy7QfK8qHv84oSnr3oxRtyTlLTBU8cnCazzw1gD8QIVqSRkHNBm8yfp2rbVaqqt5HZmYzkUiEvr4+Dh48yPT0NHq9nsbGRvbu3Uv5GdoS8mKEKgiN+Ql0LxDoWUTdiKKk6DE32ogUxphY6mGs80/MDQ8hhIolM4vK1jYqnHux17ew4lVxD2rR9OHCoc6gUFiZRUmDJtIFFZnoT7Bv8eVQNzYIdHdrAh3PR8f82jhVXUYGltZ4msPpwNLSgj7jpfbILf88hMCz4UnknQ9H0EfP3ciz5FFvq6fR1phIcZRmlKJLYl3bGUGNwcpkXJCHjxXnzcUjx+lNkFPzosi5Vvs30+n/LLdNtBVFKQW+AxQCKvCQEOKLL3eOFG3JiWif8vGhn/bQ51lFtaZgaDDz2oz/5q6MWeprPoDVeikLCwscOnSIjo4OgsEgNpuNPXv24HA4zkpUra3h8rPZtagJ9XoEJUVHSl02a+l+RufaGev8E+vLS4A2b7rSeQnlLW0IkY9n2I970Mf8hGbB0+kU8isy4yKtFQ4NW8xJCyGITE0dyUW7OggNDSUcHSnV1VgcraQ6nVgcDlKqjj+pbytE1AhjK2PHpDYGlgdYi6cDFBQqsiposDbQkNNAg7WBOlsduZbc03rcbSO0DkvDxykEjh5bCEzNfWk6I7cWsssgyeXDp8J2inYRUCSEaFcUJQM4BLxaCNF3onOkaEtejHctyGd+NsCP290oJh3hukyuKvwtbzQ9Q1vNO8nNvYXh4RFeeOEFxsfHE7nqPXv2UFlZecajaiEEEc8Gmx1eAp0LxFbDKEYd+opUloxzDE49z1R/J7FolBSLhfJmJxWte0iz1bE8C+5BH3NjWjOLokBeWQb2eisl9VYKq7fu7lADgXgU3UnA5SLQ2UlseRnQxpBaWluwOJxHoujTLMRuRjYZ8g3Rt9RH/3J/ojklomqzqc16c6Ip5XB6oya7hlTjS3dInnE2lmBxEBYGNWE+/Nk/feQYRQfWyuOLc+r2u2GSYcfSI4qiPAp8WQjx9ImOkaItOUwkpvLt30/wuV8OEQjHiFakU1Xl4S3G/VxTcRs5Oa+no0NLgfj9fjIzM7nkkktwOp1nZVhTZDFAoMPLZucC0YUA6BVEkZ55MUXv2LMseiYBsBaXUOnYg7V4F5FwPrMja8yOxldnKZBbko69ThPpotqt+6SjCwtstrsItB9i81A7wf5+iGk51JSKCizxCNricGCqqUY5DVvjWniNgWXNvdG33Ef/Uj/j/nEEmjbYzLZEYfBwFF2eUY5+B6POkyIErLpfKswLg8emNAwWyKuD3Pr45/jXtsqXFALPNjsi2oqiVADPAruFEKsv+t7bgbcDlJWV7ZmcnNzK/UouQH43ssiHHu1hfGGDWK6J9Aa4L/W73FVUQnraPbS3j9Dd3U0sFqOyspJ9+/adFV91bDXEZucim51eIjOaHzlijeGJjtE98is2NlfQGwyUNDWTX9mCPqUS35wRz8gKkaAmpLbitIRIF9dtreNQCEF4bIzN9nYCh9rZbG8nMqU1Wygmkzabo61Ni6JbW0+r/XsluEL/cn8igu5f6mdq7UhjR35qPk22JhpzGmnKaaLR1kh+av7Zs9fFolrR7yWR84tcGuZsyGs4SqDrNYHOKoVzcE9nNKYy6w8y7dtkenmT6eUA77+5YXtFW1GUdOA3wKeEED9+uWNlpH1xM+Pb5OOP9/GL3nmw6Ik1pHNb7s94k3UWi+4uDh2cY2ZmBqPRSGtrK/v27SM//+UXwm43aiBKoGeRzQ4voTE/CAilhpjeHKRv6jkCsXXSrTZKmpxYsuoIbBQwO7qZmCedXZCKvS474fBIzUy+qUMNhwn29GpRdLuLQHs7sZUVQFuJZWlzktq2h9Q9bZgbG095VvRiYJH+pf4jIr3Uj2fDk/i+Pd1Oo60xIdANtoazl3+OBLV884sj56URiIWPHJdRFBfk+mMFOi0vaZfGmWItGGFySRPlqRd9uH0BouoR7dXrFMb++bbtE21FUYzA48DPhRCfP9nxUrQvToKRGF/7zShffmaUiCqIVKXjKO/lbam/Jo/r+NOfAqys+LHZbOzbtw+Hw3FGJ+uJSIxA/zKbHQsEB5chJggZgkys9TC65GIt6qOwqg6bfRfoKlh0m1ld1Ibbp2WbKG20UtJgw15nJd2a/FvrmN/PpsuViKKD3d2IsCZEKRUVWPa0kdrWhqWt7ZSaV4QQzG/OH5Pe6F/qxxs40qBSnll+jEA32hrJMp2FBqSgHxaGXho5r0xCvNsRRQfZ5ceJnGvBfPaapl5MTBXM+gNMLR8R5qNF2rcZOeb47FQjZbbUxEfpUV8XZZkxGvTbVohUgG8Dy0KIv0vmyUjRvrgQQvB03zwfeayXuZUgsQILuXXrvDX9ERpilRw6mMrmZojS0lKuuOIK6urqzlgTjIgJQqMrbLi8BHoWICIIK0Em/D1MrPWyaVijoKYZc3otgY1CFmdUhCowmPTY67IpbbBR2mjDWpSalJgKIYi43QTa29k81E6g/RChYW3QEwYD5l1NiSja4nRuebGsEAL3ujuR2jic5lgOxouSio7KzEoacxpptB2JoNNTzmB9QAjYWICFgZdGzmtHLbDVp2h2uRdHzjk1YDw3/NrroShTS4cj5I345wDTy5vM+DaJxI7op0GnYLdajhHk8vjXpbZUsiwvnzLbTvfIlcBzQDea5Q/gn4QQT57oHCnaFw+jC+t8+NEefj+yhEg3oG8w8bqcn3BVOEBXewGhkJ6GhgYuv/xyysrKzsg9CSEIT62x0T7HRsc8SggiIsTU+gBT631ErJBV0IgqyliezyQa0ibh5ZVnUtZko7TRSkFlVlINLSIaJTg4qEXRLi0nfXiovy49HYvTqQl0WxuW5mZ0FstJrngEVahMrU4dI9B9y30Ji93/a+/Oo+M+63uPv59ZNJpFM5JmsfwuhQAAIABJREFUpNFo363N8iLLi7xlhUAgCaUEUqCUskMoSxfay70HOLelQFvalAIpt1Au4ZatSSAkIZCQxfEiW/KizZJlW5ZkWda+ziLN9tw/fiPJiu1YTqSMZT2vc+bMOP559JzfsT/nm+/vWQzCQFFy0aKALk0pfeNmcESj2tLs4VOXB/TMxMJ1CTatv/zKyjk5D/Tx3f4oEpUMTs1c1sboiVXPY77gousd5kuqZadlUeXscSRieB3nYqrFNcqK8s6Geej3p/nB/nNEdBAuSmJPzgHuDTZxrjmTUCiZDRs2UFdXh8v1xvRJQyMBJg/14js2iD4giMgwF3yn6ZvtJORMxGAtwDfpIeDVqji7K5Gccq2SzlqXsqSHh9HZWQJNTfgbGggcPUbgxIn5E8ANmR4sm2u0nnRNDabi4iXP6piroNtG22gbaaNttI2ToyfxhrQHo0adkdKU0kUBXZJSsuhg2BUzF85DHTDcroXyUOw9tgQd0OY3p627vHK2Z8a13+ydDc8H8vlYC2Puc994gGAkOn+tXifITE4kL9W6qH0x93JYVm5LXxXayoqQUvKrE/185amTjHuDhLMsFBRf5P36J/C2phIM5lJbW8vWrVtJWoYVd9cS9gYZ2deJ/9ggCd4EojLK0EwP/eFufA4TwWg20xMuBEZMFgNZ61JiQZ2CI+3aFWnU78d//Dj+hgb8jY3MNDUjQyFtGXhpKZaaGsybN2PZvAljZuaSxz3oG6RttI3WkVZOjp6kbbSNiVmtOjXoDKxLWUels5JKVyUVzgqKHEUY9Su8B7iU2lzmoY5Y5dyhhfNIJwS9C9fZ3FrVnF4eC+ky7RWn+c3RqGRwemZRGM8/9Bv1M/qKajkp0UCe0/KKNoZVq5aTEzEu4yny10Odxq4su7b+Sf7ml600904QtRuxbDXwXvtPSekMMDpZzY4ddWzfvn3FHy6GA0EuPN9E4PgwlmkrOqHDPztBFxcYTtAxGU4nHN6JfkKHu9BO5Z5UsstTSc+zo7vGieGR6WmtH93QgK+hgZm2kxAOg15PYkUFKe9/P5baLVg2b17yApaxmTHaRtpoHW3l5IgW0MOBYUDbJKkouYjbcm/TQtpZSUlKycpuMXq94bzpfbFwjoV0HMLZHwzPh/B8xRwL5r6xxdWyTkBmstZbflOl+7KKOdlyA2/fugQqtJVrmvAH+dozp/hZQy9Rg0BW2nhr5nNs6OlksrOS8tqd1NXVYb6Ofu318k9P0ff8UfwnRrD7UkjQmdCHBT10cSEiGfE5EboqbIkm1m1PJbfKSXZZ6jUXtYTHx7WQPtKAv6GBmY4OrR1gNGKuqsL5p3+KpbYW86ZNS9rxbio4xcnRkwsV9Ejb/DS7uWXe2z3bqXRpAb0udR1mwwrdt1UWzhP+IN2jfnpGffSO+uke1R7+dY/6GZ5evN90kslArtPCOncSd5YvBHOe00Jmsjlu1fIbQbVHlKuKRCU/OdLDV585hX82TDjHSnVRB28Zf5FAbxGbNt1CXV3diu0HMtbfR/f+o8w2jZIym4bNkEw4GmIwOkJPIMxQ2InekICnOJm8Sie5lamkZlpfdZZHeGQEf2Mj/oZG/A0N2n4dgEhIwLxxI5YtW7BsrcW8YcM1Hxr6Q37ax9ppHWmd70H3TC0sKstJypmvnitdlZSnlq/MLI65cJ7vNXcsPBh81bbGGxvOUkqGpmfpHvFpVfKon+5RbUZG94iPqZnwouvddhN5Tit5sTDOjX3WqmXjjbmf9uugetrK69LYPcYXHm/h7KCXaEoCqWV+3i1+ielMChUVb2LXrl3Lvsw8Go3Q39FO1+FGZltHSY9k40zMRMoow5FJegIRBsJ2rE4zuVVO8iq1B4ivto9HaHBwvor2NzYS7OoCQJjNWDZt0lodtbUkVle/6kngoWiIM+NnaBlpoXm4mbbRNromu+ZPUsmwZiwK6Epn5fLPg5ZSmzI3eBKGTt6Q4RyOROmfmKF7dC6YtUq5d9RPz5iPmdDih35ZyWbynFoo5zutsWpZeze/xoMdVisV2sprMjQ1w1eeaueppn5kog5dqYn7Up6i4KyX4sJ72LVrN3a7fdl+Xig4S2/LCc4crifQOoLHUIjHXIBO6JkI+zg/CwMk4ixJJrcilbwqJ8nuq8+ZDo+M4Dt8GH99Pb7DR+aXg+tsNsw1m7HW1mLZsoXEykrEVQ73ndtutGW4heaRZlpHWmkfbWcmoi20STGlUOWqmn9VOCuWfyWhf0yrmodOXvJ+UlucMidO4TwTinB+zL/Qyoh97h310feKlX4mg24+iLVg1irm/DXQxrheKrSV6xIMR/nBgXN887lOguEo4XwrO/Mb2NF3kqL0e9m9+xaSk5Ov/UVLEPBOc+5YA2eO1DPdMUCOqZQcaxlGnYlAJMT5kGTCZsZV5SK3UluBaDRdueqKTE9rDw0P1eOvr9c2+UcLacvWrVi21mLZUktiedlVp99NBadoHW6lZaRl/jW3WMWkN1GeWk6Vq4rqtGrWu9aTZctavv81D/oXes1zwTzUvngRSqID0itir/KF9xUM56mZ0Hz7omd0cSvj4uTMomuTEg1alezUFpPMfc53WklPMl3z4a+iUbNHlCXb1znMF37ZwsWxAJE0E7nrhnn71OMUTOzk9nv/YVnmWU+NDHO2sZ4zDfVMdF4gz1rOOtsGrK7dhKJRBiKSmTQLzpo0Nle6SHZfeTpedGaGwLFj+A7V4zt8mJnWVohGESYTlprN2N/+dqzbt5FYUYEwXP7XOxQJ0TneSfNIMy3DWkB3T3XP/36Bo4BdWbuodlVTlVZFaUopRt0yTLWLhLR9m19ZOY+dg9huehgStUq58JaFkHZXXNfpJ0slpWTUF6Rn1Ef3iH9xK+MKi0pcNhP5Tgs7ipzkx6rm3FhA34z95RuZqrTXsPNjfr74RCv7OoaJWvSY1wneYXqakvFMbr/13eTn57/m75ZSMtrXy5mGes40HGKiu59cWzn5SRtITUjTfl8IIjl2XDszyapIveJBADIUItDSiv9wPb5D9QSOH9fmSRsMmNevx7pjO5Zt2zFv2nhZT1pKSd9033z13DzSTMdoB8GoFkjORCfr09az3qW9qlxVJCW8zrnlUsJE7+WV80jnwsZHQqct1U4vh/TKheo5tWBZN9mXUjLuD3FuxBcLZx/nRrWHft0jPqZnFx786QR4HGbyXRZyU7X2hdZr1vrLVpOq71aaqrSVq5oJRfjWC2d4+KWzhJHIYgt3ZL1MzYVpdpd/iKqqqte0N4iMRrl45hSnjxzi9JFDTA8O4rEUUWrfSkZuFjqhw6sTTOXbce3JZsO6lMsqNBmNMtvZqVXS9YcINDTOrzg0lZeT8r73Yd2+DXPNlsum4HmDXppHmmkabqJluIXWkVbGZ8cBbdP+CmcFD5Q9MB/UHqvn9VWI/jEYbI09GGyLBXXH4i1DHTlaKBffsdDWcJUu694aE/4g50Z8dMeq5u65gH7FjAydgOwULYzfsTmLfKeVfJdWLWenWEh4DedQKm88FdpriJSSZ1oH+B9PtDA+HSKSYaai+Cx3jh5nq/V+dnxgJ8arPJy7mmg0woWOk5w+fJDO+gP4JsZIMXkosm8nN68Ak85ISC8I5TtIuzWb7OLL94IO9ffj3b8f38FD+A8fJjKuBW1Cfj72e+/Bum07lm1bF+0jLaWke7KbpuEmTgyfoGm4iTPjZ5BIBIKi5CJuybllvhddnFyMQfca/7pHQtoWoYNtMNCivQ+2wfTCNqeYU8FdCRv/6JK+c9my7Uo3GQhpFfKoL1Y5++eDeuKS3eSEgKxkM/lOK/dszCTfaaXAZSXfZSVHBfNNQYX2GnFmaJq/eKyZE90TRG0GUreEuS/6KLViD3vf+Y3rmr4XCYfpO9lK5+H9dNYfYsY7SaLeTp69joLsUhxGM1EB5NpJ2ZOFpcyJ0C9UtNFAAH9DgxbU+w/MT8MzuN3Y9uzBsmM71u3bMWZkzP8Zf8jP8YEGTgxpAd003DS/7DvJmER1WjV35t3JhrQNrHetf+1tDt/I4mAebNGm1M21NnRGbcZGwR4tpN2V4K4CW/rr7jtPz4ToHvFzLlYpz4V09+jiHrMQkBlrZbx1vYcCpxbKBS5tWbbJsLamyq01KrRvctMzIb7xbCc/PthNVC/QlyXydufvqAtkcMetXyYtLW1J3xMOhehtPUFn/UFOHzlE0O9FLxLJTNpOQWY5GSY7AhBuC44dHizVaehim+tIKZk5dQrf/gP4DuzH33gUGQxqDw9ra0m+/13Ydu0ioagIIYTWi/b20dT1JE1DWkB3jncSkdopMQWOAm7NuZUNaRvYkLaBwuTC6z/ZOxzU+sxzwTwX0t7BhWtsGVooF94KGeu1z84SMLz2ZdD+YJiuYd8lLYy5GRo+RryLH/55HInkO628uTKDfKclFsxajznRqIJ5rVKhfZOKRiWPHuvjy0+34fNHiGSZ2V54gjsmhrij4qMUFRVd8ztCwVm6m47RWX+Asw2HCc0GEMJEimUjhRnV5FlSMUgQNiO2LW4sm90Y07VZH+HxcaafP4hv/358Bw4QHtb22jCVFJPyR3+EddcuLFtq0CUmMhOeoW30JE1tP5yvpEdntJPNLQYL69PW86H1H5oP6etatCIleIcWB/Ngm1Y9xw6pRZ+gVc9Ft0NG1UL1bH1ts2bCkSgXJgJ0DfvoGvHRNezl3IiPrmEfA1OLp8u57SbynVbuKHeT59Sq5XyXlbxU65pbXKIsjQrtm1DrhUk+++gJzvR7iTqMZG8d577gb7kz871seEvtqz5kDM4EOHf8KKfq93PuaAPh0CxCl4g5oYLS9I0UOdIxhyXoBeYqF9YaN6biZIiECTQ1Mf5fWstjpq0NpETncGCt24Ft1y6sO3dizMhgyD/E/qFjNDU/RNNwE+1j7YSj2gOz3KRc6jLr2JC2gY3pGylOLl76AbLRiDatbqBZe11s1lodlx70mpSpBXPJnVowu6vAWQTXuYOelJIxX5CuER/nhn2cHfFyLhbSvaP+RRsY2RMNFKbZqCt2UuiyUuCyxfrMFiwJ6p+gcn3UlL+byJgvyJeeOsmvj11AJugwlQjeYXuWu5J3sXPn3SRcZZl2aHaGrmONdBx4ia7jjUTDIYTOgsFQSrZjA2Vp2STNhBESEnKTsNS4sVSnEZkew7dvH96XXsJ3qJ6o1wt6Pebqaqy7dmLbtQtTZSX9gQEaBxs5OniUo4NHOT99HtBmdFS6KrWATttIdVo1TvMST3IJzWgzNgZaYuHcrFXQIW2mCTqj9kAwozpWPccq6OtckDITinAuNhOja9gbq5y1z5fOzEjQ68hzWihwWSlMs1HoslKYprUzUq0Jah6zck1qReQaEo5E+WF9D//w23ZmQhJyErk15xD36pK5Y88HrrivdTgUovvEUdr3v8TZo0eIhGYROgs6Ywnp9g1UZeWREggjglH09gQsm92YN7mIDHXjffFFvC++qFXTgMHj0SrpXbuwbN9GrxxdFNKDfq1P7DA52Jy+mRp3DTXuGtalrlvawpXA+OJwHog9HIz1uDHZtZ5zxnotpD3V2ub7S+w9R6OSCxOB+WA+N+KbD+f+yQCX/hPxOBJjwaxVzIVpVopcNrJSzOjVyj/ldVChvUYc7hrlc4+doH9khkiqibLSbu6XPdxT9ync7oxF10bCYXpbTtC+/yVON9QTng2AMKM3FuNwVLOhsIS02ShichYMOsyVTsyVDsKDbXhfehHvSy8RGR4BITBv3Ijtlluw7N1Nj0tydOjYfEjPzY12mV1scW+ZD+mi5KJXf2AoJUxdWGhrzLU4JnsXrknyLA7njPWQnA9LmFc+VzWfHfZyZsjL2WEfZ4a8dA17mQ0vtDOSTIb5KrkwzXZJSFtVO0NZMSq0b3IDkzP89RPNvNg2jEzU4ygN8u7Efdy//o8pKamevy4ajXC+rYWOA/vorD9AMOADYUJvLMZir2RT+Xo8ABe8ICEhz46p0Eh44AS+l1/Af/gwMhRCZ7Nh3b0L6969DFZncThwkiMDRzg2eGz+SKwsWxY17pr5oM5Jyrl6W2Bu5WD/cbh4IvbeDIGx2AVC6zVfGs4Z1drUumuY9Ic4Mzy9KJjPDns5P+Znbi8jISA7xUxxmo2iNBtF6VpLoyDNSprNpNoZyhtOhfZNKhiO8u2XzvBvz58mLEGXn8BbM17m/Rlb2brlreh0OmQ0yoVTJ+k4+DKnDrzMjG8KhBGdsQiTtZyq9ZvINyegPz+NDITR2xMwZkaJDBzFu/8ZgmfOApBQUIDtlr1M15ZxNN3H4ZFGGgYa5udH59vztZDO2EJNeg0em+fKg56roPuPX/I6sRDQc/1nzwbtlVGt9Z9NV587LqWkf3KGs0Pe+VCee7906lyCQUehy0pRuo3iNBvF6VpIF6ZZ1bQ55YailrHfhJ7vGOIvHj/O2GSYSJqJmuJ2Pphk4K6dX8RkMjHU3cXJfc/Tvn8f/skxEAZ0hgJM9r2UbKhhnctG4kUf4fM+MPgxpEUIzxxl+on/JjIxDgYDltot6O55MyfXmTmg6+LwwO8YOv9jOA9ui5s92XvY5tnG1oytZFgzrjzQqYuvCOjjCzM4hF5bLVh2N2Ru0l7uSjBc+YDaSFTSM+qjc9DLmaGF6vnssBd/MDJ/ncNspDjdxm1l6RSnL4RzdopF9ZqVm4oK7VWgd9TPZx87zrGzE0QtejI2+fgTWwMP1H0KQ1TQ9MyvaX3hecYv9gI6dMZ8EmzbyauqoaLQiWNyltlT49AXIGqLQKgZ3/M/Jzo1is5mw7h7BwObMnk528vBieP0Tn8PurV9o7d6trI1YyvbPduv3O7wDl0e0HMLVIRO2+O59M2LA9p4+Ykwkajk/JifzsFpTg956RycpnNQq5yDl/SbMx2JFKXbuH9LzqJwdtnUDA1lbVDtkRtYIBjha8928KMD3USFIKFQxx+kHeBPS95OaHCKthefp6+9BZAIvQe9qZzsslrKq3NwhyMEW0aITAXBEEF6TxE48jiRsR50Tif+HZWcKE/kqeQeTnm1dojNaGOLe4tWSXu2UpxcvPjBYXhW6zv3NcRejZc8JBTatqKZm8CzUXvPWA8Ji7dYnZupMRfK2vs0Z4e9i041yUo2U+K2UepOoiRdey9Ot6nd5pSbluppr2JSSn7V1M8Xn2jG548SzTCxu+A47xEW5FkvXY2HiYSDCJ0DXUI5aflbqKwrI9diJNI+ymzXJCCJBnqZbfkN4YtN4HHRX5PLvqJZnjKfZpYQCboENrs3s82zjW0Z2yh3li9sqiQlTPRowdzXqIX0QPPCHhyOHMjeAllbIGuz1oe+pAc913PuHJieD+jTsfbGpW2NDHvifDiXum2UxEI6KXEZ9rBWlFVE9bRXqVMDUzz4i6OcvuAnmmSkoGaIdwVakL8eoHN6AiES0SWUY3etp2L3ZkoLHBh6pvAf6MMflMjgBMEzLxDqPcSMx0xHjYMnc5Jpso+AGKU4uZh3Zz5AXWYdNe4aEg2xLUJnp6Hn4EIF3dcAPm3pOQazFszbPwHZtVpQ2xceOvqDYU4NTNMx0Ev7xSk6Lk7TPjDF9CWLT9KSTJS6tbZGqTuJdRk2itOTcJhVOCvK9VChfYOYmgnxpadaeLzxIlIvsJZJ7tP/htQnu5mdjaIzFJDo2Evxtq1UbPTg8AXx1fcx2zjITDREuK+BUM8BRlKnOFIqePK2aQZTvCSbQuzw1PGHWXXs8OzAbXVrP9A7BKeegd5D2mugBWKH1OIs1vZ/zt6ihXR6BeiNRKOSvvEA7een6Lh4mo6BKdovTtEz5p9fgGJN0FPmsXPPhkzKMpJYl2Gn1G0j2fLaN1lSFGWBao/EWTQqeaShl797upXZWRDZCdzuPkT5vhZ0Y6noE8rJrthK5c58spKMzBzqZbbLBwgiY12EevbTZzjFc0VTvFwSZsphZGP6Ruoy66jLrKPcWY4OAWNdWjj3xEJ6TOtjYzBr4Zy7HXK2QVYNWFKZngnROTjNyYvTdFycomNgmlMD03hjp50IAXmpFso9dsoy7JR5kijPsJOdYlZnAirKa6B62qvA8d5xPvHTegbGokQdRipLurjl5GESzuaTmllL1d4KistSiB7rxX9sGBk2Ep2dItxbz/lgI8/k9HKoTGDOymFX1i52Zu2kNqMWqz5RO1Gl5xD0HoTe+oUZHeYUyN0x/5Keavq9UVr6JuYDun1givNjgflxJiUaKM+wU+5JosxjpywjiVJ3knooqCjLSIX2DWxgfJoHH3mRxn6BTNCTWhLgnukXSWutoqpuF2Xbs7AODDP9whkiXgsgiQy1c2HqAL9Jb+JwuSBnXQ17s/eyO3s3BbZcxGALnHsZzu3TQnruyCtHLuTt0Crp3DoGTbk0X5impW+C5guTtPRNMhrbYF8noMBlpcxjpzwjSauiPXYyHYlqOp2irDAV2jegUDjC//7J8/y4Y4ZIVIch18BdjoPU9VdTu2cn2amC6V8fZ7YfdHor0cA4w6MHec5+kMNVEcqrb2F39m7qMrZjn7ywENI9+2FmUvshrnWQvwvy6hhN3UzTtJXmPi2cmy9MMjw9C2gBXepOYn2Wg+psB1VZDso9drVKUFHiZNlCWwjxA+BtwJCUsmopP1yF9uV+8cxxvnzwHL6giajTSG1+O+8Ou7mj7k1EXjqKt2kUozELGY3gG2vhUMIBjtQEqNh8B3uydlMlEtF3H9BCunv/wgrDlHwo2EM4dzcd5g0cGU7gWO84x3snuDChtTiEgOI0G+uzHKzP1kK6wuNQm+wryg1kOUN7D+AFfqRC+/p1dg3ykUdeoCeQhEzUk1kyxoeTxrlbX8HUC50kRnPRJdgIB0boCB6kdeMUebfczm5HCRn9rbGQfhmmL2pfaM+Cgj1MZWznmG49h0YtHO0Zp+XC5PxOdR5HIpvzUtiUk0x1djIVmXZsqv+sKDe0ZZunLaXcJ4TIX45BrSX+mRCf/vaveX40gShJJBbCe1IauPuEEdeYh7DDgFlXysBMM6ezBnG+bRu7uY27uvfDc9+E4Xbti6xpRPN20Z+6lcOykpeGkzjWOUHf4QAwgFEvqMpy8L7teWzOTWFzXjIex+XLxBVFuTksW/klhPgo8FGA3Nzc5fraVenhnx/gn1uHmQ2aIN3I3swm/qR+khL9HoTRjD9xgC7bYRJv91CLgdquM/Df/6mduqJPIJKzg/O59/FytJpnhlI41jJJIBQBvLjtITbnpvCBHflszkumMtOh+tCKsoYs6UFkrNJ+UrVHXt2xlh4+8Vg9gwEbUauB4uJ+Pnn2Atu8e5DRMMMJ3eg3Bqk0ncLY9TyMdwMQSSmk37WTQ2Ijj48X0Ng/SygiEQLKMuxszU+hJj+VzbnJZCWb1UwORbkJqWXsb6BJb4AP/9uvaJi0IXVJ2EtCfDBygvua6ohKF/680xTaD5Lb8zS0+pFGK2Pp22l0vItHJ9fx7ICF6EUw6gXrsxL50K4sthakUJOXqpZ5K4qyiArt10FKyV8+9GN+OeogHEpC5zHw1rQmPtpWis2UjyfnFyQO/wwxFCbkddOSdjdPBTfx44EcvGf16HWCTTnJPHibi+2FqWzKSVEzOhRFeVXXDG0hxE+AWwCXEKIP+JKU8vsrPbAb3S9+9Vu+enyS8ZlUZJKBDeXn+LNzUOP1Yjd8Dn10jMlAIS8m388jE1UcGstFjukoy0ji/m0udpU42VrgVLM6FEW5LkuZPfLAGzGQ1eJcbx+f+v4LnAymIg020tZ5edDXxrvaD2LRNXLRXskvjffyyHglXTOZeByJ7K5y8S/FLuqKXKQlXfmEFkVRlKVQZd4ShUJhPv/3P+bpoItwOJWEbMEfWg/zVz2PMmTz8JBxE4/7P8DoSAqbclN4Z206t5WlU5aRpB4cKoqybFRoL8F/PPxf/OughalAGjLZwI7sk3yi/1meHSjntvAXiZDK3nXp/I+yNPaWppNqVduQKoqyMlRov4qmhmP8+W86OeN3IE06cspHuG3oCL9p3cbfpn+B23am8/C6dGryUjDoddf+QkVRlNdJhfYVeH1+Pv31n/BixE00moQ1P8ItHGFs5k4K6nbxWLmbnFTLtb9IURRlmanQfoWv/v33eCToJhDMQDj13Opu4c78O3lLzV2q7aEoStyp0I559qnn+PLxcS54s5BmPaUVfXx5Qwk7N/xlvIemKIoyb82H9sjwCJ/8zpMcmU1DYiGlcIaPpV3k4/d9Ss36UBTlhrNmQ1tKyd/87cM8FskiOJOGPl1wt6uFr7/rU5jNtngPT1EU5YrWZGj/5EeP8k/nYcSXi7Tq2VjexTdvu5WinLfGe2iKoiivak2FdveZLh786QFafalIvSCjeJIvFMAf3P7JeA9NURRlSdZEaEciEf7sb7/HM5EcIsFUTJmS+1Pa+NIDn8dgWBO3QFGUm8RNn1jf/c7/5btjdqYCuWDXU1dwin/7gwdIdbwt3kNTFEW5bjdtaB9vPM5fPNvO2UkX0qgjv3iYv9uUxa6az8R7aIqiKK/ZTRfa/kCAT/7jI7wUzCQacmDLDvEhZy+fe8+n1RQ+RVFWvZsqtL/6j//OI4EMAr4sdCmCN7tO8q33fRKTSS05VxTl5nBThPZzzzzPl04Mc2EiG2nSUVF8gX++bRtlhWoKn6IoN5dVHdpjY2N87OFf0uBzI6M2nLl+Ppvt44/v+XC8h6YoirIiVm1of+Fr3+axYC4hvxuDC+5NPsk3Pvh59Hp1xqKiKDevVRfaP//pY3y9O8roRD6YdWwuOsd33/EO3K674z00RVGUFbdqQru3p5dP/OwF2iZcSCHIzJvgKxV23rRXrWZUFGXtuOFDW0rJg1/7Ds/M5hGZcZHojvBex1n+5wc/q6bwKYqy5tzQof3df/8h3xm3Mz2Zj7AJdhec5v/8yUdINN0T76EpiqLExQ0Z2s2m/ASJAAAFeUlEQVTHT/DZ37fRNZqG1AuK8of5p7oKNlWrKXyKoqxtN1Roz87M8NGHfsg+Xw7RYDIOzywfcw3xqfd+PN5DUxRFuSHcMKH91Yce5kc+DzNTOejscHfGKb71sc+oKXyKoiiXiHtoP/fs7/lfzcP0D+eAUVCV18/D99xJTpaawqcoivJKcQvt8bFxPvyf/83RiUxkOIm0TB9fyJe8S61mVBRFuaq4hPZf/dO/8niggJA3E2NKlHcmneFrn/xcPIaiKIqyqryhof2zX/ycr/foGBspApOgNqeH7//xA9iT3v5GDkNRFGXVekNCu6+3l488+nvaR9KRUcjOmuSrmzPYu/MTb8SPVxRFuWmseGh//Jvf4nfeAqL+dCyuMB9wnOcLH3lwpX+soijKTWlJoS2EuAt4CNAD/yGl/Nq1/sy3f/B9Hh5NZXq0EGGBW7PO8r2PfwKj0fg6h6woirJ2XTO0hRB64NvAnUAf0CCEeEJKefJqf+bU0BjfOJMBAkqyRnjojhoqy9UUPkVRlNdrKZX2VuCMlLILQAjxU+Be4KqhHQzpSXbO8On0KT78/g8uz0gVRVGUJYV2FnD+kl/3AdteeZEQ4qPARwHSsrJp+vN3LssAFUVRlAW6JVxzpf1P5WX/QcrvSSm3SCm35Ga4X//IFEVRlMssJbT7gJxLfp0N9K/McBRFUZRXs5TQbgBKhBAFQogE4D3AEys7LEVRFOVKrtnTllKGhRAPAr9Fm/L3Ayll24qPTFEURbnMkuZpSymfBp5e4bEoiqIo17CU9oiiKIpyg1ChrSiKsoqo0FYURVlFVGgriqKsIkLKy9bJvP4vFWIaOLXsX7w6uYCReA/iBqDuwwJ1Lxaoe7FgnZQy6VoXrdTWrKeklFtW6LtXFSFEo7oX6j5cSt2LBepeLBBCNC7lOtUeURRFWUVUaCuKoqwiKxXa31uh712N1L3QqPuwQN2LBepeLFjSvViRB5GKoijKylDtEUVRlFVEhbaiKMoqsqyhLYS4SwhxSghxRgjx18v53auJEOIHQoghIURrvMcSb0KIHCHEC0KIdiFEmxDiM/EeU7wIIRKFEEeEEE2xe/GVeI8p3oQQeiHEcSHEk/EeSzwJIbqFEC1CiBPXmvq3bD3t2AHAnVxyADDwwKsdAHyzEkLsAbzAj6SUVfEeTzwJITyAR0p5TAiRBBwF7lujfy8EYJVSeoUQRmA/8BkpZX2chxY3QojPA1sAu5TybfEeT7wIIbqBLVLKay40Ws5Ke/4AYCllEJg7AHjNkVLuA8biPY4bgZTyopTyWOzzNNCOdu7omiM13tgvjbHXmp0JIITIBu4G/iPeY1lNljO0r3QA8Jr8x6lcmRAiH9gEHI7vSOIn1g44AQwBz0op1+y9AP4F+CsgGu+B3AAk8DshxNHYIelXtZyhvaQDgJW1SQhhAx4FPiulnIr3eOJFShmRUm5EO2t1qxBiTbbPhBBvA4aklEfjPZYbxE4p5WbgLcCnYi3WK1rO0FYHACtXFOvfPgr8PynlY/Eez41ASjkBvAjcFeehxMtO4J5YL/enwG1CiB/Hd0jxI6Xsj70PAY+jtZuvaDlDWx0ArFwm9vDt+0C7lPKb8R5PPAkh0oQQybHPZuAOoCO+o4oPKeXfSCmzpZT5aFnxvJTyfXEeVlwIIayxh/QIIazAm4CrzjxbttCWUoaBuQOA24Gfr9UDgIUQPwEOAeuEEH1CiA/Fe0xxtBN4P1oldSL2emu8BxUnHuAFIUQzWpHzrJRyTU91UwBwA/uFEE3AEeApKeUzV7tYLWNXFEVZRdSKSEVRlFVEhbaiKMoqokJbURRlFVGhrSiKsoqo0FYURVlFVGgriqKsIiq0FUVRVpH/D95iBVC6JgwUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -677,10 +718,13 @@ } ], "source": [ - "print('Consumption functions across the lifecycle:')\n", - "mMin = np.min([LifecycleExample.solution[t].mNrmMin for t in range(LifecycleExample.T_cycle)])\n", - "LifecycleExample.unpack('cFunc') # This makes all of the cFuncs accessible in the attribute cFunc\n", - "plotFuncs(LifecycleExample.cFunc,mMin,5)" + "print(\"Consumption functions across the lifecycle:\")\n", + "mMin = np.min(\n", + " [LifecycleExample.solution[t].mNrmMin for t in range(LifecycleExample.T_cycle)]\n", + ")\n", + "# This makes all of the cFuncs accessible in the attribute cFunc\n", + "LifecycleExample.unpack(\"cFunc\")\n", + "plotFuncs(LifecycleExample.cFunc, mMin, 5)" ] }, { @@ -704,48 +748,44 @@ }, "outputs": [], "source": [ - "CyclicalDict = { # Click the arrow to expand this parameter dictionary\n", + "CyclicalDict = { # Click the arrow to expand this parameter dictionary\n", " # Parameters shared with the perfect foresight model\n", - " \"CRRA\": 2.0, # Coefficient of relative risk aversion\n", - " \"Rfree\": 1.03, # Interest factor on assets\n", - " \"DiscFac\": 0.96, # Intertemporal discount factor\n", - " \"LivPrb\" : 4*[0.98], # Survival probability\n", - " \"PermGroFac\" : [1.082251, 2.8, 0.3, 1.1],\n", - " \n", + " \"CRRA\": 2.0, # Coefficient of relative risk aversion\n", + " \"Rfree\": 1.03, # Interest factor on assets\n", + " \"DiscFac\": 0.96, # Intertemporal discount factor\n", + " \"LivPrb\": 4 * [0.98], # Survival probability\n", + " \"PermGroFac\": [1.082251, 2.8, 0.3, 1.1],\n", " # Parameters that specify the income distribution over the lifecycle\n", - " \"PermShkStd\" : [0.1,0.1,0.1,0.1],\n", - " \"PermShkCount\" : 7, # Number of points in discrete approximation to permanent income shocks\n", - " \"TranShkStd\" : [0.2,0.2,0.2,0.2],\n", - " \"TranShkCount\" : 7, # Number of points in discrete approximation to transitory income shocks\n", - " \"UnempPrb\" : 0.05, # Probability of unemployment while working\n", - " \"IncUnemp\" : 0.3, # Unemployment benefits replacement rate\n", - " \"UnempPrbRet\" : 0.0005, # Probability of \"unemployment\" while retired\n", - " \"IncUnempRet\" : 0.0, # \"Unemployment\" benefits when retired\n", - " \"T_retire\" : 0, # Period of retirement (0 --> no retirement)\n", - " \"tax_rate\" : 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", - " \n", + " \"PermShkStd\": [0.1, 0.1, 0.1, 0.1],\n", + " \"PermShkCount\": 7, # Number of points in discrete approximation to permanent income shocks\n", + " \"TranShkStd\": [0.2, 0.2, 0.2, 0.2],\n", + " \"TranShkCount\": 7, # Number of points in discrete approximation to transitory income shocks\n", + " \"UnempPrb\": 0.05, # Probability of unemployment while working\n", + " \"IncUnemp\": 0.3, # Unemployment benefits replacement rate\n", + " \"UnempPrbRet\": 0.0005, # Probability of \"unemployment\" while retired\n", + " \"IncUnempRet\": 0.0, # \"Unemployment\" benefits when retired\n", + " \"T_retire\": 0, # Period of retirement (0 --> no retirement)\n", + " \"tax_rate\": 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", " # Parameters for constructing the \"assets above minimum\" grid\n", - " \"aXtraMin\" : 0.001, # Minimum end-of-period \"assets above minimum\" value\n", - " \"aXtraMax\" : 20, # Maximum end-of-period \"assets above minimum\" value\n", - " \"aXtraCount\" : 48, # Number of points in the base grid of \"assets above minimum\"\n", - " \"aXtraNestFac\" : 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", - " \"aXtraExtra\" : [None], # Additional values to add to aXtraGrid\n", - " \n", + " \"aXtraMin\": 0.001, # Minimum end-of-period \"assets above minimum\" value\n", + " \"aXtraMax\": 20, # Maximum end-of-period \"assets above minimum\" value\n", + " \"aXtraCount\": 48, # Number of points in the base grid of \"assets above minimum\"\n", + " \"aXtraNestFac\": 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", + " \"aXtraExtra\": [None], # Additional values to add to aXtraGrid\n", " # A few other paramaters\n", - " \"BoroCnstArt\" : 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", - " \"vFuncBool\" : True, # Whether to calculate the value function during solution \n", - " \"CubicBool\" : False, # Preference shocks currently only compatible with linear cFunc\n", - " \"T_cycle\" : 4, # Number of periods in the cycle for this agent type \n", - " \n", + " \"BoroCnstArt\": 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", + " \"vFuncBool\": True, # Whether to calculate the value function during solution\n", + " \"CubicBool\": False, # Preference shocks currently only compatible with linear cFunc\n", + " \"T_cycle\": 4, # Number of periods in the cycle for this agent type\n", " # Parameters only used in simulation\n", - " \"AgentCount\" : 10000, # Number of agents of this type\n", - " \"T_sim\" : 120, # Number of periods to simulate\n", - " \"aNrmInitMean\" : -6.0, # Mean of log initial assets\n", - " \"aNrmInitStd\" : 1.0, # Standard deviation of log initial assets\n", - " \"pLvlInitMean\" : 0.0, # Mean of log initial permanent income\n", - " \"pLvlInitStd\" : 0.0, # Standard deviation of log initial permanent income\n", - " \"PermGroFacAgg\" : 1.0, # Aggregate permanent income growth factor\n", - " \"T_age\" : None, # Age after which simulated agents are automatically killed \n", + " \"AgentCount\": 10000, # Number of agents of this type\n", + " \"T_sim\": 120, # Number of periods to simulate\n", + " \"aNrmInitMean\": -6.0, # Mean of log initial assets\n", + " \"aNrmInitStd\": 1.0, # Standard deviation of log initial assets\n", + " \"pLvlInitMean\": 0.0, # Mean of log initial permanent income\n", + " \"pLvlInitStd\": 0.0, # Standard deviation of log initial permanent income\n", + " \"PermGroFacAgg\": 1.0, # Aggregate permanent income growth factor\n", + " \"T_age\": None, # Age after which simulated agents are automatically killed\n", "}" ] }, @@ -763,14 +803,6 @@ "execution_count": 15, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/ms/dev/HARK/HARK/interpolation.py:1710: RuntimeWarning: All-NaN slice encountered\n", - " y = np.nanmin(fx,axis=1)\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -780,7 +812,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3hb1f3H8fexLVmS994rznAGWThAGgIpe1Moe9MWCj/oAELZG8pqgVJmGnbbBMooYRQIq2EnTrOHEyeO4xnvqWFZOr8/ruKROERJbMvj+3oePbq6uvfqK5F8cjj33HOV1hohhBAjQ1CgCxBCCDFwJPSFEGIEkdAXQogRREJfCCFGEAl9IYQYQUICXUBv4uPjdXZ2dqDLEEKIIWP58uW1WuuEvW03KEM/OzubgoKCQJchhBBDhlKqxJ/tpHtHCCFGEAl9IYQYQST0hRBiBJHQF0KIEURCXwghRhAJfSGEGEEk9IUQYgQZlOP0hRBC/Djd0YG7qgp3aSntpaV+7yehL4QQg5SnpcUX6mW4S7f7nktpLyvDXVEBHR37fEwJfSGECBCtNR01Nbi3b6e9ZDvt27d3hfv27XiamnpsHxwTgykjA+ukSUSeeCLmzAxM6RmYM9IhLc2vz5TQF0KIfqS9Xjqqqmj3Bbu7tCvg27dvRzscXRsHB2NKS8OckYHlxBMwZ2RiykjHnJGBKT2d4IiIA65nr6GvlHoROAWo1lpP6uX9G4ELux1vPJCgta5XSm0DWgAP0KG1zj/gioUQYpDRHR24KyqMMC/djrtbqLtLS9Ht7Z3bKpMJU2Ym5sxMwg47DFNmBubMLMxZmZhSUlAmU7/W6k9L/2XgKeDV3t7UWj8KPAqglDoVuE5rXd9tk59qrWsPsE4hhAgob3s77rJy2reX9OiOad9egru8Z/+6sloxZ2YSOiqH8DlHdoa6OTOTkKQkVHBwwL7HXkNfa71EKZXt5/HOBxYcSEFCCBEoWms6qmtoLy6mfVsx7cXFuIqLaS/ehru8HLzezm2DwsMxZ2ZimTCByBNOxJyZabTWMzMJSUhAKRXAb7Jnfdanr5SyAScA13ZbrYFPlFIaeF5rPa+vPk8IIfaXt60N17ZttG/bRnvxNiPki4tp37YNr93euZ2yWDBnZ2OZNJGoU0/BnJ2NOTMTU1YWwdHRgzbYf0xfnsg9Ffhml66dw7XW5UqpRGCxUmqj1npJbzsrpa4ErgTIzMzsw7KEECOR9niMfnZfmO9ssbcXF9OxY0fXhkphSk3FnJ1N1PTpmHOyCc3JwZyTY3TFBA2va1j7MvTPY5euHa11ue+5Win1DnAI0Gvo+/4vYB5Afn6+7sO6hBDDmNflMrphirbgKtpM+5atRtdMyfYeJ1CDIiIw5+QQdtihmHNyMGcbwW7OyiTIYgngNxhYfRL6Sqko4Ejgom7rwoAgrXWLb/k44N6++DwhxMjjdblo37rVF+5FuLYU0b65yLgadWdfe3Aw5owMI9xnH9Gj1R4cGzsku2P8obX/7WR/hmwuAOYA8UqpMuAuwOT7oOd8m50BfKK1buu2axLwju9HDgH+qbX+yO/KhBAjktfpNMJ9yxZcm4uM56LNuEvLeoZ7Vhah48YRefJJmHNzCR09BnNONkFmc0Dr7w/29g4qGp1UNDq6Hk3OHsv+UvvyL8RAyc/P13KPXCGGN6/LRfuWLbg2b+7Wet+Cu7QUduZSSAjm7CxCc0cTmptL6JjRRsBnZ6OGSbh7vZrqFhfl3QO90UG5L+Qrmxw02N099lEKkiIspEZbSI22khpt5baTJyz351oouSJXCNHvOmprcW4sxFW40XjeuAHX1mLweIwNTCZCs7OwTJhA1GmnETo6l9DRozFnZg75cG/v8FLZ5KC8wUFZo/Fc3u25ssmB29Oz8R1hCSE1ykpqtIVpmdGkRltJ84V7SpSF5CgLpuCeJ5hv87MeCX0hRJ/RHR20b9vWGezOjYU4Czfiqem6PjMkJQXLuHGEH300lrw8QseMMcK9n69E7S9tro7OEO8Z6nbKGx1Ut7jo3qGiFCRGhJIWbWVKRjQnHZRCWoyVtGgLadE2UqItRFr677eQ0BdC7BdPSwuuwkKcGzbiLNyIa2Mhrs2b0S4XYEw3YB49mvDDZ2PJG0fouDwseeMIjo4OcOX+01rTYHdT1mDvDPOyXVrqTY6eXS+mYEVKlNEynz0mgbRoK2kxVtJ9z8lRFkJDBvEVuUII4W1rw7FuHc41a3CsXoNz7VrjClWf4JgYLOPziLngAiPg88YTOipnSLTe21wdlDbYKa13UFpv71wua7BT1uCg1dVz+uIwc7CvZW5lelY0adG2Hi31xIhQgoIG7yghCX0hRA/a7ca1eTOO1WtwrFmNc/UaXFu2dI6cMWVmYpl8ENHnntvZgg9JHLzTDrg6PFQ0OnsEemmDnbJ6O6UNDurb2ntsbzMHkxFjIyPWymGj4kiPsZIRayMt2kp6jJUoq2nQfld/SOgLMYJprXGXlhqt9zWrjef16zu7aIJjYrBMPoiIE47HOnkylkmTCImJCXDVPWltjH4pqbOzvd54lPkCvqzBQVWzs0efuilYkRZtBPnxqVFkxFp9IW8jI8ZKbJh5SIf63kjoCzGCeFrbcKxYgWPlShyrV+NcvbrzRh3KYsEycSIx55+PdfJBWCZPxpSWNigC0O3xUt7gYFtdG9vr7ZTU2X0hb7x2ursmQlMKUiItpMfa+ElufI9QT4+xkhRpIXgQd7/4zdUCzZXQXA4tlX7vJqEvxDDmaW7Gvnw59mUF2Jctw7l+vTFMMiiI0NGjCT/2GKyTJ2OdPJnQ0aNRIYGLhDZXR2eQl9TZKam3s73OTkl9GxWNTjzerua6xRREVmwYWXFhHDEmgaw4G5lxYWTF2kiNtmIOGcLz5Xi9YK+F5grj0VLhC/ddlttb9uvwEvpCDCMdDQ3YCwpwFBTQtmwZrg0bQWuUyYRlymTirvgVthkzsE2dSlBY2IDX1+rqYFttG8W1bV3PvtZ7bWvPvvUYm4nMuDCmZcTws6k2MmNtZMWFkR1nIyEidFD8H8g+62g3WuWdAe4L8R7LleDtOSIIFQwRyRCRAgnjIPenxnJkGkSmGMv3jParBAl9IYawjtpa7AUF2Jcuw75sGa7NmwFQoaFYp04l/pprsM2YgXXK5AGbVMzp9lBSZ6e4tpXiWntnuBfXtVHT4uqxbUqUhaw4G0fnJZEVb/O13m1kxtn6dax6v/C4u1rnzeXGo6m8a7m5AlqrMWac78Zk8wV4KmTNNJ4jUo0w37kcnghBfTPMU0JfiCHE63JhX1ZA21dLaP36G9q3bAFA2WzYpk0j8uSTsR0yA8ukSf06B02Hx0tpg4OtNa1GoPta7MU1bVTucuI0PjyUnHgbc8YmkJMQRk5cGNnxYWTHhWE1B268+j7xuLta6E1lvQd7b4EeGmkEd2QaJE2CqHTf653BngqWKONExACR0BdikGvfvp3WJV/R+tUS7D8sRTudKLMZ24wZRJ/xM2wzZmCZMKFfxsQ3O91srWljS3UrW2p2PtooqWvrMXVAlNVEdnwYh46KIzsurFu424gY7C12T0dXoDeX+ULct9xcYbxu3cFugW6OgKg0I7iTJhrBvvN1pC/cLZEB+Uo/RkJfiEHG63BgX7asM+jdJdsBMGVlEn3WWYQfMRvbjBkEWa1983leTXmjgy01rUbAdwv37t0xIUGKrDgbuQnhHDM+idyEMEYlhDMqPoyYsEE6P47W4GiAplKjhd5Y2rXcVOZroe8A7e25nzm8K8QTx3eFeFSarx89bVAGuj8k9IUYBNpLSmj9739pXfIV9mXL0C4XymLBdughxF58CeGzD8eclXVAn9Hh8VJSb2fzjlaKqlvYXN3Kph2tFNe29hjyGGU1kZsQxpyxCeQmGqGemxhOZqxtt0m+Aq6j3TgJujPEdw31pjJwt/XcJ8QCURlGgOcevXvrPCrN6JYZiieK/SChL0QAaK1xbd5MyyeLaVm8GFdhIQDmnBxizjuXsNlHYJuRT1Bo6D4f2+3xUlLXxuYdRqhvrm6hqNpoxbd7usI9LdrKmKRwZuXGkZsYTm5COKMSwogbLBcnaQ3Opl1CvNQX7L7XLZXs1u0SlmCEesI4GH2M0Y8enWE8R2WALW7YBro/JPSFGCBaa5xr19GyeDEtn3xC+7ZtoBTWg6eTdOsthB91FOb0dL+P5/Vqttfb2VjVQmFVC5t2GI/i2jY6uo1pz4i1MjYxgiPHJTAmMYIxieGMTgwnLDTAf/21Bns9NJb4Htu7PXzBvutY9GCzL7zTIfeoruWodIjONFrqpr7p9hquJPSF6Efa68WxciUtH39Cy+LFuCsqIDiYsEMPIfayS4k4+mhCEhL2epz6tnY2VjZ3BvzGHS1s3tGCvd2Yj14pyIixMTYpgmMmJDEmMZyxSRGMSgjDZg7QX3OtwdkIDd0DfZdwb2/tuY8l2gjvuFwYdaSvG8bXQo/OAFs8DLMblQ80CX0h+pj2erEvXUbzxx/R8umneGpqUSYTYbNmEX/ttYT/dM4e569xuj0UVbeysaqFjZXNFO5oYWNVS48TqrFhZsYlRXBOfgZ5yRHkpUQyNik8MOHubOoK8N7C3dXcc/vQSIjOgpgcGDXHCPjoTGNddIYxfFH0Kwl9IfqIq6iIpncX0fT++3RUVqKsVsJnzybiuOMIn3MkweHhPbZvdrpZX9HMuopm1lU0sb6imaLq1s6umdCQIMYkhXPEmATykiMYlxxBXkoECeEDeDWq12N0szRsg4ZiqC/uWm4oMVry3ZnDfQGeCVmzICarZ7Bbh85c+sOVPzdGfxE4BajWWk/q5f05wLtAsW/V21rre33vnQD8BQgG5mutH+qjuoUYFDrq6mj+4EOa3n0X57p1RtfN4bNInHsDEUcd1TmssrrZybqN1ayraPKFfDPb6+2dx4kPD2ViaiRH5SUyITWSvORIsuNshAzEaJn2NiPIuwf6zuXG7T2nBAgyGUEekwPpM3yt9qxuoR4zok+SDgX+tPRfBp4CXv2Rbb7SWp/SfYVSKhh4GjgWKAOWKaUWaa3X72etQgwKXpeL1s8/p+ndRbR+9RV4PIROGE/SLTcTefLJ1JjC+HZ7I2v+W9IZ8LWtXd0zWXE2JqVFcu6MDCakRjIxNZLEiH6cIkFrsNdB3ZbdW+v1xdBW3XN7S5QR6imTYcLpEJMNsTnGusjUPpsOQATGXkNfa71EKZW9H8c+BCjSWm8FUEotBE4HJPTFkKO1xrFyJU1vv03zRx/jbWkhJCmJyEsuoXzGT/lvcCwrtzeyYt5KdjQbAR8SpBidGM6RYxOY6Av38amR/TenjKMR6rdA3VaoK/It+x6upm4bKuPkaEw2jD3eF+jZRqjH5hitdTFs9VWf/kyl1CqgApirtV4HpAGl3bYpAw7d0wGUUlcCVwJkZmb2UVlCHBhPayvN771Hw8LXjbH0VisNB8+iYNxhfBSSTmFNG55PqoFqsuJsHDYqjqkZ0UzLjCEvOQKLqY9bxa5WqO8e6lt9z0VGa76TMk6MxubC5LON57hciB1ldMWE7Pv4fzE89EXo/w/I0lq3KqVOAv4NjNnXg2it5wHzAPLz8/VeNheiXznXr6d+wUKa3nsfnA52JGXx7xnn8lHSZJwhoUS0hTA1w8I1E5OZmhnNlPRo4sL7KEi9XmjaDrWboXaT71FkBHtrVc9tI1KNMM87BeJG+4I912i5mwZmVk0xtBxw6Gutm7stf6iUekYpFQ+UAxndNk33rRNiUPLY7Wx7810aFr5O2NZCXMEmvkybxoc5h9GeO46ZoxO4PyuGqRnRjIoPO/CbX7fbjSCv3dQt4DdD3WbocHZtZ4uDuDEw+uiuUN/ZajcP/Jz4Ymg74NBXSiUDO7TWWil1CBAE1AGNwBilVA5G2J8HXHCgnydEX2pxuvn+i+U0vf46Ocv/i83toDYiiXdmnIXn6BM4eFImL42OJy36AK7ytNdD9Qao2dgz3Ju2d22jgozRL/FjjYuS4sd2PcLiDvyLCuHjz5DNBcAcIF4pVQbcBZgAtNbPAWcBVyulOgAHcJ7WWgMdSqlrgY8xhmy+6OvrFyKgSuvtfLa+ii0ff8G4Je9z8I6NJAUFs2X8oXDaGRx04pEcnxC+72PhHY1GsO8M+OoNxqP76BiTDeLHQOahEH+xsRw/zmi1S3eMGABK68HXfZ6fn68LCgoCXYYYJrxezcqyRj5dv4Mv15aTuvwrztyyhJzmSpwR0agzziHviouxJMT7d0BXC9QUQvV6qN4INRuM55aKrm1MYcaEX4njjUfCeON1ZJpMIyD6hVJqudY6f2/byRW5YljSWrOytJEPVlfy4ZpKWmrqOHXbd9yz7VvC7c2o3NEk3/xHIk85ec93mPJ6jbHsO9bCjnVQtdZYbizp2ibECgljIecISMyDxAmQkGfMFSPhLgYhCX0xbGitWVXWxAerK/hwTRXljQ5y7LX8pmYpk9d9Q1C7i7AjZhN32WXYZs7s2X3jbDaCfcfarpDfsb5rLnYVZIyOSZsO0y82wj1xvNEPLxcriSFEQl8MaVpr1lU0896qCt5fXUl5owNTsOLnEW2cUf4Jkcu+RpnNRJ1+GrGXXELomDHQsgM2L4bKVVC5EqpWG9MN7GSJgqSDjHBPmmjc2zQhD8y2wH1RIfqIhL4YkmpaXLy7spw3l5exsaqFkCDF7DHx3JLZzoTP3sL11tcERUQQc/kFxB4xmhDHVlh6G7y7qudY99hcSDsYpl9qhHvyJKPfXeaPEcOUhL4YMlwdHj7fUM2by8v4clMNHq9makY0950+keOcpTjnP459+Uo6wkNJODKemPQygh1/MsaPqSBjlMyoOZAyxXgkHzRk73MqxP6S0BeDmtaaNeVNvLm8jEWrKmi0u0mKDOXamQmcnVJN9A9vUHvHN9SXtRFi8ZA4rZWYMS6CUidAysm+gJ9qdNNI94wQEvpicGrv8PLBmgpe/HobG8rrmBxSxm2pVcy2bSexeS1t75ZRsy6c0gYzIeGK5NNyiTr1RIJyDjW6aWTMuxC9ktAXg0p9Wztvfb2adUs/Y7RrHfeFbmFSWBEhHidUQ1tTEiWrInBWxGJKTSDld1cQ9fPzUKZ+mrlSiGFGQl8EltZQV0TVuv9SuvJzYupXcoUypmjSpmBImozKuAyHI4Xqt3/AXrCSkJQoUh64lajTT0eFyB9hIfaF/I0RA8vrgao1sP07KPkGd/F3mJy1JAMWHUZV5BRqx19E/PjZqLTpOLeVU/OXJ2n97HmCY2NJuvUWos87b88XVAkhfpSEvuhfXq9xsdPWL6H4v7D9B2hvAaAmJJklrjw2mCYyavqxnDBnNnnhRl98e2kptXfcS9Oi9wgKCyP+t78h9pJLCQ6XWSWFOBAS+qLvNZQYIb8z6Hfe3CN+LC1jz+Cdukye25ZEC0lcdVQu18/KxmY2/ih6GhupeeYZGhYsRAUFEfuLy4n71a8IiZG7OQnRFyT0xYGz10Pxkq6gbyg21ocnw+hjYdQcahIO44mlrby+rJTgIMVlR2Rz9ZG5RNuMbhrd0UHD669T++Rf8bS0EP3znxN/7TWYkpIC9a2EGJYk9MW+cztg+/ddIV+5CtBgjoDsw+HQq4yLoBLG4fJ4+duSrTz11kY6PJpzZ2Tw26PHkBTZNaSy9auv2fHwQ7QXbcF26KEk3XIzlry8wHw3IYY5CX3hn9rNUPghFH1q9Mt7XBBkgoxDYM4tRsinTYfgrqGTX2+u5c5317K1to0TJiZzy0l5ZMV19cm7tm5lx8MP0/bfJZgyM0l/6q+EH330vs9jL4Twm4S+6J2nA8qWGkFf+B/jtn4AiRPhkCuMkM+cCaHhu+1a1eTk/g/W8/7qSrLibLx8+QzmjEvsOnRLC7VPPUX9P/5JkMVC4o03EnPxRTIiR4gBIKEvurhaoOgzI+Q3fwyOBqM1nzPb6LIZezxEZ+5x9w6Pl5e/3cbjizfh9mp+f8wYrjoyF4vJmHpYa03z+++z45FH8NTWEX322ST87reExMntAIUYKBL6I11TmRHyhf+BbV+Bpx2sMTDmeBh3AuQe7dekZGvKmrjxzVVsrGphzrgE7jltYs+unKIiqu69D/vSpVgmTSLjmWewHnRQf34zIUQv/LlH7ovAKUC11npSL+9fCNwEKKAFuFprvcr33jbfOg/Q4c+tvMQAqN4A6/4NhR8YF0qBMcXwIVfCuJMg41AI9q894PZ4eerzIp76ooj4cDPPXXQwx09M6uyX97a1UfPMM9S/8ipBYWEk33030WefhQqWG48IEQj+/M1+GXgKeHUP7xcDR2qtG5RSJwLzgEO7vf9TrXXtAVUpDlz1Blj3jhH2tYWAgszD4Nh7jaCPH7PPh9y8o4Xr31jFmvImzpiWxt2nTiTK1nUit+XTT6m6/wE6qqqI+vmZJN5wAyGxsX34pYQQ+2qvoa+1XqKUyv6R97/t9vJ7IP3AyxJ9wtEI3z9rhP3OoM+aZZyIHX8aROzfGHivV/PiN8U88nEh4aEhPHvhdE48KKXzffeOHey4/35aFn9K6NixpD32GLbp0/roSwkhDkRf9+n/EvhPt9ca+EQppYHntdbz9rSjUupK4EqAzMw9nywUftIaXr/I6KfPOvyAg36n0no7N/xrFUuL6zl2QhJ/POMgEiJCjY/0eml8/XWq//wY2u0m4YbribvsMpkBU4hBpM9CXyn1U4zQP7zb6sO11uVKqURgsVJqo9Z6SW/7+/5BmAeQn5+v+6quEWvVQiPwT34MZvyyTw75/uoKbn5rDQp49KzJnHVwemffvWvzZirvvAvHihXYZh5Gyt13Y87K6pPPFUL0nT4JfaXUZGA+cKLWum7neq11ue+5Win1DnAI0Gvoiz5kr4dPbof0GXDw5Qd8OKfbw33vr+cfP2xnemY0T54/jfQY4y5UXpeLuuefp/Zv8wm22Uh56EFjymO5wEqIQemAQ18plQm8DVystd7UbX0YEKS1bvEtHwfce6CfJ/zw2b3gqIeT34GgoAM61NaaVq755wo2VDbz6yNHMfe4cZiCjWPaV6yg8rbbad+6lcjTTiXp5pvlRK0Qg5w/QzYXAHOAeKVUGXAXYALQWj8H3AnEAc/4Wnc7h2YmAe/41oUA/9Raf9QP30F0V1YAy1+Gw66GlMkHdKh3V5Zz69trMIUE8eJl+RyVZ5wP8Dqd1PzlSepffpmQ5GQy/jaP8Nmz+6B4IUR/82f0zvl7ef9XwK96Wb8VmLL/pYl95umA96+DiGRjPpz95HR7uOe99SxYup38rBiePH8aqdFWAOzLl1N56220l5QQfe65JN44l+Dw3adiEEIMTnJF7nCybD5UrYazXvLrKtreVDQ6+PVry1lT3sTVc3K5/tixmIKD8NrtVD/+BA1//zum1FQyX36JsMMO6+MvIITobxL6w0VzJXx+P+QeBRPP2K9DfLeljmv/+T9cHV7+dkk+x04wunPali6l8rbbcZeWEnPRRSRe93uCwuQOVkIMRRL6w8XHtxrz5pz0J9jHkTNaa17+dhv3f7CB7Dgbz1+cz+jEcLwuFzWPP0H9K69gysgg67VXsc2Y0U9fQAgxECT0h4Mtn8O6t41+/LjcfdrV6fZw69treHtFOceMT+Lxc6cQYTHhWLuOiptuon3LFmIuuIDEuTcQZLP10xcQQgwUCf2hzu2ED+ZC7CiY9ft92rWi0cGVrxWwtryZ644Zy2+OGo3ydFDz9NPUPvscIXFxZMyfT/jhs/qpeCHEQJPQH+q++QvUb4GL3gaTZe/b+6wsbeSKVwtwtHuYf0k+x0xIwrV1KxV/uAnn2rVEnnoqybffRnBUVD8WL4QYaBL6Q1ndFvjqz8aJ29FH+73be6sqmPuvVSRGhvLPXx3K6MRw6v/+D6offZQgq5W0J54g8oTj+7FwIUSgSOgPVVrDhzdCsBmOf9DPXTRPflbE459uIj8rhucvPpgoVytlV/8frV9+SdgRs0m5/35MiYl7P5gQYkiS0B+q1r8LWz6DEx6CyJS9bu50e/jDm6tZtKqCM6en8eCZB+H+7ju23nIL3uZmkm67jZiLLpQ5c4QY5iT0hyJXC3x0CyQfBDOu2OvmNS0urnytgBXbG7nx+HFcNTOd2kcfof6VVwkdM5rUF17AMm7sABQuhAg0Cf2h6IsHoaUSznl1r7c13LSjhctfWkZdm4tnL5zOUdY2Ss49D1dhITEXXkjijXMJsvh/AlgIMbRJ6A81VWvgh+fg4Esh48cvlPp2Sy2/fm05FlMwb1x5GJlLP6f4vvsJstlIf+5ZIubMGZiahRCDhoT+UOL1wvvXgzUGjr7rRzd9+39l3PTWarLjwnjx3IkEP/kQle8uwjbzMNIeeYSQhIQBKloIMZhI6A8lK16DsqXws2fB1vu89Vpr/vp5EY8t3sTMUXH8dWYkTVdcSntxMfG/uZb4q65CBQcPcOFCiMFCQn+oaKuDT++CzJ/AlN5nu+7weLn932tZuKyUM6emcmvQFmovfoCg8HAyX3pRZsUUQkjoDxmL7zRG7ZzyWK8TqjndHq795wo+3bCD3/0kjXO+XkDNIunOEUL0JKE/FJR8Byv/DrN+B4njd3u7ye7mV68uo6CkgUemh3Hwc7fRLN05QoheSOgPdh43fHA9RGXAkTft9vaOZieXvLCUrbWtvJTZQPKDd+AJDyPzpZcIO+zQABQshBjM/LprtlLqRaVUtVJq7R7eV0qpJ5VSRUqp1Uqp6d3eu1Qptdn3uLSvCh8xvn8WqtfDiQ+DueeNS7bUtHLmM99SUdfC655lJP3lASzjx5Pz1lsS+EKIXvkV+sDLwAk/8v6JwBjf40rgWQClVCzGjdQPBQ4B7lJKxexvsSNOUxl8+RCMPRHyTu7x1qrSRs5+7jtMLY0sLFqA9d8LibnwQrJefknmzhFC7JFf3Tta6yVKqewf2eR04FWttQa+V0pFK6VSgDnAYq11PYBSajHGPx4LDqToEeM/N4H2Gq38bpZsquGqvy9nmqOS2394BdXUSPKDDxJ9xs8CVKgQYqjoqz79NKC02+sy37o9rRd7s+lj2Pg+HH0nxGR1rn5vVQXXvyu4qnwAABtdSURBVLGSnzdt4NKvXiMkLpb0f/4D68SJASxWCDFUDJoTuUqpKzG6hsjMzAxwNQHWbocP50L8OJj5m87V//xhO7e/s4obK79mzg+LsB58MOl/fZKQ2N4v1BJCiF3526e/N+VARrfX6b51e1q/G631PK11vtY6P2Gkjyn/6s/QuB1O/jOEmAF4/r9buOdfy/nzhn8x54dFRJ15JpkvvSiBL4TYJ30V+ouAS3yjeA4DmrTWlcDHwHFKqRjfCdzjfOvEntRsMm6BOPk8yJmN1ppHPtrIvLd/YN7yv5G3qYDEG28k5YH7CTKbA12tEGKI8at7Rym1AOOkbLxSqgxjRI4JQGv9HPAhcBJQBNiBy33v1Sul7gOW+Q51786TuqIXWhtj8s02OO4+vF7NnYvW8t1H3zFv+cuEeVykPfM0ET/9aaArFUIMUf6O3ul9speu9zVwzR7eexF4cd9LG4HW/Au2fQUn/5kOazw3/msVpR99yhPL/4ElLoaM516Wm50IIQ7IoDmRO+I5GuHjWyF1Ou6pl/L711fiXfQO96x+G2veODKee07G3wshDpiE/mDx+f1gr8N93r+4dsFKkt98hfM2fUbYEbNJf/xxgsLC9n4MIYTYCwn9waD8f7BsPh0zruCajx1MXfgUPy1bQfQ555B85x2oEPnPJIToG5Imgeb1wPvXocMSuaF4DkcveIDJdVtJuO464q68AtXLNMpCCLG/JPQDreBFqFzJ30J/ywmv/onMtlpSH32UqFNPCXRlQohhSEI/kFp2oD+7h7XOSYxZ9BkJXifZ8+cRNnNmoCsTQgxTEvoB5P7oVlxVbuxfOok3m8h95VWsB00KdFlCiGFMQj9AWjd+hvp8EcVfJWGLDmfsay8TmpMT6LKEEMOchH4AeNqd1D72Gxxfx6FT0xj/j1cxJSUFuiwhxAggoR8Aa++5CvNXXtyZ6Ux8/XWCo6MDXZIQYoSQ0B9g1euWYnn/O9xxVia+/S7BctGVEGIASegPJK2pvfX/UO2KsHsfkcAXQgy4vppaWfhhwwuPoArbaMsfR85RxwW6HCHECCShP0CczXUEz38RrDDhCZl0VAgRGBL6A6TwD5fjaQzCddll2OLiAl2OEGKEktAfAOXffELo14W0Z0Qy5bd/CHQ5QogRTE7k9jPt9dB871zQioSHn5YJ1IQQASUt/X627rGbocRN25EzSJ2eH+hyhBAjnIR+P2qpLMW8YBE6MojJf3o+0OUIIYR/oa+UOkEpVaiUKlJK3dzL+48rpVb6HpuUUo3d3vN0e29RXxY/2G37w6V42oLgN9djttkCXY4QQuy9T18pFQw8DRwLlAHLlFKLtNbrd26jtb6u2/a/AaZ1O4RDaz2170oeGrZ+sADT8gocY5OYdvEvA12OEEIA/rX0DwGKtNZbtdbtwELg9B/Z/nxgQV8UN1R53O24H70PgiHj8RcCXY4QQnTyJ/TTgNJur8t863ajlMoCcoDPu622KKUKlFLfK6V+tqcPUUpd6duuoKamxo+yBq+1d1+Nt0rTesqxxOeODnQ5Qohhyu11U22vZmP9Rr/36eshm+cBb2qtPd3WZWmty5VSo4DPlVJrtNZbdt1Raz0PmAeQn5+v+7iuAVO3eS2WD76mIy6Uafc8FuhyhBBDiFd7aWlvoc5ZR72jnnrn7o86R13ncnN78z5/hj+hXw5kdHud7lvXm/OAa7qv0FqX+563KqW+xOjv3y30h4vKm35FsEsR+sf7CDabAl2OECLA7G77HsO7wdXQI9wbnA106I5ejxMdGk2sJZZYSyxjY8Yay9ZY4ixxxFhiOA7/5vPyJ/SXAWOUUjkYYX8ecMGuGyml8oAY4Ltu62IAu9bapZSKB2YBj/hV2RBU+Pe/Ery+Efu0HA4+6cdOewghhqoObwcNzgYjuJ2+VvceWuX1znocHY5ej2MLsXWGeEpYChPjJ3a+7v6Is8YRHRpNSFDfdMzs9Sha6w6l1LXAx0Aw8KLWep1S6l6gQGu9cxjmecBCrXX3rpnxwPNKKS/G+YOHuo/6GU7a25pRzzwNFsXYx18OdDlCiH1gd9s7A3xn90nn8y7rG12NvR4jRIV0tr5jLbFkRWbtFt47l2MsMVhDrAP8LX11+rOR1vpD4MNd1t25y+u7e9nvW+CgA6hvyNhw8y8w1yucvziXiGS59aEQgeTVXhpdjdQ7urXGfyTQ99QajzBFdHahjIoaxYzkGUaA+7pUugd5pDlySEyzInPv9IHK5V9h+XINrtRwpsy9c+87CCH2mcvj6uxGqXPW7bElvrOv3Ku9ux0jWAUTY4npDO6MyAziLHE9WuJx1rjOUA8NDg3AN+1fEvoHSmsa7vgtyqOIfuAvBAXJzBZC+ENrTYu7pffWd7dw3/leq7u11+NYQ6ydIZ4anspB8Qf1CO/ugR4VGkWQGtl/RyX0D9Dap+4meKuTttmTGT/z8ECXI0RA7TzJuTO4u4d2nbNut6GIbq97t2MoVOdIlThrHONjx/dsiVviOrtcYi2x2Ewyxcm+kNA/APa6HZhfXYgnPJhJj8ndsMTw5PF6aHA1UOeoo9ZR29m1suvyziGHmt0vszEFmTpDO94abww57BbcO1vlfT1SRexOftkDsHnuJZhbguiY+39YIsIDXY4Qfuse5J2t8F2D3FlLnaOORldjr/3jlmCLEdbWODIiMpiaOJV4a3xneHcP9HBT+JA4yTkSSOjvp5LP/k3oDyU4R8Uy9VfXBrocIfBqb2fXSvfWd62jtjPYdy7v6URnaHBoZ3CnhacxJWFKZ4h3D/R4azy2EJsE+RAkob8fvB1uHA/cDkGQ+ue/BbocMYxprWl0NXa2wDsDvJfWeYOzAU+PGVAM5iCzEdjWOFLDjBOdO1viO9fvDPQwU5gE+TAnob8f1v7xOkwVHtpOnk3e+ImBLkcMQW6vuzOwa+w11DhqqHPUUeMwlmvttdQ6a6l11NLh3f2yfHOQuTO4U8JSmBQ/qbO/fNdAl64V0Z2E/j5q3F5E6DuL8cSYmPbHpwNdjhhk2txtnUFe66g1AtxR27XOWUutvZYGV0Ov++8M7nhrPKOiR5FgTSDBlrBbkEeYIiTIxX6R0N9HpXMvJ8ShCLnjdoJDzYEuRwyAnX3lneG9a5B3W9/blZ2mIFNnkKeHpzMtYRrxNuN1gjWBBGsC8dZ4Yq2xmIJkkj7RvyT098HmN18gZE0NjknpTD/zvECXIw6Q1ppWdyvV9uoejx32HdTYa4zXjmrqHfW9znwYbgrvDPOJcRN7BHn356jQKGmVi0FDQt9PHS4H3if+hDJD7l9eCnQ5Yi/cXje19lojwB01nWG+M9hr7DXssO/otWUeaY4k0ZZIki2J3OhcEmxdIZ5gSyDeEk+8LT5gE2YJcSAk9P209tYrCK0FxwWnE5WWsfcdRL/QWtPc3twjwHt71Dvrd7tIyBRkItGWSKItkXGx45idPptEa2LnuiRbkoS5GPYk9P1QvbYA6+JluJOtTL39wUCXM6y1e9rZ0baDyrZKquxVVLZWGsttVVS1VVHZVom9w77bfrGWWBJtiSRYE5gQN4EkW5Lx2pbQuRwdGi3dLGLEk9D3Q80tVxPkVoTf/SeZUO0AeLWXemd9Z3hXthrBXtXWFe51zrrd9ouzxJEclkxOVA4zU2eSEpZCUlgSSbYkEmzGiVBzsJxUF8IfEvp7sX7ewwRtbsV+WB7j5xwT6HIGNa019c56ylrLKGvxPVrLqGit6Gyt7zrBljXESkpYCslhyYyLHUdyWHLn653hPhyntxUiUCT0f4SzqY6Q+S/hCVOMf1xO3gI4O5xUtFZ0Bfsuz7ueGE20JpIansqkuEkck3UMKWEpPUJ9qNx4QojhQkL/RxTOvRxzs8J97S+wxcQEupwB09LeQklzCcVNxT2DvaWMakd1j22tIVbSwtNIj0jn0ORDSY9IJyMig/TwdFLDU7GEWAL0LYQQvfEr9JVSJwB/wbhH7nyt9UO7vH8Z8CjGjdMBntJaz/e9dylwu2/9/VrrV/qg7n5X9s0nhH67ifasKCZfe2Ogy+lzHq+H8tZyipuK2da8rfN5W9O23frVk2xJpEekMzN1JukR6cYj3HiOs8RJS12IIWSvoa+UCgaeBo4FyoBlSqlFvdzg/HWt9bW77BsL3AXkAxpY7tu392vQBwnt9dJy940oIOGRZwNdzgHRWlPVVkVRY1GPx9bGrTg9zs7tokKjyI7M5vC0w8mOyiYnMofsqGzSI9KlT12IYcSflv4hQJHWeiuAUmohcDqwa+j35nhgsda63rfvYuAEYMH+lTsw1jx6E6bSdtqOPYS8KdMDXY7fOrwdbG3aysb6jWyo28CG+g0U1hf2uM1cojWR3Ohczh53NqOjR5MTlUN2ZDYxlpHTfSXESOZP6KcBpd1elwGH9rLdz5VSRwCbgOu01qV72Dettw9RSl0JXAmQmZnpR1n9o7lyO6GvL8IbFcLkR54PWB17o7WmvLWc1TWrWVWzitU1q9nUsIl2bztg3OBiXOw4Th51MmNjxjI6ejS50blEhUYFuHIhRCD11Ync94AFWmuXUurXwCvAUftyAK31PGAeQH5+/u73WxsgxTdchtkeBHfNxWQdPFdmdng7KKwvZGnVUlZUr2B1zerOvndriJWJcRM5P+98xseNZ3zseLIiswgOCg5w1UKIwcaf0C8Hus87kE7XCVsAtNbdz/zNBx7ptu+cXfb9cl+LHChF7y3AvKIC5/gkpp1/eUBr0VpT2FDID5U/sKxqGct3LO/spsmKzGJW2iymJExhcsJkRkePlnuKCiH84k9SLAPGKKVyMEL8POCC7hsopVK01pW+l6cBG3zLHwN/VErt7DA+DrjlgKvuBx53Ox2P3o8yQdZjgRmT3+Rq4rvK7/i67Gu+qfiGWkctANmR2ZyYcyIzkmcwI3kG8db4gNQnhBj69hr6WusOpdS1GAEeDLyotV6nlLoXKNBaLwJ+q5Q6DegA6oHLfPvWK6Xuw/iHA+DenSd1B5s1d/4fodVe7GcdR2zOqAH73FpHLZ+VfMbi7YspqCrAoz1EmiP5SepPmJU2i5kpM0kKSxqweoQQw5vSOmDd53uUn5+vCwoKBuzzajetpe7sn9MRGcr4L/5HUEj/dpVUtVXxacmnLC5ZzIrqFWg02ZHZHJN1DEemH8mk+EnSXSOE2CdKqeVa6/y9bSfJAlT+4QpC2hXW2x/ot8BvcjXx8baPWbRlEatqVgEwJmYMV0+5mmOyjmF09Gi5yEkI0e9GfOhveOVJQjY24jh4FOOPP7VPj+32uvmm/BsWbVnEl6Vf4va6GR09mt9N/x3HZB5DdlR2n36eEELszYgO/fa2ZoKefRZt1Yx74uU+O25FawVvFL7BO0XvUO+sJ9YSy7njzuW03NPIi82TFr0QImBGdOivv/EXhDaC64oLCEtIPKBjebWX7yu+Z0HhApaULQHgyPQjOXPMmcxKmyU3vBZCDAojNvTLly7BsmQN7vQIplx/x34fp8nVxLtF7/LGpjcoaS4h1hLLLyf9knPGnUNyWHIfViyEEAduZIa+1jTd+TuCtCLmj0/uV3dLeWs5r61/jbc3v42jw8HUhKlcPftqjs06Vu7iJIQYtEZk6K/5y92EbHPSNmcKeYf8ZJ/23VC3gZfWvcQn2z5BoThp1ElcPOFi8mLz+qlaIYToOyMu9FtrqjC/9jreyCAm/ekFv/dbUb2C51Y9x7cV3xJmCuPiCRdz4fgLpQtHCDGkjLjQ3zL3UsxtCu9N1xAaHr7X7ZfvWM6zq57lh8ofiLXE8vvpv+eccecQYY4YgGqFEKJvjajQL178LqHLSnCNiWPK5df86Lbr6tbx5P+e5NuKb4mzxDE3fy5njz0bm8k2QNUKIUTfGzGh7/V04HzgNlQwpP7pb3vcrrSllCeWP8EnJZ8QHRrN3Py5nDvuXLnXqxBiWBgxob/63t8TWuWh7dQjyRs3Ybf3HR0O5q+Zz8trXyY4KJirplzFpRMuJdy89y4gIYQYKkZE6DcUb8b67mI8cSamPvBUj/e01iwuWcyjBY9S1VbFSTkncf3B18vMlkKIYWlEhH7pjb/A5FKY7rmDYHPXlbGVrZXc/8P9LClbQl5sHg/PfpjpSUPnnrhCCLGvhn3oFy6cj2ltDc4pGUw7/VwAPF4PCwsX8uT/nkSjuTH/Ri4Yf4FMZyyEGPaGdcq5HXb0k4+hLJDrm1CtrKWMW7++lRXVK/hJ6k+447A7SI9ID2yhQggxQIZ16K+75QpC6zXOS84gIjmVd4ve5cGlD6JQ3D/rfk7LPU1mvBRCjCjDNvR3rCnA8lkBHSk2cn7/B2747w0sLlnMwUkH88fD/0hqeGqgSxRCiAEX5M9GSqkTlFKFSqkipdTNvbx/vVJqvVJqtVLqM6VUVrf3PEqplb7Hor4s/sfU3Hw12qNouvl6zv/PBXxR+gXXHXwdLxz3ggS+EGLE2mtLXykVDDwNHAuUAcuUUou01uu7bbYCyNda25VSVwOPAOf63nNoraf2cd0/au1zDxG8pZWin6RxX+1fiTBF8NLxLzE1cUDLEEKIQceflv4hQJHWeqvWuh1YCJzefQOt9Rdaa7vv5fdAwM6MOhrrML3wMi2RcNesHYyPHc/rp74ugS+EEPgX+mlAabfXZb51e/JL4D/dXluUUgVKqe+VUj/bjxr3yfq5l+FtUTx5YhBnTDiX+cfNJ94a398fK4QQQ0KfnshVSl0E5ANHdludpbUuV0qNAj5XSq3RWm/pZd8rgSsBMjMz9+vzCz//N6bvNvNdXhBHnX0Dl0+8XEbnCCFEN/609MuBjG6v033relBKHQPcBpymtXbtXK+1Lvc9bwW+BKb19iFa63la63ytdX5CQoLfX2Anr8dD8cO30RGsiLz2//jFpF9I4AshxC78Cf1lwBilVI5SygycB/QYhaOUmgY8jxH41d3WxyilQn3L8cAsoPsJ4D7z0QO/IqvEy+ojUznrmGv74yOEEGLI22v3jta6Qyl1LfAxEAy8qLVep5S6FyjQWi8CHgXCgX/5WtfbtdanAeOB55VSXox/YB7aZdRPn6gt3ULMou8pTYSfP/hmXx9eCCGGDb/69LXWHwIf7rLuzm7Lx+xhv2+Bgw6kQH98ddP5jG2F6mvOJiI8pr8/Tgghhiy/Ls4azL7719OMWdHCqikWTr/83kCXI4QQg9qQnoahw+Wi9ZmnCbLCjPv2fDcsIYQQhiHd0n//tnNJr9RsOiGPMWPzA12OEEIMekM29EvW/UD6p4VsSVece8/CQJcjhBBDwpAN/RV3/JrQdrD95jeYTaGBLkcIIYaEIRn6nz5/B+PWu1g1I5KjTr860OUIIcSQMeRC397USMirb1IbCcc+JN06QgixL4Zc6H9485kk1UHFz39CUkpOoMsRQoghZUiF/tqv3mP015VszA3mnD/MD3Q5Qggx5Ayd0NeabQ/eggYyb7lfJlMTQoj9MGRC/72HryJ3q4d1hydz8OH9Pi2/EEIMS0Mi9OuqthH71hIq4+D0h98KdDlCCDFkDYnQ//wP5xHbAm2XnkFEZGygyxFCiCFr0If+94vmk1fQxNqJoZx65R8DXY4QQgxpg3rCNU+Hm8a/PEawGabe+1ygyxFCiCFvULf037njfLLKNZuPHcOYiYcFuhwhhBjyBm3oby9cQeZH6yhJUZx1/xuBLkcIIYaFQRv6S2//JTYnWK65CnOoJdDlCCHEsDAoQ7+5tpKJaxysnR7OnLN+G+hyhBBi2PAr9JVSJyilCpVSRUqpm3t5P1Qp9brv/R+UUtnd3rvFt75QKXW8X59XV09DOPz0oX/6+z2EEEL4Ya+hr5QKBp4GTgQmAOcrpSbsstkvgQat9WjgceBh374TgPOAicAJwDO+4/0okxsqTz+EpIwx+/JdhBBC7IU/Lf1DgCKt9VatdTuwEDh9l21OB17xLb8JHK2MyXFOBxZqrV1a62KgyHe8H+UKhZ/d8oK/30EIIYSf/An9NKC02+sy37pet9FadwBNQJyf+wKglLpSKVWglCpwhUcSHDKoLyEQQoghadCcyNVaz9Na52ut8xNTMgJdjhBCDEv+hH450D2F033ret1GKRUCRAF1fu4rhBBigPgT+suAMUqpHKWUGePE7KJdtlkEXOpbPgv4XGutfevP843uyQHGAEv7pnQhhBD7aq8d51rrDqXUtcDHQDDwotZ6nVLqXqBAa70IeAF4TSlVBNRj/MOAb7s3gPVAB3CN1trTT99FCCHEXiijQT645Ofn64KCgkCXIYQQQ4ZSarnWOn9v2w2aE7lCCCH6n4S+EEKMIBL6QggxgkjoCyHECDIoT+QqpVqAwkDXMUjEA7WBLmIQkN+hi/wWXeS36DJOax2xt40G61wHhf6chR4JlFIF8lvI79Cd/BZd5LfoopTya8ijdO8IIcQIIqEvhBAjyGAN/XmBLmAQkd/CIL9DF/ktushv0cWv32JQnsgVQgjRPwZrS18IIUQ/kNAXQogRZFCF/t5uwD5SKKVeVEpVK6XWBrqWQFNKZSilvlBKrVdKrVNK/S7QNQWKUsqilFqqlFrl+y3uCXRNgaaUClZKrVBKvR/oWgJJKbVNKbVGKbVyb0M3B02fvu+G6ZuAYzFuq7gMOF9rvT6ghQWAUuoIoBV4VWs9KdD1BJJSKgVI0Vr/TykVASwHfjZC/1woIExr3aqUMgFfA7/TWn8f4NICRil1PZAPRGqtTwl0PYGilNoG5Gut93qh2mBq6ftzA/YRQWu9BOO+BCOe1rpSa/0/33ILsIE93Gd5uNOGVt9Lk+8xOFptAaCUSgdOBuYHupahZDCFvt83URcjk1IqG5gG/BDYSgLH152xEqgGFmutR+xvATwB/AHwBrqQQUADnyilliulrvyxDQdT6AuxR0qpcOAt4Pda6+ZA1xMoWmuP1noqxv2mD1FKjcjuP6XUKUC11np5oGsZJA7XWk8HTgSu8XUR92owhb7cRF30ytd//RbwD63124GuZzDQWjcCXwAnBLqWAJkFnObry14IHKWU+ntgSwocrXW577kaeAeju7xXgyn0/bkBuxhhfCcvXwA2aK0fC3Q9gaSUSlBKRfuWrRiDHjYGtqrA0FrforVO11pnY2TF51rriwJcVkAopcJ8gxxQSoUBxwF7HPk3aEJfa90B7LwB+wbgDa31usBWFRhKqQXAd8A4pVSZUuqXga4pgGYBF2O05Fb6HicFuqgASQG+UEqtxmgkLdZaj+ihigKAJOBrpdQqYCnwgdb6oz1tPGiGbAohhOh/g6alL4QQov9J6AshxAgioS+EECOIhL4QQowgEvpCCDGCSOgLIcQIIqEvhBAjyP8D3uiIFJvaCj8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xb1f3/8dexLVmS994rznAGSQgOkIaQsDcUyt60kB98oQMIZbdAoayWVUZIU0ihZbQFShgFApSGnUH2cOLEcbz31rAtnd8fV/FIHKwQ25Ltz/Px0ENX95579ZFI3jkc3Xuu0lojhBBidAjydwFCCCGGjoS+EEKMIhL6QggxikjoCyHEKCKhL4QQo0iIvwvoS3x8vM7OzvZ3GUIIMWysXr26Vmud0F+7gAz97OxsVq1a5e8yhBBi2FBKFfvSToZ3hBBiFJHQF0KIUURCXwghRhEJfSGEGEUk9IUQYhSR0BdCiFFEQl8IIUaRgDxPXwghxPfTnZ10VFbSUVJCe0mJz/tJ6AshRIByt7R4Q72UjpLd3ucS2ktL6Sgvh87OAz6mhL4QQviJ1prOmho6du+mvXg37bt3d4f77t24m5p6tQ+OicGUkYF1yhQiTzkFc2YGpvQMzBnpkJbm03tK6AshxCDSHg+dlZW0e4O9o6Q74Nt370Y7HN2Ng4MxpaVhzsjAcsrJmDMyMWWkY87IwJSeTnBExEHX02/oK6VeAE4HqrXWU/rYfgtwSY/jTQQStNb1SqldQAvgBjq11vkHXbEQQgQY3dlJR3m5EeYlu+noEeodJSXo9vautspkwpSZiTkzk7Ajj8SUmYE5MwtzViamlBSUyTSotfrS018CPA281NdGrfWjwKMASqkzgBu11vU9mhyjta49yDqFEMKvPO3tdJSW0b67uNdwTPvuYjrKeo+vK6sVc2YmoWNyCJ83tyvUzZmZhCQloYKD/fY5+g19rfVypVS2j8e7CHj1YAoSQgh/0VrTWV1De1ER7buKaC8qwlVURHvRLjrKysDj6WobFB6OOTMTy6RJRJ58CubMTKO3nplJSEICSik/fpL9G7AxfaWUDTgZuKHHag18pJTSwPNa60UD9X5CCPFDedracO3aRfuuXbQX7TJCvqiI9l278NjtXe2UxYI5OxvLlMlEnXE65uxszJmZmLKyCI6ODthg/z4D+UPuGcCXew3tzNZalyulEoFlSqmtWuvlfe2slJoPzAfIzMwcwLKEEKORdruNcXZvmO/psbcXFdFZVdXdUClMqamYs7OJmjEDc042oTk5mHNyjKGYoJF1DetAhv6F7DW0o7Uu9z5XK6XeAg4H+gx97/8FLALIz8/XA1iXEGIE87hcxjBM4Q5chdtp37HTGJop3t3rB9SgiAjMOTmEHXkE5pwczNlGsJuzMgmyWPz4CYbWgIS+UioKmAtc2mNdGBCktW7xLp8I3DcQ7yeEGH08LhftO3d6w70Q145C2rcXGlej7hlrDw7GnJFhhPuco3v12oNjY4flcIwvtPa9n+zLKZuvAvOAeKVUKfBbwOR9o4XeZmcDH2mt23rsmgS85f2SQ4BXtNYf+FyZEGJU8jidRrjv2IFre6HxXLidjpLS3uGelUXohAlEnnYq5txcQseOw5yTTZDZ7Nf6B4O9vZPyRifljY7uR5Oz17Kv1IH8CzFU8vPztdwjV4iRzeNy0b5jB67t23v03nfQUVICe3IpJARzdhahuWMJzc0ldNxYI+Czs1EjJNw9Hk11i4uynoHe6KDMG/IVTQ4a7B299lEKkiIspEZbSI22khpt5c7TJq325VoouSJXCDHoOmtrcW4twFWw1XjeugXXziJwu40GJhOh2VlYJk0i6swzCR2bS+jYsZgzM4d9uLd3eqhoclDW4KC00Xgu6/Fc0eSgw9278x1hCSE1ykpqtIVDM6NJjbaS5g33lCgLyVEWTMG9f2C+08d6JPSFEANGd3bSvmtXV7A7txbgLNiKu6b7+syQlBQsEyYQftxxWPLyCB03zgj3Qb4SdbC0uTq7Qrx3qNspa3RQ3eKi54CKUpAYEUpatJVpGdGcekgKaTFW0qItpEXbSIm2EGkZvO9CQl8I8YO4W1pwFRTg3LIVZ8FWXFsLcG3fjna5AGO6AfPYsYQfNQdL3gRCJ+RhyZtAcHS0nyv3ndaaBnsHpQ32rjAv3aun3uToPfRiClakRBk98znjEkiLtpIWYyXd+5wcZSE0JICvyBVCCE9bG45Nm3Bu2IBj/QacGzcaV6h6BcfEYJmYR8zFFxsBnzeR0DE5w6L33ubqpKTBTkm9g5J6e9dyaYOd0gYHra7e0xeHmYO9PXMrM7KiSYu29eqpJ0aEEhQUuGcJSegLIXrRHR24tm/HsX4Djg3rca7fgGvHjq4zZ0yZmVimHkL0BRd09eBDEgN32gFXp5vyRmevQC9psFNab6ekwUF9W3uv9jZzMBkxNjJirRw5Jo70GCsZsTbSoq2kx1iJspoC9rP6QkJfiFFMa01HSYnRe9+w3njevLlriCY4JgbL1EOIOPkkrFOnYpkyhZCYGD9X3ZvWxtkvxXV2dtcbj1JvwJc2OKhsdvYaUzcFK9KijSA/KTWKjFirN+RtZMRYiQ0zD+tQ74+EvhCjiLu1DceaNTjWrsWxfj3O9eu7btShLBYskycTc9FFWKcegmXqVExpaQERgB1uD2UNDnbVtbG73k5xnd0b8sZrZ0f3RGhKQUqkhfRYGz/Kje8V6ukxVpIiLQQH8PCLz1wt0FwBzWXQUuHzbhL6Qoxg7uZm7KtXY1+5CvvKlTg3bzZOkwwKInTsWMJPOB7r1KlYp04ldOxYVIj/IqHN1dkV5MV1dorr7eyus1Nc30Z5oxO3p7u7bjEFkRUbRlZcGEePSyArzkZmXBhZsTZSo62YQ4bxfDkeD9hrobnceLSUe8N9r+X2lh90eAl9IUaQzoYG7KtW4Vi1iraVK3Ft2Qpao0wmLNOmEnfN1dhmzsQ2fTpBYWFDXl+rq5NdtW0U1bZ1P3t777WtvcfWY2wmMuPCODQjhh9Pt5EZayMrLozsOBsJEaEB8X8gB6yz3eiVdwW4N8R7LVeAp/cZQahgiEiGiBRImAC5xxjLkWkQmWIs3zvWpxIk9IUYxjpra7GvWoV9xUrsK1fi2r4dABUainX6dOKvvx7bzJlYp00dsknFnB1uiuvsFNW2UlRr7wr3oro2alpcvdqmRFnIirNxXF4SWfE2b+/dRmacbVDPVR8U7o7u3nlzmfFoKutebi6H1mqMGed7MNm8AZ4KWbOM54hUI8z3LIcnQtDAnOYpoS/EMOJxubCvXEXb58tp/eJL2nfsAEDZbNgOPZTI007DdvhMLFOmDOocNJ1uDyUNDnbWtBqB7u2xF9W0UbHXD6fx4aHkxNuYNz6BnIQwcuLCyI4PIzsuDKvZf+erHxB3R3cPvam072DvK9BDI43gjkyDpCkQle59vSfYU8ESZfwQMUQk9IUIcO27d9O6/HNaP1+O/dsVaKcTZTZjmzmT6LN/jG3mTCyTJg3KOfHNzg521rSxo7qVHTV7Hm0U17X1mjogymoiOz6MI8bEkR0X1iPcbUQEeo/d3dkd6M2l3hD3LjeXG69bq9gn0M0REJVmBHfSZCPY97yO9Ia7JdIvH+n7SOgLEWA8Dgf2lSu7gr6jeDcApqxMos89l/Cj52CbOZMgq3Vg3s+jKWt0sKOm1Qj4HuHeczgmJEiRFWcjNyGc4ycmkZsQxpiEcMbEhxETFqDz42gNjgZoKjF66I0l3ctNpd4eehVoT+/9zOHdIZ44sTvEo9K84+hpARnovpDQFyIAtBcX0/q//9G6/HPsK1eiXS6UxYLtiMOJvexywucchTkr66Deo9PtobjezvaqVgqrW9he3cq2qlaKalt7nfIYZTWRmxDGvPEJ5CYaoZ6bGE5mrG2fSb78rrPd+BF0T4jvHepNpdDR1nufEAtEZRgBnnvcvr3zqDRjWGY4/lDsAwl9IfxAa41r+3ZaPlpGy7JluAoKADDn5BBz4QWEzTka28x8gkJDD/jYHW4PxXVtbK8yQn17dQuF1UYvvt3dHe5p0VbGJYUzOzeO3MRwchPCGZMQRlygXJykNTib9grxEm+we1+3VLDPsEtYghHqCRNg7PHGOHp0hvEclQG2uBEb6L6Q0BdiiGitcW7cRMuyZbR89BHtu3aBUlgPm0HSHbcTfuyxmNPTfT6ex6PZXW9na2ULBZUtbKsyHkW1bXT2OKc9I9bK+MQI5k5IYFxiBOMSwxmbGE5YqJ//+msN9npoLPY+dvd4eIN973PRg83e8E6H3GO7l6PSITrT6KmbBmbYa6SS0BdiEGmPB8fatbR8+BEty5bRUV4OwcGEHXE4sVdeQcRxxxGSkNDvcerb2tla0dwV8FurWthe1YK93ZiPXinIiLExPimC4yclMS4xnPFJEYxJCMNm9tNfc63B2QgNPQN9r3Bvb+29jyXaCO+4XBgz1zsM4+2hR2eALR5G2I3Kh5qEvhADTHs82FespPnDD2j5+GPcNbUok4mw2bOJv+EGwo+Zt9/5a5wdbgqrW9la2cLWimYKqlrYWtnS6wfV2DAzE5IiOD8/g7zkCPJSIhmfFO6fcHc2dQd4X+Huau7dPjQSorMgJgfGzDMCPjrTWBedYZy+KAaVhL4QA8RVWEjT20tpevddOisqUFYr4XPmEHHiiYTPm0tweHiv9s3ODjaXN7OpvJlN5U1sLm+msLq1a2gmNCSIcUnhHD0ugbzkCCYkR5CXEkFC+BBejepxG8MsDbugoQjqi7qXG4qNnnxP5nBvgGdC1myIyeod7NbhM5f+SOXLjdFfAE4HqrXWU/rYPg94GyjyrnpTa32fd9vJwJNAMLBYa/3QANUtREDorKuj+b33aXr7bZybNhlDN0fNJnHBzUQce2zXaZXVzU42ba1mU3mTN+Sb2V1v7zpOfHgok1MjOTYvkUmpkeQlR5IdZyNkKM6WaW8zgrxnoO9Zbtzde0qAIJMR5DE5kD7T22vP6hHqMaP6R9LhwJee/hLgaeCl72nzudb69J4rlFLBwDPACUApsFIptVRrvfkH1ipEQPC4XLR++ilNby+l9fPPwe0mdNJEkm6/jcjTTqPGFMZXuxvZ8L/iroCvbe0ensmKszElLZILZmYwKTWSyamRJEYM4hQJWoO9Dup27Ntbry+Cture7S1RRqinTIVJZ0FMNsTmGOsiUwdsOgDhH/2GvtZ6uVIq+wcc+3CgUGu9E0Ap9RpwFiChL4YdrTWOtWtpevNNmj/4EE9LCyFJSURefjllM4/hf8GxrN3dyJpFa6lqNgI+JEgxNjGcueMTmOwN94mpkYM3p4yjEep3QN1OqCv0LnsfrqYeDZXx42hMNow/yRvo2Uaox+YYvXUxYg3UmP4spdQ6oBxYoLXeBKQBJT3alAJH7O8ASqn5wHyAzMzMASpLiIPjbm2l+Z13aHjtdeNcequVhsNms2rCkXwQkk5BTRvuj6qBarLibBw5Jo7pGdEcmhlDXnIEFtMA94pdrVDfM9R3ep8Ljd58F2X8MBqbC1PPM57jciF2jDEUE3Lg5/+LkWEgQv87IEtr3aqUOhX4NzAO6GtgT/exztig9SJgEUB+fv5+2wkxFJybN1P/6ms0vfMuOB1UJWXx75kX8EHSVJwhoUS0hTA9w8L1k5OZnhnNtPRo4sIHKEg9HmjaDbXboXab91FoBHtrZe+2EalGmOedDnFjvcGea/TcTUMzq6YYXg469LXWzT2W31dKPauUisfo2Wf0aJqO8X8CQgQkt93Orn+9TcNrrxO2swBXsInP0g7l/Zwjac+dwKyxCdyfFcP0jGjGxIcd/M2v2+1GkNdu6xHw26FuO3Q6u9vZ4iBuHIw9rjvU9/TazUM/J74Y3g469JVSyUCV1lorpQ4HgoA6oBEYp5TKAcqAC4GLD/b9hBhILc4Ovvnvappef52c1f/D1uGgNiKJt2aei/u4kzlsSiYvjo0nLfogrvK010P1FqjZ2jvcm3Z3t1FBxtkv8eONi5Lix3c/wuIO/oMK4eXLKZuvAvOAeKVUKfBbwASgtV4InAtcp5TqBBzAhVprDXQqpW4APsQ4ZfMF71i/EH5VUm/nk82V7Pjwv0xY/i6HVW0lKSiYHROPgDPP5pBT5nJSQviBnwvvaDSCfU/AV28xHj3PjjHZIH4cZB4B8ZcZy/ETjF67DMeIIaC0Drzh8/z8fL1q1Sp/lyFGCI9Hs7a0kY83V/HZxjJSV3/OOTuWk9NcgTMiGnX2+eRdcxmWhHjfDuhqgZoCqN4M1VuhZovx3NJj9NIUZkz4lTjReCRMNF5Hpsk0AmJQKKVWa63z+2snV+SKEUlrzdqSRt5bX8H7GypoqanjjF1fc++urwi3N6Nyx5J82++JPP20/d9hyuMxzmWv2ghVm6Byo7HcWNzdJsQKCeMh52hIzIPESZCQZ8wVI+EuApCEvhgxtNasK23ivfXlvL+hkrJGBzn2Wn5es4Kpm74kqN1F2NFziLvySmyzZvUevnE2G8FetbE75Ks2d8/FroKMs2PSZsCMy4xwT5xojMPLxUpiGJHQF8Oa1ppN5c28s66cd9dXUNbowBSs+ElEG2eXfUTkyi9QZjNRZ51J7OWXEzpuHLRUwfZlULEOKtZC5XpjuoE9LFGQdIgR7kmTjXubJuSB2ea/DyrEAJHQF8NSTYuLt9eW8a/VpWytbCEkSDFnXDy3Z7Yz6ZM3cL3xBUEREcRcdTGxR48lxLETVtwJb6/rfa57bC6kHQYzrjDCPXmKMe4u88eIEUpCXwwbrk43n26p5l+rS/lsWw1uj2Z6RjS/O2syJzpLcC5+HPvqtXSGh5IwN56Y9FKCHX8wzh9TQcZZMmPmQco045F8yLC9z6kQP5SEvghoWms2lDXxr9WlLF1XTqO9g6TIUG6YlcB5KdVEf/sPau/+kvrSNkIsbhIPbSVmnIug1EmQcpo34KcbwzQyPCOEhL4ITO2dHt7bUM4LX+xiS1kdU0NKuTO1kjm23SQ2b6Tt7VJqNoVT0mAmJFyRfGYuUWecQlDOEcYwjZzzLkSfJPRFQKlva+eNL9azacUnjHVt4nehO5gSVkiI2wnV0NaURPG6CJzlsZhSE0j55TVE/eRClGmQZq4UYoSR0Bf+pTXUFVK56X+UrP2UmPq1XKPKjE2mYEiaisq4Eocjheo3v8W+ai0hKVGkPHAHUWedhQqRP8JCHAj5GyOGlscNlRtg99dQ/CUdRV9jctaSDFh0GJWR06ideCnxE+eg0mbg3FVGzZNP0frJ8wTHxpJ0x+1EX3jh/i+oEkJ8Lwl9Mbg8HuNip52fQdH/YPe30N4CQE1IMstdeWwxTWbMjBM4ed4c8sKNsfj2khJq776PpqXvEBQWRvwvfk7s5VcQHC6zSgpxMCT0xcBrKDZCfk/Q77m5R/x4WsafzVt1mSzclUQLSVx7bC43zc7GZjb+KLobG6l59lkaXn0NFRRE7E+vIu7qqwmJkbs5CTEQJPTFwbPXQ9Hy7qBvKDLWhyfD2BNgzDxqEo7kiRWtvL6yhOAgxZVHZ3Pd3FyibcYwje7spOH116l96k+4W1qI/slPiL/hekxJSf76VEKMSBL64sB1OGD3N90hX7EO0GCOgOyj4IhrjYugEibgcnv48/KdPP3GVjrdmgtmZvCL48aRFNl9SmXr519Q9fBDtBfuwHbEESTdfhuWvDz/fDYhRjgJfeGb2u1Q8D4UfmyMy7tdEGSCjMNh3u1GyKfNgODuUye/2F7Lb97eyM7aNk6enMztp+aRFdc9Ju/auZOqhx+m7X/LMWVmkv70nwg/7rgDn8deCOEzCX3RN3cnlK4wgr7gP8Zt/QASJ8Ph1xghnzkLQsP32bWyycn9723m3fUVZMXZWHLVTOZNSOw+dEsLtU8/Tf3fXyHIYiHxlluIuexSOSNHiCEgoS+6uVqg8BMj5Ld/CI4GozefM8cYshl/EkRn7nf3TreHJV/t4vFl2+jwaH51/DiunZuLxWRMPay1pvndd6l65BHctXVEn3ceCb/8BSFxcjtAIYaKhP5o11RqhHzBf2DX5+BuB2sMjDsJJpwMucf5NCnZhtImbvnXOrZWtjBvQgL3njm591BOYSGV9/0O+4oVWKZMIePZZ7EecshgfjIhRB98uUfuC8DpQLXWekof2y8BbvW+bAWu01qv827bBbQAbqDTl1t5iSFQvQU2/RsK3jMulAJjiuHD58OEUyHjCAj2rT/Q4fbw9KeFPP3fQuLDzSy89DBOmpzUNS7vaWuj5tlnqf/rSwSFhZF8zz1En3cuKlhuPCKEP/jyN3sJ8DTw0n62FwFztdYNSqlTgEXAET22H6O1rj2oKsXBq94Cm94ywr62AFCQeSSccJ8R9PHjDviQ26tauOkf69hQ1sTZh6ZxzxmTibJ1/5Db8vHHVN7/AJ2VlUT95BwSb76ZkNjYAfxQQogD1W/oa62XK6Wyv2f7Vz1efgOkH3xZYkA4GuGb54yw3xP0WbONH2InngkRP+wceI9H88KXRTzyYQHhoSE8d8kMTjkkpWt7R1UVVfffT8uyjwkdP560xx7DNuPQAfpQQoiDMdBj+j8D/tPjtQY+Ukpp4Hmt9aL97aiUmg/MB8jM3P+PhcJHWsPrlxrj9FlHHXTQ71FSb+fmf65jRVE9J0xK4vdnH0JCRKjxlh4Pja+/TvUfH0N3dJBw803EXXmlzIApRAAZsNBXSh2DEfpH9Vg9W2tdrpRKBJYppbZqrZf3tb/3H4RFAPn5+Xqg6hq11r1mBP5pj8HMnw3IId9dX85tb2xAAY+eO5VzD0vvGrt3bd9OxW9+i2PNGmyzjiTlnnswZ2UNyPsKIQbOgIS+UmoqsBg4RWtdt2e91rrc+1ytlHoLOBzoM/TFALLXw0d3QfpMOOyqgz6cs8PN797dzN+/3c2MzGieuuhQ0mOMu1B5XC7qnn+e2j8vJthmI+WhB40pj+UCKyEC0kGHvlIqE3gTuExrva3H+jAgSGvd4l0+EbjvYN9P+OCT+8BRD6e9BUFBB3WonTWtXP/KGrZUNPP/5o5hwYkTMAUbx7SvWUPFnXfRvnMnkWeeQdJtt8kPtUIEOF9O2XwVmAfEK6VKgd8CJgCt9ULgN0Ac8Ky3d7fn1Mwk4C3vuhDgFa31B4PwGURPpatg9RI48jpImXpQh3p7bRl3vLkBU0gQL1yZz7F5xu8BHqeTmiefon7JEkKSk8n48yLC58wZgOKFEIPNl7N3Lupn+9XA1X2s3wlM++GliQPm7oR3b4SIZGM+nB/I2eHm3nc28+qK3eRnxfDURYeSGm0FwL56NRV33El7cTHRF1xA4i0LCA7fdyoGIURgkityR5KVi6FyPZz7ok9X0falvNHB/3t5NRvKmrhuXi43nTAeU3AQHrud6sefoOFvf8OUmkrmkhcJO/LIAf4AQojBJqE/UjRXwKf3Q+6xMPnsH3SIr3fUccMr3+Hq9PDny/M5YZIxnNO2YgUVd95FR0kJMZdeSuKNvyIoTO5gJcRwJKE/Unx4hzFvzql/gAM8c0ZrzZKvdnH/e1vIjrPx/GX5jE0Mx+NyUfP4E9T/9a+YMjLIevklbDNnDtIHEEIMBQn9kWDHp7DpTWMcPy73gHZ1dri5480NvLmmjOMnJvH4BdOIsJhwbNxE+a230r5jBzEXX0zigpsJstkG6QMIIYaKhP5w1+GE9xZA7BiY/asD2rW80cH8l1exsayZG48fz8+PHYtyd1LzzDPUPreQkLg4MhYvJvyo2YNUvBBiqEnoD3dfPgn1O+DSN8Fk6b+919qSRq55aRWOdjeLL8/n+ElJuHbupPzXt+LcuJHIM84g+a47CY6KGsTihRBDTUJ/OKvbAZ//0fjhduxxPu/2zrpyFvxzHYmRobxy9RGMTQyn/m9/p/rRRwmyWkl74gkiTz5pEAsXQviLhP5wpTW8fwsEm+GkB33cRfPUJ4U8/vE28rNieP6yw4hytVJ63f/R+tlnhB09h5T778eUmNj/wYQQw5KE/nC1+W3Y8Qmc/BBEpvTb3Nnh5tf/Ws/SdeWcMyONB885hI6vv2bn7bfjaW4m6c47ibn0EpkzR4gRTkJ/OHK1wAe3Q/IhMPOafpvXtLiY//Iq1uxu5JaTJnDtrHRqH32E+r++ROi4saT+5S9YJowfgsKFEP4moT8c/fdBaKmA81/q97aG26pauOrFldS1uXjukhkca22j+IILcRUUEHPJJSTesoAgi+8/AAshhjcJ/eGmcgN8uxAOuwIyvv9Cqa921PL/Xl6NxRTMP+YfSeaKTyn63f0E2WykL3yOiHnzhqZmIUTAkNAfTjweePcmsMbAcb/93qZvflfKrW+sJzsujBcumEzwUw9R8fZSbLOOJO2RRwhJSBiiooUQgURCfzhZ8zKUroAfPwe2vuet11rzp08LeWzZNmaNieNPsyJpuuYK2ouKiP/5DcRfey0qOHiICxdCBAoJ/eGirQ4+/i1k/gim9T3bdafbw13/3shrK0s4Z3oqdwTtoPayBwgKDyfzxRdkVkwhhIT+sLHsN8ZZO6c/1ueEas4ONze8soaPt1Txyx+lcf4Xr1KzVIZzhBC9SegPB8Vfw9q/wexfQuLEfTY32Tu4+qWVrCpu4JEZYRy28E6aZThHCNEHCf1A5+6A926CqAyYe+s+m6uanVz+lxXsrG3lxcwGkh+8G3d4GJkvvkjYkUf4oWAhRCDr967ZSqkXlFLVSqmN+9mulFJPKaUKlVLrlVIzemw7WSlV4N1220AWPmp88xxUb4ZTHgZz7xuX7Khp5Zxnv6K8roXX3StJevIBLBMnkvPGGxL4Qog+9Rv6wBLg5O/ZfgowzvuYDzwHoJQKBp7xbp8EXKSUmnQwxY46TaXw2UMw/hTIO63XpnUljZy38GtMLY28Vvgq1n+/Rswll5C15EWZO0cIsV++3Bh9uVIq+3uanAW8pLXWwDdKqWilVAqQDRR6b5COUuo1b9vNB1v0qPGfW0F7jF5+D8u31XDt31ZzqKOCu779K6qpkeQHHyT67B/7qVAhxHAxEGP6aUBJj9el3nV9rZcxB19t+xC2vgvH/QZisuP3TlYAABsOSURBVLpWv7OunJv+sZafNG3his9fJiQulvRX/o518mQ/FiuEGC4GIvT7mpZRf8/6vg+i1HyM4SEyMzMHoKxhrN0O7y+A+Akw6+ddq1/5djd3vbWOWyq+YN63S7Eedhjpf3qKkNi+L9QSQoi9DUTolwIZPV6nA+WAeT/r+6S1XgQsAsjPz9/vPw6jwud/hMbdcMW7EGIG4Pn/7eCxd9bzx+1vkVewkqhzziH5nt8SZDb7uVghxHAyEKG/FLjBO2Z/BNCkta5QStUA45RSOUAZcCFw8QC838hWs824BeLUCyFnDlprHv2wgNf/8x2L1v+NxMpdJN5yC7E/vUrmvhdCHLB+Q18p9SowD4hXSpUCvwVMAFrrhcD7wKlAIWAHrvJu61RK3QB8CAQDL2itNw3CZxg5tDbOyTfb4MTf4fFofrN0I19/8DWLVi8hzO0i7dlniDjmGH9XKoQYpnw5e6fviV66t2vg+v1sex/jHwXhiw3/hF2fw2l/pNMazy3/XEfJBx/zxOq/Y4mLIWPhErnZiRDioMgVuYHC0Qgf3gGpM+iYfgW/en0tnqVvce/6N7HmTSBj4UI5/14IcdAk9APFp/eDvY6OC//JDa+uJflff+XCbZ8QdvQc0h9/nKCwsP6PIYQQ/ZDQDwRl38HKxXTOvIbrP3Qw/bWnOaZ0DdHnn0/yb+5Ghch/JiHEwJA08TePG969ER2WyM1F8zju1QeYWreThBtvJG7+NXKGjhBiQEno+9uqF6BiLX8O/QUnv/QHMttqSX30UaLOON3flQkhRiAJfX9qqUJ/ci8bnVMYt/QTEjxOshcvImzWLH9XJoQYoST0/ajjgztwVXZg/8xJvNlE7l9fwnrIFH+XJYQYwST0/aR16yeoT5dS9HkStuhwxr+8hNCcHH+XJYQY4ST0/cDd7qT2sZ/j+CIOnZrGxL+/hCkpyd9lCSFGAQl9P9h477WYP/fQkZnO5NdfJzg62t8lCSFGCQn9IVa9aQWWd7+mI87K5DffJlguuhJCDCEJ/aGkNbV3/B+qXRF23yMS+EKIIefLPXLFANnyl0dQBW205U8g59gT/V2OEGIUktAfIs7mOoIXvwBWmPTEC/4uRwgxSknoD5GCX1+FuzEI15VXYouL83c5QohRSkJ/CJR9+RGhXxTQnhHJtF/82t/lCCFGMfkhd5Bpj5vm+xaAViQ8/IxMoCaE8Cvp6Q+yTY/dBsUdtM2dSeqMfH+XI4QY5ST0B1FLRQnmV5eiI4OY+ofn/V2OEEL4FvpKqZOVUgVKqUKl1G19bL9FKbXW+9iolHIrpWK923YppTZ4t60a6A8QyHb9+grcbUHw85sw22z+LkcIIfof01dKBQPPACcApcBKpdRSrfXmPW201o8Cj3rbnwHcqLWu73GYY7TWtQNaeYDb+d6rmFaX4xifxKGX/czf5QghBOBbT/9woFBrvVNr3Q68Bpz1Pe0vAl4diOKGK3dHOx2P/g6CIePxv/i7HCGE6OJL6KcBJT1el3rX7UMpZQNOBt7osVoDHymlViul5u/vTZRS85VSq5RSq2pqanwoK3BtvOc6PJWa1tNPID53rL/LEUKMUB2eDqrt1Wyt3+rzPr6cstnXOYZ6P23PAL7ca2hntta6XCmVCCxTSm3VWi/f54BaLwIWAeTn5+/v+AGvbvtGLO99QWdcKIfe+5i/yxFCDCMe7aGlvYU6Zx31jnrqnfs+6hx1XcvN7c0H/B6+hH4pkNHjdTpQvp+2F7LX0I7Wutz7XK2UegtjuGif0B8pKm69mmCXIvT3vyPYbPJ3OUIIP7N32Pcb3g2uhl7h3uBsoFN39nmc6NBoYi2xxFpiGR8z3li2xhJniSPGEsOJ+Dafly+hvxIYp5TKAcowgv3ivRsppaKAucClPdaFAUFa6xbv8onAfT5VNgwV/O1PBG9uxH5oDoed+n0/ewghhqtOTycNzgYjuJ3eXvd+euX1znocnY4+j2MLsXWFeEpYCpPjJ3e97vmIs8YRHRpNSNDAXEvb71G01p1KqRuAD4Fg4AWt9Sal1LXe7Qu9Tc8GPtJat/XYPQl4y3sVagjwitb6gwGpPMC0tzWjnn0GLIrxjy/xdzlCiANg77B3Bfie4ZOu573WN7oa+zxGiArp6n3HWmLJiszaJ7z3LMdYYrCGWIf4U3rr9KWR1vp94P291i3c6/USYMle63YC0w6qwmFiy20/xVyvcP70AiKS5daHQviTR3todDVS7+jRG/+eQN9fbzzCFNE1hDImagwzk2caAe4dUukZ5JHmyGExzYrMvTMAKlZ/juWzDbhSw5m24Df+LkeIEcnldnUNo9Q56/bbE98zVu7Rnn2OEayCibHEdAV3RmQGcZa4Xj3xOGtcV6iHBof64ZMOLgn9g6U1DXf/AuVWRD/wJEFBMrOFEL7QWtPS0dJ377tHuO/Z1trR2udxrCHWrhBPDU/lkPhDeoV3z0CPCo0iSI3uv6MS+gdp49P3ELzTSducqUycdZS/yxHCr/b8yLknuHuGdp2zbp9TETs8HfscQ6G6zlSJs8YxMXZi7564Ja5ryCXWEovNJFOcHAgJ/YNgr6vC/NJruMODmfKY3A1LjExuj5sGVwN1jjpqHbVdQyt7L+855VD3cRmPKcjUFdrx1njjlMMewb2nVz7QZ6qIfck3exC2L7gcc0sQnQv+D0tEuL/LEcJnPYO8qxe+d5A7a6lz1NHoauxzfNwSbDHC2hpHRkQG0xOnE2+N7wrvnoEebgofFj9yjgYS+j9Q8Sf/JvTbYpxjYpl+9Q3+LkcIPNrTNbTSs/dd66jtCvY9y/v7oTM0OLQruNPC05iWMK0rxHsGerw1HluITYJ8GJLQ/wE8nR04HrgLgiD1j3/2dzliBNNa0+hq7OqBdwV4H73zBmcDbu3e5xjmILMR2NY4UsOMHzr39MT3rN8T6GGmMAnyEU5C/wfY+PsbMZW7aTttDnkTJ/u7HDEMdXg6ugK7xl5DjaOGOkcdNQ5judZeS62zllpHLZ2efS/LNweZu4I7JSyFKfFTusbL9w50GVoRPUnoH6DG3YWEvrUMd4yJQ3//jL/LEQGmraOtK8hrHbVGgDtqu9c5a6m119Lgauhz/z3BHW+NZ0z0GBKsCSTYEvYJ8ghThAS5+EEk9A9QyYKrCHEoQu6+i+BQs7/LEUNgz1h5V3jvHeQ91vd1ZacpyNQV5Onh6RyacCjxNuN1gjWBBGsC8dZ4Yq2xmIJkkj4xuCT0D8D2f/2FkA01OKakM+OcC/1djjhIWmtaO1qptlf3elTZq6ix1xivHdXUO+r7nPkw3BTeFeaT4yb3CvKez1GhUdIrFwFDQt9HnS4Hnif+gDJD7pMv+rsc0Y8OTwe19lojwB01XWG+J9hr7DVU2av67JlHmiNJtCWSZEsiNzqXBFt3iCfYEoi3xBNvi/fbhFlCHAwJfR9tvOMaQmvBcfFZRKVl9L+DGBRaa5rbm3sFeF+Pemf9PhcJmYJMJNoSSbQlMiF2AnPS55BoTexal2RLkjAXI56Evg+qN67CumwlHclWpt/1oL/LGdHa3e1UtVVR0VZBpb2SitYKY7mtksq2SiraKrB32vfZL9YSS6ItkQRrApPiJpFkSzJe2xK6lqNDo2WYRYx6Evo+qLn9OoI6FOH3/EEmVDsIHu2h3lnfFd4VrUawV7Z1h3uds26f/eIscSSHJZMTlcOs1FmkhKWQFJZEki2JBJvxQ6g5WH5UF8IXEvr92LzoYYK2t2I/Mo+J8473dzkBTWtNvbOe0tZSSlu8j9ZSylvLu3rre0+wZQ2xkhKWQnJYMhNiJ5Acltz1ek+4j8TpbYXwFwn97+FsqiNk8Yu4wxQTH5cfbwGcnU7KW8u7g32v571/GE20JpIansqUuCkcn3U8KWEpvUJ9uNx4QoiRQkL/exQsuApzs6Ljhp9ii4nxdzlDpqW9heLmYoqainoHe0sp1Y7qXm2tIVbSwtNIj0jniOQjSI9IJyMig/TwdFLDU7GEWPz0KYQQffEp9JVSJwNPYtwjd7HW+qG9ts8D3gaKvKve1Frf58u+gar0y48I/Wob7VlRTL3hFn+XM+DcHjdlrWUUNRWxq3lX1/Oupl37jKsn2ZJIj0hnVuos0iPSjUe48RxniZOeuhDDSL+hr5QKBp4BTgBKgZVKqaVa6817Nf1ca336D9w3oGiPh5Z7bkEBCY885+9yDorWmsq2SgobC3s9djbuxOl2drWLCo0iOzKbo9KOIjsqm5zIHLKjskmPSJcxdSFGEF96+ocDhd6bnKOUeg04C/AluA9mX7/Z8OitmEraaTvhcPKmzfB3OT7r9HSys2knW+u3sqVuC1vqt1BQX9DrNnOJ1kRyo3M5b8J5jI0eS05UDtmR2cRYRs/wlRCjmS+hnwaU9HhdChzRR7tZSql1QDmwQGu96QD2RSk1H5gPkJmZ6UNZg6O5Yjehry/FExXC1Eee91sd/dFaU9Zaxvqa9ayrWcf6mvVsa9hGu6cdMG5wMSF2AqeNOY3xMeMZGz2W3OhcokKj/Fy5EMKffAn9vgZs974f2ndAlta6VSl1KvBvYJyP+xortV4ELALIz8/vs81QKLr5Ssz2IPjtAkzWwLkys9PTSUF9ASsqV7Cmeg3ra9Z3jb1bQ6xMjpvMRXkXMTFuIhNjJ5IVmUVwULCfqxZCBBpfQr8U6DnvQDpGb76L1rq5x/L7SqlnlVLxvuwbSArfeRXzmnKcE5M49KKr/FqL1pqChgK+rfiWlZUrWV21umuYJisyi9lps5mWMI2pCVMZGz1W7ikqhPCJL0mxEhinlMoByoALgYt7NlBKJQNVWmutlDocCALqgMb+9g0U7o52Oh+9H2WCrMf8c05+k6uJryu+5ovSL/iy/EtqHbUAZEdmc0rOKcxMnsnM5JnEW+P9Up8QYvjrN/S11p1KqRuADzFOu3xBa71JKXWtd/tC4FzgOqVUJ+AALtRaa6DPfQfpsxyUDb/5P0KrPdjPPZHYnDFD9r61jlo+Kf6EZbuXsapyFW7tJtIcyY9Sf8TstNnMSplFUljSkNUjhBjZlJHNgSU/P1+vWrVqyN6vdttG6s77CZ2RoUz873cEhQzuUEllWyUfF3/MsuJlrKleg0aTHZnN8VnHMzd9LlPip8hwjRDigCilVmut8/trJ8kCVPz6GkLaFda7Hhi0wG9yNfHhrg9ZumMp62rWATAuZhzXTbuO47OOZ2z0WLnISQgx6EZ96G/561OEbG3EcdgYJp50xoAeu8PTwZdlX7J0x1I+K/mMDk8HY6PH8ssZv+T4zOPJjsoe0PcTQoj+jOrQb29rJui559BWzYQnlgzYcctby/lHwT94q/At6p31xFpiuWDCBZyZeyZ5sXnSoxdC+M2oDv3Nt/yU0EZwXXMxYQmJB3Usj/bwTfk3vFrwKstLlwMwN30u54w7h9lps+WG10KIgDBqQ79sxXIsyzfQkR7BtJvu/sHHaXI18Xbh2/xj2z8obi4m1hLLz6b8jPMnnE9yWPIAViyEEAdvdIa+1jT95pcEaUXM75/6QcMtZa1lvLz5Zd7c/iaOTgfTE6Zz3ZzrOCHrBLmLkxAiYI3K0N/w5D2E7HLSNm8aeYf/6ID23VK3hRc3vchHuz5CoTh1zKlcNuky8mLzBqlaIYQYOKMu9FtrKjG//DqeyCCm/OEvPu+3pnoNC9ct5KvyrwgzhXHZpMu4ZOIlMoQjhBhWRl3o71hwBeY2hefW6wkND++3/eqq1Ty37jm+rfiWWEssv5rxK86fcD4R5oghqFYIIQbWqAr9omVvE7qyGNe4OKZddf33tt1Ut4mnvnuKr8q/Is4Sx4L8BZw3/jxsJtsQVSuEEANv1IS+x92J84E7UcGQ+oc/77ddSUsJT6x+go+KPyI6NJoF+Qu4YMIFcq9XIcSIMGpCf/19vyK00k3bGXPJmzBpn+2OTgeLNyxmycYlBAcFc+20a7li0hWEm/sfAhJCiOFiVIR+Q9F2rG8vwx1nYvoDT/faprVmWfEyHl31KJVtlZyacyo3HXaTzGwphBiRRkXol9zyU0wuheneuwk2d18ZW9Fawf3f3s/y0uXkxebx8JyHmZE0fO6JK4QQB2rEh37Ba4sxbazBOS2DQ8+6AAC3x81rBa/x1HdPodHckn8LF0+8WKYzFkKMeCM65TocdvRTj6EskOudUK20pZQ7vriDNdVr+FHqj7j7yLtJj0j3b6FCCDFERnTob7r9GkLrNc7LzyYiOZW3C9/mwRUPolDcP/t+zsw9U2a8FEKMKiM29Ks2rMLyySo6U2zk/OrX3Py/m1lWvIzDkg7j90f9ntTwVH+XKIQQQ86n0FdKnQw8iXGf28Va64f22n4JcKv3ZStwndZ6nXfbLqAFcAOdvtzOayDU3HYdwW5F0203cct/LqbSXsmNh93IFZOuIDgoeChKEEKIgNNv6CulgoFngBOAUmClUmqp1npzj2ZFwFytdYNS6hRgEXBEj+3HaK1rB7Du77Vx4UME72il8Edp/K72T0SYInjxpBeZnjh9qEoQQoiAFORDm8OBQq31Tq11O/AacFbPBlrrr7TWDd6X3wB++2XU0ViH6S9LaImE386uYmLsRF4/43UJfCGEwLfQTwNKerwu9a7bn58B/+nxWgMfKaVWK6XmH3iJB2bzgivxtCieOiWIsyddwOITFxNvjR/stxVCiGHBlzH9vk5v0X02VOoYjNA/qsfq2VrrcqVUIrBMKbVVa728j33nA/MBMjMzfShrXwWf/hvT19v5Oi+IY8+7masmXyVn5wghRA++9PRLgYwer9OB8r0bKaWmAouBs7TWdXvWa63Lvc/VwFsYw0X70Fov0lrna63zExISfP8EXh63m6KH76QzWBF5w//x0yk/lcAXQoi9+BL6K4FxSqkcpZQZuBBY2rOBUioTeBO4TGu9rcf6MKVUxJ5l4ERg40AV39MHD1xNVrGH9XNTOff4GwbjLYQQYtjrd3hHa92plLoB+BDjlM0XtNablFLXercvBH4DxAHPenvXe07NTALe8q4LAV7RWn8w0B+itmQHMUu/oSQRfvLgvwb68EIIMWL4dJ6+1vp94P291i3ssXw1cHUf++0Eph1kjf36/NaLGN8K1defR0R4zGC/nRBCDFu+DO8EtK//+Qzj1rSwbpqFs666z9/lCCFEQBvW0zB0uly0PvsMQVaY+bv93w1LCCGEYVj39N+98wLSKzTbTs5j3Pghmd1BCCGGtWEb+sWbviX94wJ2pCsuuPc1f5cjhBDDwrAN/TV3/z9C28H2859jNoX6uxwhhBgWhmXof/z83UzY7GLdzEiOPes6f5cjhBDDxrALfXtTIyEv/YvaSDjhIRnWEUKIAzHsQv/9284hqQ7Kf/IjklJy/F2OEEIMK8Mq9Dd+/g5jv6hga24w5/96sb/LEUKIYWf4hL7W7HrwdjSQefv9MpmaEEL8AMMm9N95+Fpyd7rZdFQyhx31Y3+XI4QQw9KwCP26yl3EvrGcijg46+E3/F2OEEIMW8Mi9D/99YXEtkDbFWcTERnr73KEEGLYCvjQ/2bpYvJWNbFxcihnzP+9v8sRQohhLaAnXHN3dtD45GMEm2H6fQv730EIIcT3Cuie/lt3X0RWmWb7CeMYN/lIf5cjhBDDXsCG/u6CNWR+sIniFMW59//D3+UIIcSIELChv+Kun2FzguX6azGHWvxdjhBCjAgBGfrNtRVM3uBg44xw5p37C3+XI4QQI4ZPoa+UOlkpVaCUKlRK3dbHdqWUesq7fb1Saoav+/b5fnX1NITDMQ+94vsnEUII0a9+Q18pFQw8A5wCTAIuUkpN2qvZKcA472M+8NwB7LsPUwdUnHU4SRnjDuCjCCGE6I8vPf3DgUKt9U6tdTvwGnDWXm3OAl7Shm+AaKVUio/77sMVCj++/S8H9EGEEEL0z5fQTwNKerwu9a7zpY0v+wKglJqvlFqllFrlCo8kOCSgLyEQQohhyZfQ72s6S+1jG1/2NVZqvUhrna+1zk9MyfChLCGEEAfKl+50KdAzhdOBch/bmH3YVwghxBDxpae/EhinlMpRSpmBC4Gle7VZClzuPYvnSKBJa13h475CCCGGSL89fa11p1LqBuBDIBh4QWu9SSl1rXf7QuB94FSgELADV33fvoPySYQQQvRLad3nELtf5efn61WrVvm7DCGEGDaUUqu11vn9tQvIK3KFEEIMDgl9IYQYRST0hRBiFJHQF0KIUSQgf8hVSrUABf6uI0DEA7X+LiIAyPfQTb6LbvJddJugtY7or1GgznVQ4Muv0KOBUmqVfBfyPfQk30U3+S66KaV8OuVRhneEEGIUkdAXQohRJFBDf5G/Cwgg8l0Y5HvoJt9FN/kuuvn0XQTkD7lCCCEGR6D29IUQQgwCCX0hhBhFAir0f8hN1EcipdQLSqlqpdRGf9fib0qpDKXUf5VSW5RSm5RSv/R3Tf6ilLIopVYopdZ5v4t7/V2TvymlgpVSa5RS7/q7Fn9SSu1SSm1QSq3t79TNgBnT995EfRtwAsZNWVYCF2mtN/u1MD9QSh0NtGLcd3iKv+vxJ++9llO01t8ppSKA1cCPR+mfCwWEaa1blVIm4Avgl977Uo9KSqmbgHwgUmt9ur/r8Rel1C4gX2vd74VqgdTT/0E3UR+JtNbLgXp/1xEItNYVWuvvvMstwBb2c5/lkU4bWr0vTd5HYPTa/EAplQ6cBiz2dy3DSSCFvs83URejk1IqGzgU+Na/lfiPdzhjLVANLNNaj9rvAngC+DXg8XchAUADHymlViul5n9fw0AKfZ9voi5GH6VUOPAG8CutdbO/6/EXrbVbaz0d437ThyulRuXwn1LqdKBaa73a37UEiNla6xnAKcD13iHiPgVS6PtyA3YxCnnHr98A/q61ftPf9QQCrXUj8Blwsp9L8ZfZwJnesezXgGOVUn/zb0n+o7Uu9z5XA29hDJf3KZBCX26iLvbh/fHyL8AWrfVj/q7Hn5RSCUqpaO+yFTge2OrfqvxDa3271jpda52NkRWfaq0v9XNZfqGUCvOe5IBSKgw4EdjvmX8BE/pa605gz03UtwD/GK03UVdKvQp8DUxQSpUqpX7m75r8aDZwGUZPbq33caq/i/KTFOC/Sqn1GJ2kZVrrUX2qogAgCfhCKbUOWAG8p7X+YH+NA+aUTSGEEIMvYHr6QgghBp+EvhBCjCIS+kIIMYpI6AshxCgioS+EEKOIhL4QQowiEvpCCDGK/H+VNZsFpaHyVgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -793,13 +825,13 @@ ], "source": [ "CyclicalExample = IndShockConsumerType(**CyclicalDict)\n", - "CyclicalExample.cycles = 0 # Make this consumer type have an infinite horizon\n", + "CyclicalExample.cycles = 0 # Make this consumer type have an infinite horizon\n", "CyclicalExample.solve()\n", "\n", - "CyclicalExample.unpack('cFunc')\n", - "print('Quarterly consumption functions:')\n", + "CyclicalExample.unpack(\"cFunc\")\n", + "print(\"Quarterly consumption functions:\")\n", "mMin = min([X.mNrmMin for X in CyclicalExample.solution])\n", - "plotFuncs(CyclicalExample.cFunc,mMin,5)" + "plotFuncs(CyclicalExample.cFunc, mMin, 5)" ] }, { @@ -812,9 +844,8 @@ ], "metadata": { "jupytext": { - "cell_metadata_filter": "collapsed,code_folding,heading_collapsed,hidden", - "formats": "ipynb,py:percent", - "notebook_metadata_filter": "all" + "cell_metadata_filter": "collapsed,code_folding", + "formats": "ipynb,py:percent" }, "kernelspec": { "display_name": "Python 3", @@ -831,9 +862,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 -} +} \ No newline at end of file diff --git a/examples/ConsIndShockModel/IndShockConsumerType.py b/examples/ConsIndShockModel/IndShockConsumerType.py index 4b26caaa9..90b183157 100644 --- a/examples/ConsIndShockModel/IndShockConsumerType.py +++ b/examples/ConsIndShockModel/IndShockConsumerType.py @@ -1,47 +1,38 @@ # --- # jupyter: # jupytext: -# cell_metadata_filter: collapsed,code_folding,heading_collapsed,hidden +# cell_metadata_filter: collapsed,code_folding # formats: ipynb,py:percent -# notebook_metadata_filter: all # text_representation: # extension: .py # format_name: percent -# format_version: '1.2' -# jupytext_version: 1.2.3 +# format_version: '1.3' +# jupytext_version: 1.5.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.7.6 # --- # %% [markdown] -# # IndShockConsumerType Documentation -# ## Consumption-Saving model with Idiosyncratic Income Shocks +# # IndShockConsumerType: Consumption-saving model with idiosyncratic income shocks -# %% {"code_folding": [0]} + +# %% code_folding=[0] # Initial imports and notebook setup, click arrow to show -from HARK.ConsumptionSaving.ConsIndShockModel import IndShockConsumerType -from HARK.utilities import plotFuncsDer, plotFuncs -from time import clock + import matplotlib.pyplot as plt import numpy as np -mystr = lambda number : "{:.4f}".format(number) + +from HARK.ConsumptionSaving.ConsIndShockModel import IndShockConsumerType +from HARK.utilities import plotFuncsDer, plotFuncs + +mystr = lambda number: "{:.4f}".format(number) # %% [markdown] # The module $\texttt{HARK.ConsumptionSaving.ConsIndShockModel}$ concerns consumption-saving models with idiosyncratic shocks to (non-capital) income. All of the models assume CRRA utility with geometric discounting, no bequest motive, and income shocks are fully transitory or fully permanent. # -# $\texttt{ConsIndShockModel}$ includes: +# $\texttt{ConsIndShockModel}$ currently includes three models: # 1. A very basic "perfect foresight" model with no uncertainty. # 2. A model with risk over transitory and permanent income shocks. # 3. The model described in (2), with an interest rate for debt that differs from the interest rate for savings. @@ -56,14 +47,14 @@ # %% [markdown] # ## Statement of idiosyncratic income shocks model # -# Suppose we want to solve a model like the one analyzed in [BufferStockTheory](http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory/), which has all the same features as the perfect foresight consumer, plus idiosyncratic shocks to income each period. Agents with this kind of model are represented by the class $\texttt{IndShockConsumerType}$. +# Suppose we want to solve a model like the one analyzed in [BufferStockTheory](http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory/), with all the same features as the perfect foresight consumer, plus idiosyncratic shocks to income each period. Agents with this kind of model are represented by the class $\texttt{IndShockConsumerType}$. # -# Specifically, this type of consumer receives two income shocks at the beginning of each period: a completely transitory shock $\newcommand{\tShkEmp}{\theta}{\tShkEmp_t}$ and a completely permanent shock $\newcommand{\pShk}{\psi}{\pShk_t}$. Moreover, the agent is subject to borrowing a borrowing limit: the ratio of end-of-period assets $A_t$ to permanent income $P_t$ must be greater than $\underline{a}$. As with the perfect foresight problem, this model is stated in terms of *normalized* variables, dividing all real variables by $P_t$: +# Specifically, this type of consumer receives two income shocks at the beginning of each period: a completely transitory shock $\newcommand{\tShkEmp}{\theta}{\tShkEmp_t}$ and a completely permanent shock $\newcommand{\pShk}{\psi}{\pShk_t}$. Moreover, lenders will not let the agent borrow money such that his ratio of end-of-period assets $A_t$ to permanent income $P_t$ is less than $\underline{a}$. As with the perfect foresight problem, this model can be framed in terms of *normalized* variables, dividing all real variables by $P_t$: # # \begin{eqnarray*} -# v_t(m_t) &=& \max_{c_t} {~} u(c_t) + \DiscFac (1-\DiePrb_{t+1}) \mathbb{E}_{t} \left[ (\PermGroFac_{t+1}\psi_{t+1})^{1-\CRRA} v_{t+1}(m_{t+1}) \right], \\ +# v_t(m_t) &=& \max_{c_t} {~} U(c_t) + \DiscFac (1-\DiePrb_{t+1}) \mathbb{E}_{t} \left[ (\PermGroFac_{t+1}\psi_{t+1})^{1-\CRRA} v_{t+1}(m_{t+1}) \right], \\ # a_t &=& m_t - c_t, \\ -# a_t &\geq& \text{$\underline{a}$}, \\ +# a_t &\geq& \underline{a}, \\ # m_{t+1} &=& \Rfree/(\PermGroFac_{t+1} \psi_{t+1}) a_t + \theta_{t+1}, \\ # (\psi_{t+1},\theta_{t+1}) &\sim& F_{t+1}, \\ # \mathbb{E}[\psi]=\mathbb{E}[\theta] &=& 1, \\ @@ -73,21 +64,21 @@ # %% [markdown] # ## Solution method for IndShockConsumerType # -# With the introduction of (non-trivial) risk, the idiosyncratic income shocks model has no closed form solution and must be solved numerically. The function $\texttt{solveConsIndShock}$ solves the one period problem for the $\texttt{IndShockConsumerType}$ class. To do so, HARK uses the original version of the endogenous grid method (EGM) first described [here](http://www.econ2.jhu.edu/people/ccarroll/EndogenousGridpoints.pdf) ; see also the [SolvingMicroDSOPs](http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs/) lecture notes. +# With the introduction of (non-trivial) risk, the idiosyncratic income shocks model has no closed form solution and must be solved numerically. The function $\texttt{solveConsIndShock}$ solves the one period problem for the $\texttt{IndShockConsumerType}$ class. To do so, HARK uses the original version of the endogenous grid method (EGM) first described [here](http://www.econ2.jhu.edu/people/ccarroll/EndogenousGridpoints.pdf); see also the [SolvingMicroDSOPs](http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs/) lecture notes. # -# Briefly, the transition equation for $m_{t+1}$ can be substituted into the problem definition; the second term of the reformulated maximand represents "end of period value of assets" $\mathfrak{v}_t(a_t)$ ("Gothic v"): +# Briefly, the transition equation for $m_{t+1}$ can be substituted into the problem definition; the second term of the reformulated maximand represents "end of period value of assets" $\mathfrak{v}_t(a_t)$: # # \begin{eqnarray*} -# v_t(m_t) &=& \max_{c_t} {~} u(c_t) + \underbrace{\DiscFac (1-\DiePrb_{t+1}) \mathbb{E}_{t} \left[ (\PermGroFac_{t+1}\psi_{t+1})^{1-\CRRA} v_{t+1}(\Rfree/(\PermGroFac_{t+1} \psi_{t+1}) a_t + \theta_{t+1}) \right]}_{\equiv \mathfrak{v}_t(a_t)}. +# v_t(m_t) &=& \max_{c_t} {~} U(c_t) + \underbrace{\DiscFac (1-\DiePrb_{t+1}) \mathbb{E}_{t} \left[ (\PermGroFac_{t+1}\psi_{t+1})^{1-\CRRA} v_{t+1}(\Rfree/(\PermGroFac_{t+1} \psi_{t+1}) a_t + \theta_{t+1}) \right]}_{\equiv \mathfrak{v}_t(a_t)}. # \end{eqnarray*} # # The first order condition with respect to $c_t$ is thus simply: # # \begin{eqnarray*} -# u^{\prime}(c_t) - \mathfrak{v}'_t(a_t) = 0 \Longrightarrow c_t^{-\CRRA} = \mathfrak{v}'_t(a_t) \Longrightarrow c_t = \mathfrak{v}'_t(a_t)^{-1/\CRRA}, +# U'(c_t) - \mathfrak{v}'_t(a_t) = 0 \Longrightarrow c_t^{-\CRRA} = \mathfrak{v}'_t(a_t) \Longrightarrow c_t = \mathfrak{v}'_t(a_t)^{-1/\CRRA}. # \end{eqnarray*} # -# and the marginal value of end-of-period assets can be computed as: +# Where the marginal value of end-of-period assets can be computed as: # # \begin{eqnarray*} # \mathfrak{v}'_t(a_t) = \DiscFac (1-\DiePrb_{t+1}) \mathbb{E}_{t} \left[ \Rfree (\PermGroFac_{t+1}\psi_{t+1})^{-\CRRA} v'_{t+1}(\Rfree/(\PermGroFac_{t+1} \psi_{t+1}) a_t + \theta_{t+1}) \right]. @@ -103,73 +94,69 @@ # | Parameter | Description | Code | Example value | Time-varying? | # | :---: | --- | --- | --- | --- | # | $\DiscFac$ |Intertemporal discount factor | $\texttt{DiscFac}$ | $0.96$ | | -# | $\CRRA$|Coefficient of relative risk aversion | $\texttt{CRRA}$ | $2.0$ | | +# | $\CRRA $ |Coefficient of relative risk aversion | $\texttt{CRRA}$ | $2.0$ | | # | $\Rfree$ | Risk free interest factor | $\texttt{Rfree}$ | $1.03$ | | # | $1 - \DiePrb_{t+1}$ |Survival probability | $\texttt{LivPrb}$ | $[0.98]$ | $\surd$ | # |$\PermGroFac_{t+1}$|Permanent income growth factor|$\texttt{PermGroFac}$| $[1.01]$ | $\surd$ | -# | $\sigma_\psi$| Standard deviation of log permanent income shocks | $\texttt{PermShkStd}$ | $[0.1]$ |$\surd$ | -# | $N_\psi$| Number of discrete permanent income shocks | $\texttt{PermShkCount}$ | $7$ | | -# | $\sigma_\theta$| Standard deviation of log transitory income shocks | $\texttt{TranShkStd}$ | $[0.2]$ | $\surd$ | -# | $N_\theta$| Number of discrete transitory income shocks | $\texttt{TranShkCount}$ | $7$ | | +# | $\sigma_\psi $ | Standard deviation of log permanent income shocks | $\texttt{PermShkStd}$ | $[0.1]$ |$\surd$ | +# | $N_\psi $ | Number of discrete permanent income shocks | $\texttt{PermShkCount}$ | $7$ | | +# | $\sigma_\theta $ | Standard deviation of log transitory income shocks | $\texttt{TranShkStd}$ | $[0.2]$ | $\surd$ | +# | $N_\theta $ | Number of discrete transitory income shocks | $\texttt{TranShkCount}$ | $7$ | | # | $\mho$ | Probability of being unemployed and getting $\theta=\underline{\theta}$ | $\texttt{UnempPrb}$ | $0.05$ | | -# | $\underline{\theta}$| Transitory shock when unemployed | $\texttt{IncUnemp}$ | $0.3$ | | +# | $\underline{\theta} $ | Transitory shock when unemployed | $\texttt{IncUnemp}$ | $0.3$ | | # | $\mho^{Ret}$ | Probability of being "unemployed" when retired | $\texttt{UnempPrb}$ | $0.0005$ | | -# | $\underline{\theta}^{Ret}$| Transitory shock when "unemployed" and retired | $\texttt{IncUnemp}$ | $0.0$ | | +# | $\underline{\theta}^{Ret} $ | Transitory shock when "unemployed" and retired | $\texttt{IncUnemp}$ | $0.0$ | | # | $(none)$ | Period of the lifecycle model when retirement begins | $\texttt{T_retire}$ | $0$ | | # | $(none)$ | Minimum value in assets-above-minimum grid | $\texttt{aXtraMin}$ | $0.001$ | | # | $(none)$ | Maximum value in assets-above-minimum grid | $\texttt{aXtraMax}$ | $20.0$ | | # | $(none)$ | Number of points in base assets-above-minimum grid | $\texttt{aXtraCount}$ | $48$ | | # | $(none)$ | Exponential nesting factor for base assets-above-minimum grid | $\texttt{aXtraNestFac}$ | $3$ | | # | $(none)$ | Additional values to add to assets-above-minimum grid | $\texttt{aXtraExtra}$ | $None$ | | -# | $\underline{a}$| Artificial borrowing constraint (normalized) | $\texttt{BoroCnstArt}$ | $0.0$ | | -# | $(none)$|Indicator for whether $\texttt{vFunc}$ should be computed | $\texttt{vFuncBool}$ | $True$ | | +# | $\underline{a} $ | Artificial borrowing constraint (normalized) | $\texttt{BoroCnstArt}$ | $0.0$ | | +# | $(none) $ |Indicator for whether $\texttt{vFunc}$ should be computed | $\texttt{vFuncBool}$ | $True$ | | # | $(none)$ |Indicator for whether $\texttt{cFunc}$ should use cubic splines | $\texttt{CubicBool}$ | $False$ | | # |$T$| Number of periods in this type's "cycle" |$\texttt{T_cycle}$| $1$ | | # |(none)| Number of times the "cycle" occurs |$\texttt{cycles}$| $0$ | | -# %% {"code_folding": [0]} -IdiosyncDict={ +# %% code_folding=[0] +IdiosyncDict = { # Click the arrow to expand this parameter dictionary # Parameters shared with the perfect foresight model - "CRRA": 2.0, # Coefficient of relative risk aversion - "Rfree": 1.03, # Interest factor on assets - "DiscFac": 0.96, # Intertemporal discount factor - "LivPrb" : [0.98], # Survival probability - "PermGroFac" :[1.01], # Permanent income growth factor - + "CRRA": 2.0, # Coefficient of relative risk aversion + "Rfree": 1.03, # Interest factor on assets + "DiscFac": 0.96, # Intertemporal discount factor + "LivPrb": [0.98], # Survival probability + "PermGroFac": [1.01], # Permanent income growth factor + "BoroCnstArt": 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets # Parameters that specify the income distribution over the lifecycle - "PermShkStd" : [0.1], # Standard deviation of log permanent shocks to income - "PermShkCount" : 7, # Number of points in discrete approximation to permanent income shocks - "TranShkStd" : [0.2], # Standard deviation of log transitory shocks to income - "TranShkCount" : 7, # Number of points in discrete approximation to transitory income shocks - "UnempPrb" : 0.05, # Probability of unemployment while working - "IncUnemp" : 0.3, # Unemployment benefits replacement rate - "UnempPrbRet" : 0.0005, # Probability of "unemployment" while retired - "IncUnempRet" : 0.0, # "Unemployment" benefits when retired - "T_retire" : 0, # Period of retirement (0 --> no retirement) - "tax_rate" : 0.0, # Flat income tax rate (legacy parameter, will be removed in future) - + "PermShkStd": [0.1], # Standard deviation of log permanent shocks to income + "PermShkCount": 7, # Number of points in discrete approximation to permanent income shocks + "TranShkStd": [0.2], # Standard deviation of log transitory shocks to income + "TranShkCount": 7, # Number of points in discrete approximation to transitory income shocks + "UnempPrb": 0.05, # Probability of unemployment while working + "IncUnemp": 0.3, # Unemployment benefits replacement rate + "UnempPrbRet": 0.0005, # Probability of "unemployment" while retired + "IncUnempRet": 0.0, # "Unemployment" benefits when retired + "T_retire": 0, # Period of retirement (0 --> no retirement) + "tax_rate": 0.0, # Flat income tax rate (legacy parameter, will be removed in future) # Parameters for constructing the "assets above minimum" grid - "aXtraMin" : 0.001, # Minimum end-of-period "assets above minimum" value - "aXtraMax" : 20, # Maximum end-of-period "assets above minimum" value - "aXtraCount" : 48, # Number of points in the base grid of "assets above minimum" - "aXtraNestFac" : 3, # Exponential nesting factor when constructing "assets above minimum" grid - "aXtraExtra" : [None], # Additional values to add to aXtraGrid - + "aXtraMin": 0.001, # Minimum end-of-period "assets above minimum" value + "aXtraMax": 20, # Maximum end-of-period "assets above minimum" value + "aXtraCount": 48, # Number of points in the base grid of "assets above minimum" + "aXtraNestFac": 3, # Exponential nesting factor when constructing "assets above minimum" grid + "aXtraExtra": [None], # Additional values to add to aXtraGrid # A few other paramaters - "BoroCnstArt" : 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets - "vFuncBool" : True, # Whether to calculate the value function during solution - "CubicBool" : False, # Preference shocks currently only compatible with linear cFunc - "T_cycle" : 1, # Number of periods in the cycle for this agent type - + "vFuncBool": True, # Whether to calculate the value function during solution + "CubicBool": False, # Preference shocks currently only compatible with linear cFunc + "T_cycle": 1, # Number of periods in the cycle for this agent type # Parameters only used in simulation - "AgentCount" : 10000, # Number of agents of this type - "T_sim" : 120, # Number of periods to simulate - "aNrmInitMean" : -6.0, # Mean of log initial assets - "aNrmInitStd" : 1.0, # Standard deviation of log initial assets - "pLvlInitMean" : 0.0, # Mean of log initial permanent income - "pLvlInitStd" : 0.0, # Standard deviation of log initial permanent income - "PermGroFacAgg" : 1.0, # Aggregate permanent income growth factor - "T_age" : None, # Age after which simulated agents are automatically killed + "AgentCount": 10000, # Number of agents of this type + "T_sim": 120, # Number of periods to simulate + "aNrmInitMean": -6.0, # Mean of log initial assets + "aNrmInitStd": 1.0, # Standard deviation of log initial assets + "pLvlInitMean": 0.0, # Mean of log initial permanent income + "pLvlInitStd": 0.0, # Standard deviation of log initial permanent income + "PermGroFacAgg": 1.0, # Aggregate permanent income growth factor + "T_age": None, # Age after which simulated agents are automatically killed } # %% [markdown] @@ -183,56 +170,67 @@ # # It is not necessary to compute the value function in this model, and it is not computationally free to do so. You can choose whether the value function should be calculated and returned as part of the solution of the model with $\texttt{vFuncBool}$. The consumption function will be constructed as a piecewise linear interpolation when $\texttt{CubicBool}$ is \texttt{False}, and will be a piecewise cubic spline interpolator if $\texttt{True}$. -# %% [markdown] {"heading_collapsed": true} +# %% [markdown] # ## Solving and examining the solution of the idiosyncratic income shocks model # # The cell below creates an infinite horizon instance of $\texttt{IndShockConsumerType}$ and solves its model by calling its $\texttt{solve}$ method. -# %% {"hidden": true} +# %% IndShockExample = IndShockConsumerType(**IdiosyncDict) -IndShockExample.cycles = 0 # Make this type have an infinite horizon +IndShockExample.cycles = 0 # Make this type have an infinite horizon IndShockExample.solve() - -# %% [markdown] {"hidden": true} +# %% [markdown] # After solving the model, we can examine an element of this type's $\texttt{solution}$: -# %% {"hidden": true} +# %% print(vars(IndShockExample.solution[0])) -# %% [markdown] {"hidden": true} +# %% [markdown] # The single-period solution to an idiosyncratic shocks consumer's problem has all of the same attributes as in the perfect foresight model, with a couple additions. The solution can include the marginal marginal value of market resources function $\texttt{vPPfunc}$, but this is only constructed if $\texttt{CubicBool}$ is $\texttt{True}$, so that the MPC can be accurately computed; when it is $\texttt{False}$, then $\texttt{vPPfunc}$ merely returns $\texttt{NaN}$ everywhere. # # The $\texttt{solveConsIndShock}$ function calculates steady state market resources and stores it in the attribute $\texttt{mNrmSS}$. This represents the steady state level of $m_t$ if *this period* were to occur indefinitely, but with income shocks turned off. This is relevant in a "one period infinite horizon" model like we've specified here, but is less useful in a lifecycle model. # # Let's take a look at the consumption function by plotting it, along with its derivative (the MPC): -# %% {"hidden": true} -print('Consumption function for an idiosyncratic shocks consumer type:') -plotFuncs(IndShockExample.solution[0].cFunc,IndShockExample.solution[0].mNrmMin,5) -print('Marginal propensity to consume for an idiosyncratic shocks consumer type:') -plotFuncsDer(IndShockExample.solution[0].cFunc,IndShockExample.solution[0].mNrmMin,5) +# %% +print("Consumption function for an idiosyncratic shocks consumer type:") +plotFuncs(IndShockExample.solution[0].cFunc, IndShockExample.solution[0].mNrmMin, 5) +print("Marginal propensity to consume for an idiosyncratic shocks consumer type:") +plotFuncsDer(IndShockExample.solution[0].cFunc, IndShockExample.solution[0].mNrmMin, 5) -# %% [markdown] {"hidden": true} +# %% [markdown] # The lower part of the consumption function is linear with a slope of 1, representing the *constrained* part of the consumption function where the consumer *would like* to consume more by borrowing-- his marginal utility of consumption exceeds the marginal value of assets-- but he is prevented from doing so by the artificial borrowing constraint. # # The MPC is a step function, as the $\texttt{cFunc}$ itself is a piecewise linear function; note the large jump in the MPC where the borrowing constraint begins to bind. # # If you want to look at the interpolation nodes for the consumption function, these can be found by "digging into" attributes of $\texttt{cFunc}$: -# %% {"hidden": true} -print('mNrmGrid for unconstrained cFunc is ',IndShockExample.solution[0].cFunc.functions[0].x_list) -print('cNrmGrid for unconstrained cFunc is ',IndShockExample.solution[0].cFunc.functions[0].y_list) -print('mNrmGrid for borrowing constrained cFunc is ',IndShockExample.solution[0].cFunc.functions[1].x_list) -print('cNrmGrid for borrowing constrained cFunc is ',IndShockExample.solution[0].cFunc.functions[1].y_list) +# %% +print( + "mNrmGrid for unconstrained cFunc is ", + IndShockExample.solution[0].cFunc.functions[0].x_list, +) +print( + "cNrmGrid for unconstrained cFunc is ", + IndShockExample.solution[0].cFunc.functions[0].y_list, +) +print( + "mNrmGrid for borrowing constrained cFunc is ", + IndShockExample.solution[0].cFunc.functions[1].x_list, +) +print( + "cNrmGrid for borrowing constrained cFunc is ", + IndShockExample.solution[0].cFunc.functions[1].y_list, +) -# %% [markdown] {"hidden": true} -# The consumption function in this model is an instance of $\texttt{LowerEnvelope1D}$, a class that takes an arbitrary number of 1D interpolants as arguments to its initialization method. When called, a $\texttt{LowerEnvelope1D}$ evaluates each of its component functions and returns the lowest value. Here, the two component functions are the *unconstrained* consumption function-- how the agent would consume if the artificial borrowing constraint did not exist for *just this period*-- and the *borrowing constrained* consumption function-- how much he would consume if the artificial borrowing constraint is binding. +# %% [markdown] +# The consumption function in this model is an instance of $\texttt{LowerEnvelope1D}$, a class that takes an arbitrary number of 1D interpolants as arguments to its initialization method. When called, a $\texttt{LowerEnvelope1D}$ evaluates each of its component functions and returns the lowest value. Here, the two component functions are the *unconstrained* consumption function-- how the agent would consume if the artificial borrowing constraint did not exist for *just this period*-- and the *borrowing constrained* consumption function-- how much he would consume if the artificial borrowing constraint is binding. # # The *actual* consumption function is the lower of these two functions, pointwise. We can see this by plotting the component functions on the same figure: -# %% {"hidden": true} -plotFuncs(IndShockExample.solution[0].cFunc.functions,-0.25,5.) +# %% +plotFuncs(IndShockExample.solution[0].cFunc.functions, -0.25, 5.0) # %% [markdown] # ## Simulating the idiosyncratic income shocks model @@ -255,7 +253,7 @@ # These example parameter values were already passed as part of the parameter dictionary that we used to create $\texttt{IndShockExample}$, so it is ready to simulate. We need to set the $\texttt{track_vars}$ attribute to indicate the variables for which we want to record a *history*. # %% -IndShockExample.track_vars = ['aNrmNow','mNrmNow','cNrmNow','pLvlNow'] +IndShockExample.track_vars = ["aNrmNow", "mNrmNow", "cNrmNow", "pLvlNow"] IndShockExample.initializeSim() IndShockExample.simulate() @@ -263,29 +261,29 @@ # We can now look at the simulated data in aggregate or at the individual consumer level. Like in the perfect foresight model, we can plot average (normalized) market resources over time, as well as average consumption: # %% -plt.plot(np.mean(IndShockExample.history['mNrmNow'],axis=1)) -plt.xlabel('Time') -plt.ylabel('Mean market resources') +plt.plot(np.mean(IndShockExample.history["mNrmNow"], axis=1)) +plt.xlabel("Time") +plt.ylabel("Mean market resources") plt.show() -plt.plot(np.mean(IndShockExample.history['cNrmNow'],axis=1)) -plt.xlabel('Time') -plt.ylabel('Mean consumption') +plt.plot(np.mean(IndShockExample.history["cNrmNow"], axis=1)) +plt.xlabel("Time") +plt.ylabel("Mean consumption") plt.show() # %% [markdown] # We could also plot individual consumption paths for some of the consumers-- say, the first five: # %% -plt.plot(IndShockExample.history['cNrmNow'][:,0:5]) -plt.xlabel('Time') -plt.ylabel('Individual consumption paths') +plt.plot(IndShockExample.history["cNrmNow"][:, 0:5]) +plt.xlabel("Time") +plt.ylabel("Individual consumption paths") plt.show() # %% [markdown] # ## Other example specifications of idiosyncratic income shocks consumers # -# $\texttt{IndShockConsumerType}$-- and $\texttt{HARK}$ in general-- can also represent models that are not infinite horizon. +# $\texttt{IndShockConsumerType}$-- and $\texttt{HARK}$ in general-- can also represent models that are not infinite horizon. # # ### Lifecycle example # @@ -293,49 +291,45 @@ # # In the cell below, we define a parameter dictionary for a rather short ten period lifecycle, with arbitrarily chosen parameters. For a more realistically calibrated (and much longer) lifecycle model, see the [SolvingMicroDSOPs REMARK](https://github.com/econ-ark/REMARK/blob/master/REMARKs/SolvingMicroDSOPs.md). -# %% {"code_folding": [0]} -LifecycleDict={ # Click arrow to expand this fairly large parameter dictionary +# %% code_folding=[0] +LifecycleDict = { # Click arrow to expand this fairly large parameter dictionary # Parameters shared with the perfect foresight model - "CRRA": 2.0, # Coefficient of relative risk aversion - "Rfree": 1.03, # Interest factor on assets - "DiscFac": 0.96, # Intertemporal discount factor - "LivPrb" : [0.99,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1], - "PermGroFac" : [1.01,1.01,1.01,1.02,1.02,1.02,0.7,1.0,1.0,1.0], - + "CRRA": 2.0, # Coefficient of relative risk aversion + "Rfree": 1.03, # Interest factor on assets + "DiscFac": 0.96, # Intertemporal discount factor + "LivPrb": [0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1], + "PermGroFac": [1.01, 1.01, 1.01, 1.02, 1.02, 1.02, 0.7, 1.0, 1.0, 1.0], # Parameters that specify the income distribution over the lifecycle - "PermShkStd" : [0.1,0.2,0.1,0.2,0.1,0.2,0.1,0,0,0], - "PermShkCount" : 7, # Number of points in discrete approximation to permanent income shocks - "TranShkStd" : [0.3,0.2,0.1,0.3,0.2,0.1,0.3,0,0,0], - "TranShkCount" : 7, # Number of points in discrete approximation to transitory income shocks - "UnempPrb" : 0.05, # Probability of unemployment while working - "IncUnemp" : 0.3, # Unemployment benefits replacement rate - "UnempPrbRet" : 0.0005, # Probability of "unemployment" while retired - "IncUnempRet" : 0.0, # "Unemployment" benefits when retired - "T_retire" : 7, # Period of retirement (0 --> no retirement) - "tax_rate" : 0.0, # Flat income tax rate (legacy parameter, will be removed in future) - + "PermShkStd": [0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0, 0, 0], + "PermShkCount": 7, # Number of points in discrete approximation to permanent income shocks + "TranShkStd": [0.3, 0.2, 0.1, 0.3, 0.2, 0.1, 0.3, 0, 0, 0], + "TranShkCount": 7, # Number of points in discrete approximation to transitory income shocks + "UnempPrb": 0.05, # Probability of unemployment while working + "IncUnemp": 0.3, # Unemployment benefits replacement rate + "UnempPrbRet": 0.0005, # Probability of "unemployment" while retired + "IncUnempRet": 0.0, # "Unemployment" benefits when retired + "T_retire": 7, # Period of retirement (0 --> no retirement) + "tax_rate": 0.0, # Flat income tax rate (legacy parameter, will be removed in future) # Parameters for constructing the "assets above minimum" grid - "aXtraMin" : 0.001, # Minimum end-of-period "assets above minimum" value - "aXtraMax" : 20, # Maximum end-of-period "assets above minimum" value - "aXtraCount" : 48, # Number of points in the base grid of "assets above minimum" - "aXtraNestFac" : 3, # Exponential nesting factor when constructing "assets above minimum" grid - "aXtraExtra" : [None], # Additional values to add to aXtraGrid - + "aXtraMin": 0.001, # Minimum end-of-period "assets above minimum" value + "aXtraMax": 20, # Maximum end-of-period "assets above minimum" value + "aXtraCount": 48, # Number of points in the base grid of "assets above minimum" + "aXtraNestFac": 3, # Exponential nesting factor when constructing "assets above minimum" grid + "aXtraExtra": [None], # Additional values to add to aXtraGrid # A few other paramaters - "BoroCnstArt" : 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets - "vFuncBool" : True, # Whether to calculate the value function during solution - "CubicBool" : False, # Preference shocks currently only compatible with linear cFunc - "T_cycle" : 10, # Number of periods in the cycle for this agent type - + "BoroCnstArt": 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets + "vFuncBool": True, # Whether to calculate the value function during solution + "CubicBool": False, # Preference shocks currently only compatible with linear cFunc + "T_cycle": 10, # Number of periods in the cycle for this agent type # Parameters only used in simulation - "AgentCount" : 10000, # Number of agents of this type - "T_sim" : 120, # Number of periods to simulate - "aNrmInitMean" : -6.0, # Mean of log initial assets - "aNrmInitStd" : 1.0, # Standard deviation of log initial assets - "pLvlInitMean" : 0.0, # Mean of log initial permanent income - "pLvlInitStd" : 0.0, # Standard deviation of log initial permanent income - "PermGroFacAgg" : 1.0, # Aggregate permanent income growth factor - "T_age" : 11, # Age after which simulated agents are automatically killed + "AgentCount": 10000, # Number of agents of this type + "T_sim": 120, # Number of periods to simulate + "aNrmInitMean": -6.0, # Mean of log initial assets + "aNrmInitStd": 1.0, # Standard deviation of log initial assets + "pLvlInitMean": 0.0, # Mean of log initial permanent income + "pLvlInitStd": 0.0, # Standard deviation of log initial permanent income + "PermGroFacAgg": 1.0, # Aggregate permanent income growth factor + "T_age": 11, # Age after which simulated agents are automatically killed } # %% [markdown] @@ -343,10 +337,11 @@ # %% LifecycleExample = IndShockConsumerType(**LifecycleDict) -LifecycleExample.cycles = 1 # Make this consumer live a sequence of periods -- a lifetime -- exactly once +# Make this consumer live a sequence of periods -- a lifetime -- exactly once +LifecycleExample.cycles = 1 LifecycleExample.solve() -print('First element of solution is',LifecycleExample.solution[0]) -print('Solution has', len(LifecycleExample.solution),'elements.') +print("First element of solution is", LifecycleExample.solution[0]) +print("Solution has", len(LifecycleExample.solution), "elements.") # %% [markdown] # This was supposed to be a *ten* period lifecycle model-- why does our consumer type have *eleven* elements in its $\texttt{solution}$? It would be more precise to say that this specification has ten *non-terminal* periods. The solution to the 11th and final period in the model would be the same for every set of parameters: consume $c_t = m_t$, because there is no future. In a lifecycle model, the terminal period is assumed to exist; the $\texttt{LivPrb}$ parameter does not need to end with a $0.0$ in order to guarantee that survivors die. @@ -354,10 +349,13 @@ # We can quickly plot the consumption functions in each period of the model: # %% -print('Consumption functions across the lifecycle:') -mMin = np.min([LifecycleExample.solution[t].mNrmMin for t in range(LifecycleExample.T_cycle)]) -LifecycleExample.unpack('cFunc') # This makes all of the cFuncs accessible in the attribute cFunc -plotFuncs(LifecycleExample.cFunc,mMin,5) +print("Consumption functions across the lifecycle:") +mMin = np.min( + [LifecycleExample.solution[t].mNrmMin for t in range(LifecycleExample.T_cycle)] +) +# This makes all of the cFuncs accessible in the attribute cFunc +LifecycleExample.unpack("cFunc") +plotFuncs(LifecycleExample.cFunc, mMin, 5) # %% [markdown] # ### "Cyclical" example @@ -366,49 +364,45 @@ # # We can represent this type of individual as a four period, infinite horizon model in which expected "permanent" income growth varies greatly across seasons. -# %% {"code_folding": [0]} -CyclicalDict = { # Click the arrow to expand this parameter dictionary +# %% code_folding=[0] +CyclicalDict = { # Click the arrow to expand this parameter dictionary # Parameters shared with the perfect foresight model - "CRRA": 2.0, # Coefficient of relative risk aversion - "Rfree": 1.03, # Interest factor on assets - "DiscFac": 0.96, # Intertemporal discount factor - "LivPrb" : 4*[0.98], # Survival probability - "PermGroFac" : [1.082251, 2.8, 0.3, 1.1], - + "CRRA": 2.0, # Coefficient of relative risk aversion + "Rfree": 1.03, # Interest factor on assets + "DiscFac": 0.96, # Intertemporal discount factor + "LivPrb": 4 * [0.98], # Survival probability + "PermGroFac": [1.082251, 2.8, 0.3, 1.1], # Parameters that specify the income distribution over the lifecycle - "PermShkStd" : [0.1,0.1,0.1,0.1], - "PermShkCount" : 7, # Number of points in discrete approximation to permanent income shocks - "TranShkStd" : [0.2,0.2,0.2,0.2], - "TranShkCount" : 7, # Number of points in discrete approximation to transitory income shocks - "UnempPrb" : 0.05, # Probability of unemployment while working - "IncUnemp" : 0.3, # Unemployment benefits replacement rate - "UnempPrbRet" : 0.0005, # Probability of "unemployment" while retired - "IncUnempRet" : 0.0, # "Unemployment" benefits when retired - "T_retire" : 0, # Period of retirement (0 --> no retirement) - "tax_rate" : 0.0, # Flat income tax rate (legacy parameter, will be removed in future) - + "PermShkStd": [0.1, 0.1, 0.1, 0.1], + "PermShkCount": 7, # Number of points in discrete approximation to permanent income shocks + "TranShkStd": [0.2, 0.2, 0.2, 0.2], + "TranShkCount": 7, # Number of points in discrete approximation to transitory income shocks + "UnempPrb": 0.05, # Probability of unemployment while working + "IncUnemp": 0.3, # Unemployment benefits replacement rate + "UnempPrbRet": 0.0005, # Probability of "unemployment" while retired + "IncUnempRet": 0.0, # "Unemployment" benefits when retired + "T_retire": 0, # Period of retirement (0 --> no retirement) + "tax_rate": 0.0, # Flat income tax rate (legacy parameter, will be removed in future) # Parameters for constructing the "assets above minimum" grid - "aXtraMin" : 0.001, # Minimum end-of-period "assets above minimum" value - "aXtraMax" : 20, # Maximum end-of-period "assets above minimum" value - "aXtraCount" : 48, # Number of points in the base grid of "assets above minimum" - "aXtraNestFac" : 3, # Exponential nesting factor when constructing "assets above minimum" grid - "aXtraExtra" : [None], # Additional values to add to aXtraGrid - + "aXtraMin": 0.001, # Minimum end-of-period "assets above minimum" value + "aXtraMax": 20, # Maximum end-of-period "assets above minimum" value + "aXtraCount": 48, # Number of points in the base grid of "assets above minimum" + "aXtraNestFac": 3, # Exponential nesting factor when constructing "assets above minimum" grid + "aXtraExtra": [None], # Additional values to add to aXtraGrid # A few other paramaters - "BoroCnstArt" : 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets - "vFuncBool" : True, # Whether to calculate the value function during solution - "CubicBool" : False, # Preference shocks currently only compatible with linear cFunc - "T_cycle" : 4, # Number of periods in the cycle for this agent type - + "BoroCnstArt": 0.0, # Artificial borrowing constraint; imposed minimum level of end-of period assets + "vFuncBool": True, # Whether to calculate the value function during solution + "CubicBool": False, # Preference shocks currently only compatible with linear cFunc + "T_cycle": 4, # Number of periods in the cycle for this agent type # Parameters only used in simulation - "AgentCount" : 10000, # Number of agents of this type - "T_sim" : 120, # Number of periods to simulate - "aNrmInitMean" : -6.0, # Mean of log initial assets - "aNrmInitStd" : 1.0, # Standard deviation of log initial assets - "pLvlInitMean" : 0.0, # Mean of log initial permanent income - "pLvlInitStd" : 0.0, # Standard deviation of log initial permanent income - "PermGroFacAgg" : 1.0, # Aggregate permanent income growth factor - "T_age" : None, # Age after which simulated agents are automatically killed + "AgentCount": 10000, # Number of agents of this type + "T_sim": 120, # Number of periods to simulate + "aNrmInitMean": -6.0, # Mean of log initial assets + "aNrmInitStd": 1.0, # Standard deviation of log initial assets + "pLvlInitMean": 0.0, # Mean of log initial permanent income + "pLvlInitStd": 0.0, # Standard deviation of log initial permanent income + "PermGroFacAgg": 1.0, # Aggregate permanent income growth factor + "T_age": None, # Age after which simulated agents are automatically killed } # %% [markdown] @@ -418,13 +412,13 @@ # %% CyclicalExample = IndShockConsumerType(**CyclicalDict) -CyclicalExample.cycles = 0 # Make this consumer type have an infinite horizon +CyclicalExample.cycles = 0 # Make this consumer type have an infinite horizon CyclicalExample.solve() -CyclicalExample.unpack('cFunc') -print('Quarterly consumption functions:') +CyclicalExample.unpack("cFunc") +print("Quarterly consumption functions:") mMin = min([X.mNrmMin for X in CyclicalExample.solution]) -plotFuncs(CyclicalExample.cFunc,mMin,5) +plotFuncs(CyclicalExample.cFunc, mMin, 5) # %% [markdown] # The very low green consumption function corresponds to the quarter in which the ski instructors make most of their income. They know that they are about to experience a 70% drop in "permanent" income, so they do not consume much *relative to their income this quarter*. In the other three quarters, *normalized* consumption is much higher, as current "permanent" income is low relative to future expectations. In *level*, the consumption chosen in each quarter is much more similar diff --git a/examples/ConsIndShockModel/KinkedRconsumerType.ipynb b/examples/ConsIndShockModel/KinkedRconsumerType.ipynb index 0616798d7..b8d0bd739 100644 --- a/examples/ConsIndShockModel/KinkedRconsumerType.ipynb +++ b/examples/ConsIndShockModel/KinkedRconsumerType.ipynb @@ -2,7 +2,9 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "lines_to_next_cell": 2 + }, "source": [ "# KinkedRconsumerType: Consumption-saving model with idiosyncratic income shocks and different interest rates on borrowing and saving" ] @@ -18,12 +20,14 @@ "outputs": [], "source": [ "# Initial imports and notebook setup, click arrow to show\n", - "from HARK.ConsumptionSaving.ConsIndShockModel import KinkedRconsumerType\n", - "from HARK.utilities import plotFuncsDer, plotFuncs\n", - "from time import clock\n", + "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", - "mystr = lambda number : \"{:.4f}\".format(number)" + "\n", + "from HARK.ConsumptionSaving.ConsIndShockModel import KinkedRconsumerType\n", + "from HARK.utilities import plotFuncsDer, plotFuncs\n", + "\n", + "mystr = lambda number: \"{:.4f}\".format(number)" ] }, { @@ -96,27 +100,27 @@ "| Parameter | Description | Code | Example value | Time-varying? |\n", "| :---: | --- | --- | --- | --- |\n", "| $\\DiscFac$ |Intertemporal discount factor | $\\texttt{DiscFac}$ | $0.96$ | |\n", - "| $\\CRRA$ |Coefficient of relative risk aversion | $\\texttt{CRRA}$ | $2.0$ | |\n", + "| $\\CRRA $ |Coefficient of relative risk aversion | $\\texttt{CRRA}$ | $2.0$ | |\n", "| $\\Rfree_{boro}$ | Risk free interest factor for borrowing | $\\texttt{Rboro}$ | $1.20$ | |\n", "| $\\Rfree_{save}$ | Risk free interest factor for saving | $\\texttt{Rsave}$ | $1.01$ | |\n", "| $1 - \\DiePrb_{t+1}$ |Survival probability | $\\texttt{LivPrb}$ | $[0.98]$ | $\\surd$ |\n", "|$\\PermGroFac_{t+1}$|Permanent income growth factor|$\\texttt{PermGroFac}$| $[1.01]$ | $\\surd$ |\n", - "| $\\sigma_\\psi$ | Standard deviation of log permanent income shocks | $\\texttt{PermShkStd}$ | $[0.1]$ |$\\surd$ |\n", - "| $N_\\psi$ | Number of discrete permanent income shocks | $\\texttt{PermShkCount}$ | $7$ | |\n", - "| $\\sigma_\\theta$ | Standard deviation of log transitory income shocks | $\\texttt{TranShkStd}$ | $[0.2]$ | $\\surd$ |\n", - "| $N_\\theta$ | Number of discrete transitory income shocks | $\\texttt{TranShkCount}$ | $7$ | |\n", + "| $\\sigma_\\psi $ | Standard deviation of log permanent income shocks | $\\texttt{PermShkStd}$ | $[0.1]$ |$\\surd$ |\n", + "| $N_\\psi $ | Number of discrete permanent income shocks | $\\texttt{PermShkCount}$ | $7$ | |\n", + "| $\\sigma_\\theta $ | Standard deviation of log transitory income shocks | $\\texttt{TranShkStd}$ | $[0.2]$ | $\\surd$ |\n", + "| $N_\\theta $ | Number of discrete transitory income shocks | $\\texttt{TranShkCount}$ | $7$ | |\n", "| $\\mho$ | Probability of being unemployed and getting $\\theta=\\underline{\\theta}$ | $\\texttt{UnempPrb}$ | $0.05$ | |\n", - "| $\\underline{\\theta}$ | Transitory shock when unemployed | $\\texttt{IncUnemp}$ | $0.3$ | |\n", + "| $\\underline{\\theta} $ | Transitory shock when unemployed | $\\texttt{IncUnemp}$ | $0.3$ | |\n", "| $\\mho^{Ret}$ | Probability of being \"unemployed\" when retired | $\\texttt{UnempPrb}$ | $0.0005$ | |\n", - "| $\\underline{\\theta}^{Ret}$ | Transitory shock when \"unemployed\" and retired | $\\texttt{IncUnemp}$ | $0.0$ | |\n", + "| $\\underline{\\theta}^{Ret} $ | Transitory shock when \"unemployed\" and retired | $\\texttt{IncUnemp}$ | $0.0$ | |\n", "| $(none)$ | Period of the lifecycle model when retirement begins | $\\texttt{T_retire}$ | $0$ | |\n", "| $(none)$ | Minimum value in assets-above-minimum grid | $\\texttt{aXtraMin}$ | $0.001$ | |\n", "| $(none)$ | Maximum value in assets-above-minimum grid | $\\texttt{aXtraMax}$ | $20.0$ | |\n", "| $(none)$ | Number of points in base assets-above-minimum grid | $\\texttt{aXtraCount}$ | $48$ | |\n", "| $(none)$ | Exponential nesting factor for base assets-above-minimum grid | $\\texttt{aXtraNestFac}$ | $3$ | |\n", "| $(none)$ | Additional values to add to assets-above-minimum grid | $\\texttt{aXtraExtra}$ | $None$ | |\n", - "| $\\underline{a}$ | Artificial borrowing constraint (normalized) | $\\texttt{BoroCnstArt}$ | $None$ | |\n", - "| $(none)$ |Indicator for whether $\\texttt{vFunc}$ should be computed | $\\texttt{vFuncBool}$ | $True$ | |\n", + "| $\\underline{a} $ | Artificial borrowing constraint (normalized) | $\\texttt{BoroCnstArt}$ | $None$ | |\n", + "| $(none) $ |Indicator for whether $\\texttt{vFunc}$ should be computed | $\\texttt{vFuncBool}$ | $True$ | |\n", "| $(none)$ |Indicator for whether $\\texttt{cFunc}$ should use cubic splines | $\\texttt{CubicBool}$ | $False$ | |\n", "|$T$| Number of periods in this type's \"cycle\" |$\\texttt{T_cycle}$| $1$ | |\n", "|(none)| Number of times the \"cycle\" occurs |$\\texttt{cycles}$| $0$ | |\n", @@ -134,51 +138,46 @@ }, "outputs": [], "source": [ - "KinkedRdict={ # Click the arrow to expand this parameter dictionary\n", + "KinkedRdict = { # Click the arrow to expand this parameter dictionary\n", " # Parameters shared with the perfect foresight model\n", - " \"CRRA\" : 2.0, # Coefficient of relative risk aversion\n", - " \"DiscFac\": 0.96, # Intertemporal discount factor\n", - " \"LivPrb\" : [0.98], # Survival probability\n", - " \"PermGroFac\" :[1.01], # Permanent income growth factor\n", - " \n", + " \"CRRA\": 2.0, # Coefficient of relative risk aversion\n", + " \"DiscFac\": 0.96, # Intertemporal discount factor\n", + " \"LivPrb\": [0.98], # Survival probability\n", + " \"PermGroFac\": [1.01], # Permanent income growth factor\n", + " \"BoroCnstArt\": None, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", " # New parameters unique to the \"kinked R\" model\n", - " \"Rboro\" : 1.20, # Interest factor on borrowing (a < 0)\n", - " \"Rsave\" : 1.01, # Interest factor on saving (a > 0)\n", - " \n", - " # Parameters that specify the income distribution over the lifecycle\n", - " \"PermShkStd\" : [0.1], # Standard deviation of log permanent shocks to income\n", - " \"PermShkCount\" : 7, # Number of points in discrete approximation to permanent income shocks\n", - " \"TranShkStd\" : [0.2], # Standard deviation of log transitory shocks to income\n", - " \"TranShkCount\" : 7, # Number of points in discrete approximation to transitory income shocks\n", - " \"UnempPrb\" : 0.05, # Probability of unemployment while working\n", - " \"IncUnemp\" : 0.3, # Unemployment benefits replacement rate\n", - " \"UnempPrbRet\" : 0.0005, # Probability of \"unemployment\" while retired\n", - " \"IncUnempRet\" : 0.0, # \"Unemployment\" benefits when retired\n", - " \"T_retire\" : 0, # Period of retirement (0 --> no retirement)\n", - " \"tax_rate\" : 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", - " \n", - " # Parameters for constructing the \"assets above minimum\" grid\n", - " \"aXtraMin\" : 0.001, # Minimum end-of-period \"assets above minimum\" value\n", - " \"aXtraMax\" : 20, # Maximum end-of-period \"assets above minimum\" value\n", - " \"aXtraCount\" : 48, # Number of points in the base grid of \"assets above minimum\"\n", - " \"aXtraNestFac\" : 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", - " \"aXtraExtra\" : [None], # Additional values to add to aXtraGrid\n", - " \n", - " # A few other paramaters\n", - " \"BoroCnstArt\" : None, # Artificial borrowing constraint; imposed minimum level of end-of period assets\n", - " \"vFuncBool\" : True, # Whether to calculate the value function during solution \n", - " \"CubicBool\" : False, # Preference shocks currently only compatible with linear cFunc\n", - " \"T_cycle\" : 1, # Number of periods in the cycle for this agent type \n", - " \n", - " # Parameters only used in simulation\n", - " \"AgentCount\" : 10000, # Number of agents of this type\n", - " \"T_sim\" : 500, # Number of periods to simulate\n", - " \"aNrmInitMean\" : -6.0, # Mean of log initial assets\n", - " \"aNrmInitStd\" : 1.0, # Standard deviation of log initial assets\n", - " \"pLvlInitMean\" : 0.0, # Mean of log initial permanent income\n", - " \"pLvlInitStd\" : 0.0, # Standard deviation of log initial permanent income\n", - " \"PermGroFacAgg\" : 1.0, # Aggregate permanent income growth factor\n", - " \"T_age\" : None, # Age after which simulated agents are automatically killed\n", + " \"Rboro\": 1.20, # Interest factor on borrowing (a < 0)\n", + " \"Rsave\": 1.01, # Interest factor on saving (a > 0)\n", + " # Parameters that specify the income distribution over the lifecycle (shared with IndShockConsumerType)\n", + " \"PermShkStd\": [0.1], # Standard deviation of log permanent shocks to income\n", + " \"PermShkCount\": 7, # Number of points in discrete approximation to permanent income shocks\n", + " \"TranShkStd\": [0.2], # Standard deviation of log transitory shocks to income\n", + " \"TranShkCount\": 7, # Number of points in discrete approximation to transitory income shocks\n", + " \"UnempPrb\": 0.05, # Probability of unemployment while working\n", + " \"IncUnemp\": 0.3, # Unemployment benefits replacement rate\n", + " \"UnempPrbRet\": 0.0005, # Probability of \"unemployment\" while retired\n", + " \"IncUnempRet\": 0.0, # \"Unemployment\" benefits when retired\n", + " \"T_retire\": 0, # Period of retirement (0 --> no retirement)\n", + " \"tax_rate\": 0.0, # Flat income tax rate (legacy parameter, will be removed in future)\n", + " # Parameters for constructing the \"assets above minimum\" grid (shared with IndShockConsumerType)\n", + " \"aXtraMin\": 0.001, # Minimum end-of-period \"assets above minimum\" value\n", + " \"aXtraMax\": 20, # Maximum end-of-period \"assets above minimum\" value\n", + " \"aXtraCount\": 48, # Number of points in the base grid of \"assets above minimum\"\n", + " \"aXtraNestFac\": 3, # Exponential nesting factor when constructing \"assets above minimum\" grid\n", + " \"aXtraExtra\": [None], # Additional values to add to aXtraGrid\n", + " # A few other paramaters (shared with IndShockConsumerType)\n", + " \"vFuncBool\": True, # Whether to calculate the value function during solution\n", + " \"CubicBool\": False, # Preference shocks currently only compatible with linear cFunc\n", + " \"T_cycle\": 1, # Number of periods in the cycle for this agent type\n", + " # Parameters only used in simulation (shared with PerfForesightConsumerType)\n", + " \"AgentCount\": 10000, # Number of agents of this type\n", + " \"T_sim\": 500, # Number of periods to simulate\n", + " \"aNrmInitMean\": -6.0, # Mean of log initial assets\n", + " \"aNrmInitStd\": 1.0, # Standard deviation of log initial assets\n", + " \"pLvlInitMean\": 0.0, # Mean of log initial permanent income\n", + " \"pLvlInitStd\": 0.0, # Standard deviation of log initial permanent income\n", + " \"PermGroFacAgg\": 1.0, # Aggregate permanent income growth factor\n", + " \"T_age\": None, # Age after which simulated agents are automatically killed\n", "}" ] }, @@ -198,7 +197,7 @@ "outputs": [], "source": [ "KinkyExample = KinkedRconsumerType(**KinkedRdict)\n", - "KinkyExample.cycles = 0 # Make the example infinite horizon\n", + "KinkyExample.cycles = 0 # Make the example infinite horizon\n", "KinkyExample.solve()" ] }, @@ -225,7 +224,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXyV5Z338c8Pwk4WIAFCVraArAIRBLXgrmjVdqqVbvqMLdbWmaqddmynj21tn5lXOx27WK1jreMyKtKqI7W0jgtQN5CwLwEMWxICJBCSECDr+T1/JDoZjOQIJ7lPzvm+Xy9enPvcF/f5HYEvl9d93ddl7o6IiMSWHkEXICIikadwFxGJQQp3EZEYpHAXEYlBCncRkRiUENQHp6amem5ublAfLyLSLa1Zs+aQu6d11C6wcM/NzaWgoCCojxcR6ZbMbG847TQsIyISgxTuIiIxSOEuIhKDFO4iIjFI4S4iEoMU7iIiMUjhLiISgwKb5y4iIuE5WtdI4f6jbC2rDvvXKNxFRKKEu1N+tJ6tZTVsKatm6/4atpTVsPfw8Y99LYW7iEgAQiFn9+FjbCmr+SDMC/fXcKi24YM2OUP6M3FEEtfPyGTiiGQmjEhi+E/Cu77CXUSkkzU1hyiqqGXzvho276tu6ZWX1XCsoRmAXj2NvGGJXDhuKBNHJDFhRDJnpSeS2LfXaX+mwl1EJIIamkLsOHiUzfuq2VxWzeZ9NRTur6G+KQRAv149W3rj+VlMGJHExBFJjB2aSO+EyM5v6TDczexR4Gqg3N0nnaLdOcBK4LPu/ofIlSgiEp3qGpvZduAom/ZVs6U1zLcfOEpjc8ve1Il9EpiYkcQXz81hUkYykzKSGJk6kJ49rNNrC6fn/hjwa+CJj2pgZj2BnwAvR6YsEZHocqy+icL9LcMqm/a1jJG/V15Lc6glyFP692JyRjK3nD+KSRlJTBqRTPbg/vTogiBvT4fh7u5/NbPcDpr9HfAccE4EahIRCVRNXSNbWgN8075qNu+rZtehY3hLjpM6sA+TM5K4dMIwJo5o6ZFnpPTDLJggb88Zj7mbWQbwKeAiOgh3M1sILATIzs4+048WETljNXWNbC6tZkPp+2Pk1f9r6mF6cl8mZSRzzdSMlh55RjLDkvoGWHF4InFD9RfAP7p7c0f/arn7w8DDAPn5+R6BzxYRCVtdYzNbymrYWFrFxtJqNpRWsavi2Afnswb3Y9KIZG7Iz2JSRjITRySROrBPgBWfvkiEez6wqDXYU4H5Ztbk7v8VgWuLiJyWxuaWWSsbS6vZWFrFhpJqdhw8SlPrGPnQxD5MyUzhU2dnMDUrhSmZyaT07x1w1ZFzxuHu7iPff21mjwEvKdhFpCuFQs6ew8fY0BriG0ur2FL2P9MPk/v1YkpmMreOH8WUzBSmZqYwPDn6h1bORDhTIZ8B5gGpZlYKfB/oBeDuD3VqdSIiJ3F39lfXtfTGW3vlG0urOVrXBLTMI5+UkcQXzs1hSmYyUzNTyBnSP6pudnaFcGbLLAj3Yu5+8xlVIyJykurjjawrOfJBj3xDaTWHauuBlic7xw9P4pqpI5iamcKUrGTGpA0koacWvNUTqiISNZqaQ+w4WMu6kiOsK65ibfGRD254msGYtIHMzUtjalYyUzJTGD88kb69egZcdXRSuItIYCqO1rOu+AjrSqpYV3yEjaXVHG9db2XIgN5Myx7E30zPZFp2ClMyUxjYR5EVLv2XEpEu0dAUYuv+Gtbu/Z8wLz1yAoCEHsbEEUnckJ/FtOwUpmUNImtwdD0U1N0o3EUk4tydsuq6ll55cUuQby6roaF19sqI5L5Myx7EzXNymZadwsQRyRpeiTCFu4icsYamEJv2VbNmbyVr9rYEevnRlpuefRJ6MCUzuSXIs1KYlj0o5qchRgOFu4h8bNXHG1lbfITVeyop2HOEDaVVH8wpzx7cnzmjhzA9ZxDTsgYxPj2RXpq90uUU7iJySu5O6ZETFOytZPWeI6zZc4TtB48CrWPlGcl84dwczskdxPScQQxNVK88GijcReR/aWoOUbj/KAV7W3rlBXsrOVjTMsSS2CeB6TmDuHpKOvm5gzk7K4V+vTVWHo0U7iJxrra+ifXFVS1DLHsrWVdc9cF0xIyUfpw7agj5OYPIzx1M3rDELtloQs6cwl0kztTUNVKwp5JVuypZubuSzfuqaQ45PQzGD2/ZjHlG7mDycwYxIqVf0OXKaVK4i8S46uONvLunklW7DrNqdyVbyqoJOfTu2YOpWcncNnc0M0cOZlp2yhltyCzRReEuEmOOHGvg3T2VrNx1mFW7Kik8UIM79E7owbSsFG6/aCznjhrM9OxBmlsewxTuIt3c4dp63t1dyardLYG+7UDLTJY+CT2YkTOIOy7OY9aolpufCvP4oXAX6WaO1jWyalclb+08xFtFh9hxsBZoWep2Rs4g/uGydGaNGsKUzGT6JCjM45XCXSTKNTSFWFd8hLeKDvFm0SE2lLbcAO2T0IOZIwdz7dkZnDtqCJMzkumdoIeFpIXCXSTKhEJO4YEa3i46zJtFh3h3dyUnGpvpYTAlM4Xb5o5mzpghGjOXU1K4i0SBksrjvFnUMszy9s7DVB5rAGDM0IHckJ/JeWNSmTVqCMn9NJtFwqNwFwnAsfom3tl5mOU7yvnrjkMUVx4HYFhSH+aNS+P8ManMGZ2qBbbktIWzh+qjwNVAubtPauf854F/bD2sBW5z9w0RrVKkm3N3dhysZcWOcpZvr2D1nkoam53+vXsyZ/QQbjl/JOeNSWV02gCtYS4REU7P/THg18ATH3F+NzDX3Y+Y2ZXAw8CsyJQn0n1Vn2jk7aJDLN9ewYodFRyoqQNg/PBE/va8kczNSyM/d7BugkqnCGeD7L+aWe4pzr/d5nAlkHnmZYl0P6GQs3V/DSt2VLB8ezlri6toDjmJfRO4YGwqc/PS+EReGunJeqRfOl+kx9xvAf78USfNbCGwECA7OzvCHy3S9U40NPNm0SFe3XqQ17aVc6i2ZfXEyRktj/XPHZfGtKwUErSeuXSxiIW7mV1IS7if/1Ft3P1hWoZtyM/P90h9tkhXKq+p47Vt5by69SBvFh2ivilEYt8E5ualcdH4oVwwNo20xD5BlylxLiLhbmZTgEeAK939cCSuKRIt3J3tB4/y6taDvFJYzoaSKgAyB/Xjc7OyueSsYZyjsXOJMmcc7maWDTwPfNHdd5x5SSLBa2wO8e7uSl7ZepBXCw9SeuQEAGdnpfCty8dxyVnDyBs2UDNbJGqFMxXyGWAekGpmpcD3gV4A7v4QcA8wBHiw9Q96k7vnd1bBIp2lvqmZt4oO8aeNB3hl6wFq6prok9CDC8amcvuFY7ho/FCGJmneuXQP4cyWWdDB+S8DX45YRSJdqL6pmTd2HGLppv28UniQo3VNJPZN4LIJw7l84jAuGJumbeSkW9ITqhJ36hqbeeO9lkB/detBjtY3kdQ3gcsnDueqyemcNyZV4+fS7SncJS7UNTazYkcFSzft57XCcmrrm0ju14srJw9n/uR05oxWoEtsUbhLzGoOOat2Heb5dfv4y+YD1NY3kdK/F1dNTmf+lHTmjB5CL80/lxilcJeYs+1ADS+s3ceL68s4UFNHYp8Erpw0nE9OHcFsBbrECYW7xIS6xmZe2rifp1btZV1xFQk9jHnj0vje1WdxyVnDtO65xB2Fu3RrReW1PL2qmOfWllJ9opFRaQP43lVn8alpGQwZqKdEJX4p3KXbaWgK8fKWAzy1ai8rd1XSq6dx+cThfH5WDueOGqwHi0RQuEs3UlJ5nKffLeb3BSUcqm0gc1A/vn3FOK6fkaW1XEROonCXqNbUHOL1beU8taqYv75XgQEXnzWMz8/K5hNj0+jRQ710kfYo3CUqHaiu49nVJSxaXcz+6jqGJfXh7y8ay2fPyWJEitZDF+mIwl2iRijkvFl0iKdW7eXVwnKaQ84n8tL4wTUTuXj8UK2JLvIxKNwlcJXHGlhcUMLTq4oprjzO4AG9+coFo1gwM4ucIQOCLk+kW1K4S2A2lVbz2Nt7+OPGMhqaQswcOZhvXpbHFZOG0ydB89JFzoTCXbpUQ1OIP2/ez+Nv72FtcRX9e/fkhvxMvjQ7l7xhiUGXJxIzFO7SJQ7W1PHUqmKeXlXModp6RqYO4J6rJ/CZ/EyS+vYKujyRmKNwl07j7qzZe4TH39nLnzftp9mdeXlp3DQnV9MYRTqZwl0iLhRyXt5ygAeX72TTvmoS+yZw05xcvnhuDrmpukEq0hUU7hIxjc0hlqwv48HlReysOEbukP78+LpJfHp6Bv1764+aSFcKZw/VR4GrgXJ3n9TOeQN+CcwHjgM3u/vaSBcq0auusZnfF5Tw0Ipd7Ks6wfjhidy/YBrzJ6fTU0MvIoEIpzv1GPBr4ImPOH8lMLb1xyzgN60/S4yrrW/iP1fu5ZE3dnOotp7p2Sn86LqJXDhuqBbvEglYOBtk/9XMck/R5FrgCXd3YKWZpZhZurvvj1CNEmWaQ85/rtzLfa/soPpEIxeMTeVr86ZpRUaRKBKJgdAMoKTNcWnrewr3GLSxtIp/emEzm/ZVc/6YVL51+TimZqUEXZaInCQS4d5eV83bbWi2EFgIkJ2dHYGPlq5SU9fIz17ezpMr95I6sA+/WjCNT05JV09dJEpFItxLgaw2x5lAWXsN3f1h4GGA/Pz8dv8BkOji7izZUMaP/1TI4dp6bpqdy12X5enBI5EoF4lwXwLcbmaLaLmRWq3x9tiwq6KW//viZt4qOszUzGQevekcJmcmB12WiIQhnKmQzwDzgFQzKwW+D/QCcPeHgKW0TIMsomUq5P/prGKla9Q1NvPg8p08tHwnfXr14EfXTuRzs3I0rVGkGwlntsyCDs478PWIVSSBWrGjgnte3Mzew8e57uwRfPeqsxia2DfoskTkY9JjgwK07Hz0o5e28qdN+xmVOoCnvjyL88akBl2WiJwmhXucc2+Zs/6Tv2ynsTnENy/NY+HcUVpPXaSbU7jHsVDIWfjkGl4tPMgFY1P58XWTtPORSIxQuMexFTsqeLXwIN+8NI/bLxqjOesiMUQ7Dsexx97eQ1piH26dO1rBLhJjFO5xaldFLSt2VPCFWTn0TtAfA5FYo7/VceqJd/bSq6exYFZWx41FpNtRuMeh2vom/rCmlKsmp2sOu0iMUrjHoefWlFJb38TN540MuhQR6SQK9zgTCjmPv7OHqVkpnK2lekVilsI9zrxZdIhdFce4eU5O0KWISCdSuMeZx9/eQ+rA3syfnB50KSLSiRTucWTv4WO8vr2cz83K0fICIjFO4R4nisqPcuuTa+ib0JPPz9IuWCKxTssPxDh355l3S7j3pS30753AQ1+cwbAkTX8UiXUK9xhWdbyBu5/bxF+2HOD8Mancd8NUhirYReKCwj1Grdx1mDufXU/F0Xq+c+V4vnLBKHpoJyWRuKFwjzFNzSF++dp7/HpZEblDBvD81+YwJVPz2UXijcI9hhQfPs43nl3HuuIqPjMjkx9eM5EBffRbLBKPwpotY2ZXmNl2Mysys7vbOZ9tZsvMbJ2ZbTSz+ZEvVU7lxfX7mP+rNygqr+X+BdP42fVTFewicazDv/1m1hN4ALgUKAVWm9kSd9/aptn3gMXu/hszmwAsBXI7oV45ydG6Ru55cQsvrNtHfs4gfnHj2WQO6h90WSISsHC6djOBInffBWBmi4Brgbbh7kBS6+tkoCySRUr71hYf4RuL1rHvyAnuvCSPr184moSeenRBRMIL9wygpM1xKTDrpDY/AP7bzP4OGABc0t6FzGwhsBAgO1sP0pyu5pDzm+VF/PzV9xie1JfFt84mP3dw0GWJSBQJp5vX3vw5P+l4AfCYu2cC84EnzexD13b3h909393z09LSPn61QlnVCRb8diU/++8dzJ+czp/vuEDBLiIfEk7PvRRou11PJh8edrkFuALA3d8xs75AKlAeiSKlxdJN+7n7uY00h5x/u34qn56eob1PRaRd4YT7amCsmY0E9gE3Ap87qU0xcDHwmJmdBfQFKiJZaDw73tDEvX/cyqLVJUzNTOaXN04jN3VA0GWJSBTrMNzdvcnMbgdeBnoCj7r7FjO7Fyhw9yXAN4HfmtmdtAzZ3OzuJw/dyGnYWFrFHc+uZ/ehY3z9wtHccUkevXTTVEQ6ENZEaHdfSsv0xrbv3dPm9VbgvMiWFt+amkM8uHwnv3rtPdIS+/DUl2cxZ3Rq0GWJSDehp1yi0O5Dx7jz2fWsL6niurNH8MNrJ5Hcr1fQZYlIN6JwjyLuztPvFvPjlwrp1dO4f8E0Pjl1RNBliUg3pHCPEuVH67j7uU28vq2c88ek8rPrpzI8WcvzisjpUbhHgaWb9vNPL2zieEMzP/jkBL40O1fL84rIGVG4B6jqeAPfX7KFF9eXMSUzmX+7fipjhyUGXZaIxACFe0DeLjrEnYvXc7i2gbsuzeO2eaM1xVFEIkbh3sWamkP86rX3uH9ZEaNSB/C7m85hUkZy0GWJSIxRuHeh/dUn+MYz63l3TyWfmZHJvddOpH9v/RaISOQpWbrIa4UH+Yffb6C+KcTPPzuVT03LDLokEYlhCvdO1tAU4qd/2cYjb+5mQnoSv/7cNEalDQy6LBGJcQr3TlRWdYLbnlrLhpIqvjQ7h+/OP4u+vXoGXZaIxAGFeydZueswX39qLfVNIX7z+elcOTk96JJEJI4o3CPM3fmPt/bw/5YWkjOkPw9/cQZjhmruuoh0LYV7BNU1NvOd5zfxwrp9XDphGPfdMJXEvlrwS0S6nsI9QsqP1vGVJ9awsbSKuy7N4/YLx2gJAREJjMI9AraW1fDlx1dz5HgjD31hBpdPHB50SSIS5xTuZ+j1bQe5/el1JPXtxe+/OltPm4pIVFC4n4HFBSV85/lNnJWeyO9uOodhSVqiV0SiQ1grVZnZFWa23cyKzOzuj2hzg5ltNbMtZvZ0ZMuMPg+t2Mm3/7CR2aOGsGjhbAW7iESVDnvuZtYTeAC4FCgFVpvZktZ9U99vMxb4DnCeux8xs6GdVXDQQiHnX/5cyG/f2M3VU9K574az6Z2g1RxFJLqEk0ozgSJ33+XuDcAi4NqT2nwFeMDdjwC4e3lky4wOoZDzvRc389s3dnPT7Bx+deM0BbuIRKVwkikDKGlzXNr6Xlt5QJ6ZvWVmK83sivYuZGYLzazAzAoqKipOr+KAvB/sT68q5rZ5o/nBNRM11VFEolY44d5egvlJxwnAWGAesAB4xMxSPvSL3B9293x3z09LS/u4tQambbB/bd5ovn35OMwU7CISvcIJ91Igq81xJlDWTpsX3b3R3XcD22kJ+27P3fnBH7d8EOzfUrCLSDcQTrivBsaa2Ugz6w3cCCw5qc1/ARcCmFkqLcM0uyJZaFDuf72IJ97Zy8JPjFKwi0i30WG4u3sTcDvwMlAILHb3LWZ2r5ld09rsZeCwmW0FlgHfcvfDnVV0V1n0bjH3vbKDT0/P4DtXjlewi0i3Ye4nD593jfz8fC8oKAjks8PxytaD3PpkAReMTeORm/K1ebWIRAUzW+Pu+R21U2K1Y/O+av7umbVMzkjmwc9PV7CLSLej1DrJ4dp6bn1yDYP69+aRm85hQB+t0CAi3Y+Sq43G5hC3P72Oitp6/vDV2aQl9gm6JBGR06Keexv/vLSQd3Yd5l8+NZkpmR+api8i0m0o3Fu9uH4f//HWHv72vJH8zYzMoMsRETkjCnegpPI433thMzNyBvHd+eODLkdE5IzFfbg3NYe489n1APzis2eToJkxIhID4v6G6gPLdlKw9wi/vPFssgb3D7ocEZGIiOtu6pq9R/jV6+/xqWkZXHv2yQtdioh0X3Eb7sfqm7jj2XWkJ/flh9dODLocEZGIitthmZ+/soOSyhMsvnU2SX17BV2OiEhExWXPffO+ah59azefm5XNzJGDgy5HRCTi4i7cm5pD3P38RoYM7MM/XqFpjyISm+Iu3B97ew+b99Xw/U9OILmfhmNEJDbFVbiXHjnOfa/s4MJxaVw1OT3ockREOk3chLu7c8+LW3CHH103SRtviEhMi5twf3nLAV7fVs43L8sjc5AeVhKR2BYX4d7QFOKfl24jb9hAbp6TG3Q5IiKdLqxwN7MrzGy7mRWZ2d2naPcZM3Mz63ALqK70xDt7KK48znfnn6W1Y0QkLnSYdGbWE3gAuBKYACwwswnttEsE/h5YFekiz0TV8Qbuf72IC8amMm/c0KDLERHpEuF0Y2cCRe6+y90bgEXAte20+xHwU6AugvWdsftfL6KmrpHvzj8r6FJERLpMOOGeAZS0OS5tfe8DZjYNyHL3l051ITNbaGYFZlZQUVHxsYv9uPYcOsYT7+zhhhlZnJWe1OmfJyISLcIJ9/bmDPoHJ816AD8HvtnRhdz9YXfPd/f8tLS08Ks8TT99eRsJPXpw12V5nf5ZIiLRJJxwLwWy2hxnAmVtjhOBScByM9sDnAssCfqmasGeSpZuOsCtc0cxLKlvkKWIiHS5cMJ9NTDWzEaaWW/gRmDJ+yfdvdrdU909191zgZXANe5e0CkVh8Hd+fGfChma2IeFnxgVVBkiIoHpMNzdvQm4HXgZKAQWu/sWM7vXzK7p7AJPx0sb97O+pIp/uGwc/XvH7arGIhLHwko+d18KLD3pvXs+ou28My/r9NU3NfOTv2xj/PBE/mZGZpCliIgEJuae6FlcUErpkRPcfeV4evbQ+jEiEp9iKtzrm5p5cFkR07NTmJvX+bNxRESiVUyF++LVJeyvruPOS/O06qOIxLWYCff6pmYeWLaTGTmDOH9MatDliIgEKmbCffHqEg7U1HHnJeq1i4jERLjXNbb02vNzBnHemCFBlyMiEriYCPfFBa29do21i4gAMRDuLb32Is7JHcSc0eq1i4hADIT7s6tLOFhTr7F2EZE2unW41zU28+DyImbmDma2eu0iIh/o1uG+6N1iDtbUc8elY9VrFxFpo9uGe0uvfSczRw5m9ij12kVE2uq24f7Mu8WUH9VYu4hIe7pluL/fa581UmPtIiLt6Zbh/vSqYiqO1nPHJdo+T0SkPd0u3Osam3lohXrtIiKn0u3C/bm1pZQfrefvLx4bdCkiIlGrW4V7U3OIh1bsZGpWip5GFRE5hbDC3cyuMLPtZlZkZne3c/4uM9tqZhvN7DUzy4l8qfDHjWWUVJ7g9gvHaIaMiMgpdBjuZtYTeAC4EpgALDCzCSc1Wwfku/sU4A/ATyNdaCjkPLhsJ+OGJXLx+KGRvryISEwJp+c+Eyhy913u3gAsAq5t28Ddl7n78dbDlUDEd6Z+pfAg75XX8rULR9NDe6OKiJxSOOGeAZS0OS5tfe+j3AL8+UyKOpm788CyInKG9OeqyemRvLSISEwKJ9zb6yZ7uw3NvgDkA//6EecXmlmBmRVUVFSEXeSbRYfYWFrNV+eOJqFnt7oHLCISiHCSshTIanOcCZSd3MjMLgH+CbjG3evbu5C7P+zu+e6en5aWFnaRDywrYnhSXz49/VT/wyAiIu8LJ9xXA2PNbKSZ9QZuBJa0bWBm04B/pyXYyyNZ4Jq9lazcVclXPjGKPgk9I3lpEZGY1WG4u3sTcDvwMlAILHb3LWZ2r5ld09rsX4GBwO/NbL2ZLfmIy31sDyzbyaD+vVgwM6vjxiIiAkBCOI3cfSmw9KT37mnz+pII1wXAtgM1vL6tnLsuzaN/77BKFRERovwJ1X9fsYv+vXvypdmd8kyUiEjMitpwL6k8zpINZSyYmU1K/95BlyMi0q1Ebbj/7s3d9DD48gUjgy5FRKTbicpwP1xbz6LVxVx7dgbpyf2CLkdEpNuJynB//J291DWG+OrcUUGXIiLSLUVduB+rb+KJd/Zw6YRhjBmaGHQ5IiLdUtSF+6LVJVQdb+S2eaODLkVEpNuKqnBvaArxuzd2MXPkYKZnDwq6HBGRbiuqwn3JhjLKquvUaxcROUNRE+6hkPPvK3Yyfngi8/LCX1RMREQ+LGrC/bVt5bxXXstX547WFnoiImcoKsLd3fnN8iIyB/Xj6inajENE5ExFRbiv3nOEtcVVfOWCUdqMQ0QkAqIiSR9asZPBA3pzQ76W9RURiYTAw/39ZX1vnpNLv97ajENEJBICD3ct6ysiEnmBhruW9RUR6RyBhruW9RUR6RyBhXtTyLWsr4hIJwkr3M3sCjPbbmZFZnZ3O+f7mNmzredXmVluR9c8XFuvZX1FRDpJh+FuZj2BB4ArgQnAAjObcFKzW4Aj7j4G+Dnwk46ue/hYg5b1FRHpJOH03GcCRe6+y90bgEXAtSe1uRZ4vPX1H4CLrYM1BJpDzlfnaoEwEZHOEE64ZwAlbY5LW99rt427NwHVwJCTL2RmC82swMwK+vUIMSNHy/qKiHSGcMK9vR64n0Yb3P1hd8939/wx6Qp2EZHOEk64lwJt1wXIBMo+qo2ZJQDJQGUkChQRkY8vnHBfDYw1s5Fm1hu4EVhyUpslwE2trz8DvO7uH+q5i4hI10joqIG7N5nZ7cDLQE/gUXffYmb3AgXuvgT4HfCkmRXR0mO/sTOLFhGRU+sw3AHcfSmw9KT37mnzug64PrKliYjI6Qp84TAREYk8hbuISAxSuIuIxCCFu4hIDLKgZiyaWQWwN5APPz2pwKGgi+gC+p6xJ16+a7x8z3Hu3uGiXGHNlukM7p4W1GefDjMrcPf8oOvobPqesSdevms8fc9w2mlYRkQkBincRURikMI9fA8HXUAX0feMPfHyXfU92wjshqqIiHQe9dxFRGKQwl1EJAYp3MPQ0QbhscDMHjWzcjPbHHQtncnMssxsmZkVmtkWM/tG0DV1BjPra2bvmtmG1u/5w6Br6kxm1tPM1pnZS0HX0pnMbI+ZbTKz9R1NidSYewdaNwjfAVxKy6Ykq4EF7r410MIizMw+AdQCT7j7pKDr6Sxmlg6ku/taM0sE1gDXxeDvpwED3L3WzHoBbwLfcPeVAZfWKczsLiAfSHL3q4Oup7OY2R4g3907fFhLPfeOhbNBeLfn7n8lDnbPcvf97r629fVRoJAP7wnc7XmL2tbDXq0/YrInZ2aZwFXAI0HXEk0U7vkb8fkAAAF7SURBVB0LZ4Nw6YbMLBeYBqwKtpLO0TpUsR4oB15x95j8nsAvgG8DoaAL6QIO/LeZrTGzhadqqHDvWFibf0v3YmYDgeeAO9y9Juh6OoO7N7v72bTsezzTzGJuuM3MrgbK3X1N0LV0kfPcfTpwJfD11uHUdincOxbOBuHSjbSOQT8HPOXuzwddT2dz9ypgOXBFwKV0hvOAa1rHohcBF5nZfwZbUudx97LWn8uBF2gZNm6Xwr1j4WwQLt1E643G3wGF7n5f0PV0FjNLM7OU1tf9gEuAbcFWFXnu/h13z3T3XFr+br7u7l8IuKxOYWYDWicBYGYDgMuAj5zdpnDvgLs3Ae9vEF4ILHb3LcFWFXlm9gzwDjDOzErN7Jaga+ok5wFfpKWHt771x/ygi+oE6cAyM9tISwflFXeP6WmCcWAY8KaZbQDeBf7k7n/5qMaaCikiEoPUcxcRiUEKdxGRGKRwFxGJQQp3EZEYpHAXEYlBCncRkRikcBcRiUH/HyO6MiK7RKAsAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXiV5Z3/8feXhJ0sQMKWlS0gq0AEQS1q3bWldrFiF52pRa3O1LYzre10ukw7M7/ONeN00zKMdawdFW21o7W0/lxxB8K+Y9iSECAJIQkBspyc7/xxopNhIjnCSZ6Tcz6v68pFnvPcPOd7JHy4vZ/7uW9zd0REJLH0CboAERGJPYW7iEgCUriLiCQghbuISAJSuIuIJKDUoN44KyvLCwsLg3p7EZFeae3atTXunt1Vu8DCvbCwkJKSkqDeXkSkVzKz/dG007CMiEgCUriLiCQghbuISAJSuIuIJCCFu4hIAlK4i4gkIIW7iEgCCmyeu4iIROdYUyvbDx5jW2V91L9H4S4iEifcnapjzWyrbGBrZT3bDjawtbKB/UdOfOBrKdxFRAIQDjt7jxxna2XDe2G+/WADNY0t77UpGD6IqWPS+dScXKaOyWDKmHRG/Si66yvcRUS6WagtTGl1I1sONLDlQH2kV17ZwPGWNgD6phhFI9O4ZNIIpo5JZ8qYDM4ZnUbagL5n/J4KdxGRGGoJhdl1+BhbDtSzpbKeLQca2H6wgeZQGICBfVMivfHiPKaMSWfqmHQmjkijX2ps57d0Ge5m9iBwHVDl7tNO0+484G3g0+7+29iVKCISn5pa29hx6BibD9SztT3Mdx46RmtbZG/qtP6pTM1J53PnFzAtJ4NpOemMzRpCSh/r9tqi6bk/BPwcePj9GphZCvAj4LnYlCUiEl+ON4fYfjAyrLL5QGSM/J2qRtrCkSDPHNSX6TkZfOHCcUzLSWfamAzyhw2iTw8EeWe6DHd3f9XMCrto9hfAk8B5MahJRCRQDU2tbG0P8M0H6tlyoJ49NcfxSI6TNaQ/03PSuXzKSKaOifTIczIHYhZMkHfmrMfczSwHuB64lC7C3cyWAEsA8vPzz/atRUTOWkNTK1sq6tlY8e4Yef3/mno4OmMA03Iy+OjMnEiPPCeDkekDAqw4OrG4ofpj4Bvu3tbVv1ruvgxYBlBcXOwxeG8Rkag1tbaxtbKBTRV1bKqoZ2NFHXuqj793Pm/YQKaNyeCG4jym5WQwdUw6WUP6B1jxmYtFuBcDy9uDPQu4xsxC7v5fMbi2iMgZaW2LzFrZVFHPpoo6NpbXs+vwMULtY+Qj0vozIzeT68/NYWZeJjNyM8gc1C/gqmPnrMPd3ce++72ZPQQ8q2AXkZ4UDjv7jhxnY3uIb6qoY2vl/0w/zBjYlxm5Gdw2eRwzcjOZmZvJqIz4H1o5G9FMhXwMuBjIMrMK4LtAXwB3X9qt1YmInMLdOVjfFOmNt/fKN1XUc6wpBETmkU/LSeez5xcwIzeDmbmZFAwfFFc3O3tCNLNlFkd7MXe/5ayqERE5Rf2JVtaXH32vR76xop6axmYg8mTn5FHpfHTmGGbmZjIjL4MJ2UNITdGCt3pCVUTiRqgtzK7DjawvP8r6sjrWlR1974anGUzIHsLComxm5mUwIzeTyaPSGNA3JeCq45PCXUQCU32smfVlR1lfXsf6sqNsqqjnRPt6K8MH92NW/lA+MTuXWfmZzMjNZEh/RVa09F9KRHpESyjMtoMNrNv/P2FecfQkAKl9jKlj0rmhOI9Z+ZnMyhtK3rD4eiiot1G4i0jMuTuV9U2RXnlZJMi3VDbQ0j57ZUzGAGblD+WWBYXMys9k6pgMDa/EmMJdRM5aSyjM5gP1rN1fy9r9kUCvOha56dk/tQ8zcjMiQZ6Xyaz8oQk/DTEeKNxF5AOrP9HKurKjrNlXS8m+o2ysqHtvTnn+sEEsGD+c2QVDmZU3lMmj0+ir2Ss9TuEuIqfl7lQcPUnJ/lrW7DvK2n1H2Xn4GNA+Vp6TwWfPL+C8wqHMLhjKiDT1yuOBwl1E/pdQW5jtB49Rsj/SKy/ZX8vhhsgQS1r/VGYXDOW6GaMpLhzGuXmZDOynsfJ4pHAXSXKNzSE2lNVFhlj217K+rO696Yg5mQM5f9xwiguGUlw4jKKRaT2y0YScPYW7SJJpaGqlZF8tq/bU8vbeWrYcqKct7PQxmDwqshnznMJhFBcMZUzmwKDLlTOkcBdJcPUnWlm9r5ZVe46wam8tWyvrCTv0S+nDzLwM7lg4nrljhzErP/OsNmSW+KJwF0kwR4+3sHpfLW/vOcKqPbVsP9SAO/RL7cOsvEzuunQi548bxuz8oZpbnsAU7iK93JHGZlbvrWXV3kig7zgUmcnSP7UPcwqGcveHi5g3LnLzU2GePBTuIr3MsaZWVu2p5Y3dNbxRWsOuw41AZKnbOQVD+asrRjNv3HBm5GbQP1VhnqwU7iJxriUUZn3ZUd4oreH10ho2VkRugPZP7cPcscNYdG4O548bzvScDPql6mEhiVC4i8SZcNjZfqiBN0uP8HppDav31nKytY0+BjNyM7lj4XgWTBiuMXM5LYW7SBworz3B66WRYZY3dx+h9ngLABNGDOGG4lwumJDFvHHDyRio2SwSHYW7SACON4d4a/cRXtlVxau7aiirPQHAyPT+XDwpmwsnZLFgfJYW2JIzFs0eqg8C1wFV7j6tk/OfAb7RftgI3OHuG2NapUgv5+7sOtzIyl1VvLKzmjX7amltcwb1S2HB+OF84cKxXDAhi/HZg7WGucREND33h4CfAw+/z/m9wEJ3P2pmVwPLgHmxKU+k96o/2cqbpTW8srOalbuqOdTQBMDkUWn8+QVjWViUTXHhMN0ElW4RzQbZr5pZ4WnOv9nh8G0g9+zLEul9wmFn28EGVu6q5pWdVawrq6Mt7KQNSOWiiVksLMrmQ0XZjM7QI/3S/WI95v4F4I/vd9LMlgBLAPLz82P81iI972RLG6+X1vDCtsO8uKOKmsbI6onTcyKP9S+clM2svExStZ659LCYhbuZXUIk3C98vzbuvozIsA3FxcUeq/cW6UlVDU28uKOKF7Yd5vXSGppDYdIGpLKwKJtLJ4/goonZZKf1D7pMSXIxCXczmwE8AFzt7kdicU2ReOHu7Dx8jBe2Heb57VVsLK8DIHfoQG6al89l54zkPI2dS5w563A3s3zgKeBz7r7r7EsSCV5rW5jVe2t5ftthXth+mIqjJwE4Ny+Tv75yEpedM5KikUM0s0XiVjRTIR8DLgayzKwC+C7QF8DdlwLfAYYD97f/oIfcvbi7ChbpLs2hNt4oreEPmw7x/LZDNDSF6J/ah4smZnHXJRO4dPIIRqRr3rn0DtHMllncxflbgVtjVpFID2oOtfHarhpWbD7I89sPc6wpRNqAVK6YMoorp47koonZ2kZOeiU9oSpJp6m1jdfeiQT6C9sOc6w5RPqAVK6cOoprp4/mgglZGj+XXk/hLkmhqbWNlbuqWbH5IC9ur6KxOUTGwL5cPX0U10wfzYLxCnRJLAp3SVhtYWfVniM8tf4Af9pyiMbmEJmD+nLt9NFcM2M0C8YPp6/mn0uCUrhLwtlxqIHfrTvA0xsqOdTQRFr/VK6eNoqPzBzDfAW6JAmFuySEptY2nt10kEdW7Wd9WR2pfYyLJ2Xz7evO4bJzRmrdc0k6Cnfp1UqrGnl0VRlPrqug/mQr47IH8+1rz+H6WTkMH6KnRCV5Kdyl12kJhXlu6yEeWbWft/fU0jfFuHLqKD4zr4Dzxw3Tg0UiKNylFymvPcGjq8v4TUk5NY0t5A4dyNevmsSn5uRpLReRUyjcJa6F2sK8tKOKR1aV8eo71Rjw4XNG8pl5+XxoYjZ9+qiXLtIZhbvEpUP1TTy+ppzla8o4WN/EyPT+/OWlE/n0eXmMydR66CJdUbhL3AiHnddLa3hk1X5e2F5FW9j5UFE23/voVD48eYTWRBf5ABTuErja4y08UVLOo6vKKKs9wbDB/fjiReNYPDePguGDgy5PpFdSuEtgNlfU89Cb+/j9pkpaQmHmjh3G164o4qppo+ifqnnpImdD4S49qiUU5o9bDvKrN/exrqyOQf1SuKE4l8/PL6RoZFrQ5YkkDIW79IjDDU08sqqMR1eVUdPYzNiswXznuil8sjiX9AF9gy5PJOEo3KXbuDtr9x/lV2/t54+bD9LmzsVF2dy8oFDTGEW6mcJdYi4cdp7beoj7X9nN5gP1pA1I5eYFhXzu/AIKs3SDVKQnKNwlZlrbwjyzoZL7Xylld/VxCocP4ocfm8bHZ+cwqJ9+1ER6UjR7qD4IXAdUufu0Ts4b8BPgGuAEcIu7r4t1oRK/mlrb+E1JOUtX7uFA3Ukmj0rjZ4tncc300aRo6EUkENF0px4Cfg48/D7nrwYmtn/NA37R/qskuMbmEP/59n4eeG0vNY3NzM7P5Acfm8olk0Zo8S6RgEWzQfarZlZ4miaLgIfd3YG3zSzTzEa7+8EY1Shxpi3s/Ofb+7n3+V3Un2zloolZfOniWVqRUSSOxGIgNAco73Bc0f6awj0Bbaqo429+t4XNB+q5cEIWf33lJGbmZQZdloicIhbh3llXzTttaLYEWAKQn58fg7eWntLQ1Mo/P7eTX7+9n6wh/fnp4ll8ZMZo9dRF4lQswr0CyOtwnAtUdtbQ3ZcBywCKi4s7/QdA4ou788zGSn74h+0caWzm5vmFfPWKIj14JBLnYhHuzwB3mdlyIjdS6zXenhj2VDfyt09v4Y3SI8zMzeDBm89jem5G0GWJSBSimQr5GHAxkGVmFcB3gb4A7r4UWEFkGmQpkamQf9ZdxUrPaGpt4/5XdrP0ld3079uHHyyayk3zCjStUaQXiWa2zOIuzjtwZ8wqkkCt3FXNd57ewv4jJ/jYuWP41rXnMCJtQNBlicgHpMcGBYjsfPSDZ7fxh80HGZc1mEdunccFE7KCLktEzpDCPcm5R+as/+hPO2ltC/O1y4tYsnCc1lMX6eUU7kksHHaW/HotL2w/zEUTs/jhx6Zp5yORBKFwT2Ird1XzwvbDfO3yIu66dILmrIskEO04nMQeenMf2Wn9uW3heAW7SIJRuCepPdWNrNxVzWfnFdAvVT8GIolGf6uT1MNv7advirF4Xl7XjUWk11G4J6HG5hC/XVvBtdNHaw67SIJSuCehJ9dW0Ngc4pYLxgZdioh0E4V7kgmHnV+9tY+ZeZmcq6V6RRKWwj3JvF5aw57q49yyoCDoUkSkGynck8yv3txH1pB+XDN9dNCliEg3Urgnkf1HjvPSzipumleg5QVEEpzCPUmUVh3jtl+vZUBqCp+Zp12wRBKdlh9IcO7OY6vL+btntzKoXypLPzeHkema/iiS6BTuCazuRAv3PLmZP209xIUTsrj3hpmMULCLJAWFe4J6e88RvvL4BqqPNfPNqyfzxYvG0Uc7KYkkDYV7ggm1hfnJi+/w85dLKRw+mKe+tIAZuZrPLpJsFO4JpOzICb78+HrWl9XxyTm5fP+jUxncX3/EIskoqtkyZnaVme00s1Izu6eT8xlm9nsz22hmW81Mm2T3sKc3HOCan75GaVUjP1s8i3/+1EwFu0gS6/Jvv5mlAPcBlwMVwBoze8bdt3Vodiewzd0/YmbZwE4ze8TdW7qlannPsaZWvvP0Vn63/gDFBUP58Y3nkjt0UNBliUjAounazQVK3X0PgJktBxYBHcPdgTSL7PgwBKgFQjGuVU6xruwoX16+ngNHT/KVy4q485LxpKbo0QURiS7cc4DyDscVwLxT2vwceAaoBNKAT7t7+NQLmdkSYAlAfr4epDlTbWHnF6+U8q8vvMOo9AE8cdt8iguHBV2WiMSRaMK9s/lzfsrxlcAG4FJgPPC8mb3m7g3/6ze5LwOWARQXF596DYlCZd1J7n58A6v31vKRmWP4++unkT6gb9BliUiciSbcK4CO2/XkEumhd/RnwP9zdwdKzWwvMBlYHZMqBYAVmw9yz5ObaAs7//KpmXx8do72PhWRTkUT7muAiWY2FjgA3AjcdEqbMuDDwGtmNhKYBOyJZaHJ7ERLiL/7/TaWrylnZm4GP7lxFoVZg4MuS0TiWJfh7u4hM7sLeA5IAR50961mdnv7+aXAD4CHzGwzkWGcb7h7TTfWnTQ2VdRx9+Mb2FtznDsvGc/dlxXRVzdNRaQLUU2EdvcVwIpTXlva4ftK4IrYlpbcQm1h7n9lNz998R2y0/rzyK3zWDA+K+iyRKSX0FMucWhvzXG+8vgGNpTX8bFzx/D9RdPIGKibpiISPYV7HHF3Hl1dxg+f3U7fFONni2fxkZljgi5LRHohhXucqDrWxD1PbualHVVcOCGLf/7UTEZlaHleETkzCvc4sGLzQf7md5s50dLG9z4yhc/PL9TyvCJyVhTuAao70cJ3n9nK0xsqmZGbwb98aiYTR6YFXZaIJACFe0DeLK3hK09s4EhjC1+9vIg7Lh6vKY4iEjMK9x4Wagvz0xff4WcvlzIuazC/vPk8puVkBF2WiCQYhXsPOlh/ki8/toHV+2r55Jxc/m7RVAb10x+BiMSekqWHvLj9MH/1m400h8L866dncv2s3KBLEpEEpnDvZi2hMP/0px088PpepoxO5+c3zWJc9pCgyxKRBKdw70aVdSe545F1bCyv4/PzC/jWNecwoG9K0GWJSBJQuHeTt/cc4c5H1tEcCvOLz8zm6umjgy5JRJKIwj3G3J3/eGMff79iOwXDB7Hsc3OYMEJz10WkZyncY6iptY1vPrWZ360/wOVTRnLvDTNJ0y5JIhIAhXuMVB1r4osPr2VTRR1fvbyIuy6ZoCUERCQwCvcY2FbZwK2/WsPRE60s/ewcrpw6KuiSRCTJKdzP0ks7DnPXo+tJH9CX39w+X0+bikhcULifhSdKyvnmU5s5Z3Qav7z5PEama4leEYkPUa1UZWZXmdlOMys1s3vep83FZrbBzLaa2crYlhl/lq7czdd/u4n544azfMl8BbuIxJUue+5mlgLcB1wOVABrzOwZd9/WoU0mcD9wlbuXmdmI7io4aOGw849/3M6/v7aX62aM5t4bzqVfqlZzFJH4Ek0qzQVK3X2Pu7cAy4FFp7S5CXjK3csA3L0qtmXGh3DY+fbTW/j31/Zy8/wCfnrjLAW7iMSlaJIpByjvcFzR/lpHRcBQM3vFzNaa2ec7u5CZLTGzEjMrqa6uPrOKA/JusD+6qow7Lh7P9z46VVMdRSRuRRPunSWYn3KcCswBrgWuBP7WzIr+z29yX+buxe5enJ2d/YGLDUrHYP/SxeP5+pWTMFOwi0j8ima2TAWQ1+E4F6jspE2Nux8HjpvZq8BMYFdMqgyQu/O93299L9j/WsEuIr1AND33NcBEMxtrZv2AG4FnTmnzNHCRmaWa2SBgHrA9tqUG42cvlfLwW/tZ8qFxCnYR6TW67Lm7e8jM7gKeA1KAB919q5nd3n5+qbtvN7M/AZuAMPCAu2/pzsJ7wvLVZdz7/C4+PjuHb149WcEuIr2GuZ86fN4ziouLvaSkJJD3jsbz2w5z269LuGhiNg/cXKzNq0UkLpjZWncv7qqdEqsTWw7U8xePrWN6Tgb3f2a2gl1Eeh2l1imONDZz26/XMnRQPx64+TwG99cKDSLS+yi5OmhtC3PXo+upbmzmt7fPJzutf9AliYicEfXcO/iHFdt5a88R/vH66czIzQy6HBGRM6Zwb/f0hgP8xxv7+PMLxvKJOblBlyMiclYU7kB57Qm+/bstzCkYyreumRx0OSIiZy3pwz3UFuYrj28A4MefPpdUzYwRkQSQ9DdU73t5NyX7j/KTG88lb9igoMsREYmJpO6mrt1/lJ++9A7Xz8ph0bmnLnQpItJ7JW24H28Ocffj6xmdMYDvL5oadDkiIjGVtMMy//r8LsprT/LEbfNJH9A36HJERGIqKXvuWw7U8+Abe7lpXj5zxw4LuhwRkZhLunAPtYW556lNDB/Sn29cpWmPIpKYki7cH3pzH1sONPDdj0whY6CGY0QkMSVVuFccPcG9z+/ikknZXDt9dNDliIh0m6QJd3fnO09vxR1+8LFp2nhDRBJa0oT7c1sP8dKOKr52RRG5Q/WwkogktqQI95ZQmH9YsYOikUO4ZUFh0OWIiHS7qMLdzK4ys51mVmpm95ym3Xlm1mZmn4xdiWfv4bf2UVZ7gm9dc47WjhGRpNBl0plZCnAfcDUwBVhsZlPep92PiGykHTfqTrTws5dKuWhiFhdPGhF0OSIiPSKabuxcoNTd97h7C7AcWNRJu78AngSqYljfWfvZS6U0NLXyrWvOCboUEZEeE0245wDlHY4r2l97j5nlANcDS093ITNbYmYlZlZSXV39QWv9wPbVHOfht/Zxw5w8zhmd3u3vJyISL6IJ987mDPopxz8GvuHubae7kLsvc/didy/Ozs6OtsYz9k/P7SC1Tx++ekVRt7+XiEg8iWbhsAogr8NxLlB5SptiYHn73PEs4BozC7n7f8WkyjNQsq+WFZsPcfdlExmZPiCoMkREAhFNuK8BJprZWOAAcCNwU8cG7j723e/N7CHg2SCD3d354R+2MyKtP0s+NC6oMkREAtNluLt7yMzuIjILJgV40N23mtnt7edPO84ehGc3HWRDeR3/9IkZDOqXtKsai0gSiyr53H0FsOKU1zoNdXe/5ezLOnPNoTZ+9KcdTB6Vxifm5AZZiohIYBLuiZ4nSiqoOHqSe66eTEofrR8jIskpocK9OdTG/S+XMjs/k4VF3T8bR0QkXiVUuD+xppyD9U185fIirfooIkktYcK9OdTGfS/vZk7BUC6ckBV0OSIigUqYcH9iTTmHGpr4ymXqtYuIJES4N7VGeu3FBUO5YMLwoMsREQlcQoT7EyXtvXaNtYuIAAkQ7pFeeynnFQ5lwXj12kVEIAHC/fE15RxuaNZYu4hIB7063Jta27j/lVLmFg5jvnrtIiLv6dXhvnx1GYcbmrn78onqtYuIdNBrwz3Sa9/N3LHDmD9OvXYRkY56bbg/trqMqmMaaxcR6UyvDPd3e+3zxmqsXUSkM70y3B9dVUb1sWbuvkzb54mIdKbXhXtTaxtLV6rXLiJyOr0u3J9cV0HVsWb+8sMTgy5FRCRu9apwD7WFWbpyNzPzMvU0qojIaUQV7mZ2lZntNLNSM7unk/OfMbNN7V9vmtnM2JcKv99USXntSe66ZIJmyIiInEaX4W5mKcB9wNXAFGCxmU05pdleYKG7zwB+ACyLdaHhsHP/y7uZNDKND08eEevLi4gklGh67nOBUnff4+4twHJgUccG7v6mux9tP3wbiPnO1M9vP8w7VY186ZLx9NHeqCIipxVNuOcA5R2OK9pfez9fAP54NkWdyt257+VSCoYP4trpo2N5aRGRhBRNuHfWTfZOG5pdQiTcv/E+55eYWYmZlVRXV0dd5OulNWyqqOf2heNJTelV94BFRAIRTVJWAHkdjnOBylMbmdkM4AFgkbsf6exC7r7M3YvdvTg7OzvqIu97uZRR6QP4+OzT/Q+DiIi8K5pwXwNMNLOxZtYPuBF4pmMDM8sHngI+5+67Ylng2v21vL2nli9+aBz9U1NieWkRkYSV2lUDdw+Z2V3Ac0AK8KC7bzWz29vPLwW+AwwH7m+fohhy9+JYFHjfy7sZOqgvi+fmdd1YRESAKMIdwN1XACtOeW1ph+9vBW6NbWmw41ADL+2o4quXFzGoX1SliogIcf6E6r+t3MOgfil8fn5B0KWIiPQqcRvu5bUneGZjJYvn5pM5qF/Q5YiI9CpxG+6/fH0vfQxuvWhs0KWIiPQ6cRnuRxqbWb6mjEXn5jA6Y2DQ5YiI9DpxGe6/ems/Ta1hbl84LuhSRER6pbgL9+PNIR5+ax+XTxnJhBFpQZcjItIrxV24L19TTt2JVu64eHzQpYiI9FpxFe4toTC/fG0Pc8cOY3b+0KDLERHpteIq3J/ZWEllfZN67SIiZyluwj0cdv5t5W4mj0rj4qLoFxUTEZH/K27C/cUdVbxT1cjtC8drCz0RkbMUF+Hu7vzilVJyhw7kuhnajENE5GzFRbiv2XeUdWV1fPGicdqMQ0QkBuIiSZeu3M2wwf24oVjL+oqIxELg4f7usr63LChkYD9txiEiEguBh7uW9RURib1Aw13L+oqIdI9Aw13L+oqIdI/Awj0Udi3rKyLSTaIKdzO7ysx2mlmpmd3TyXkzs5+2n99kZrO7uuaRxmYt6ysi0k26DHczSwHuA64GpgCLzWzKKc2uBia2fy0BftHVdY8cb9GyviIi3SSanvtcoNTd97h7C7AcWHRKm0XAwx7xNpBpZqd91LQt7Ny+UAuEiYh0h2jCPQco73Bc0f7aB22DmS0xsxIzKxnYJ8ycAi3rKyLSHaIJ985W8fIzaIO7L3P3YncvnjBawS4i0l2iCfcKoOO6ALlA5Rm0ERGRHhJNuK8BJprZWDPrB9wIPHNKm2eAz7fPmjkfqHf3gzGuVUREopTaVQN3D5nZXcBzQArwoLtvNbPb288vBVYA1wClwAngz7qvZBER6UqX4Q7g7iuIBHjH15Z2+N6BO2NbmoiInKnAFw4TEZHYU7iLiCQghbuISAJSuIuIJCCL3AsN4I3NqoH9gbz5mckCaoIuogfocyaeZPmsyfI5J7l7l4tyRTVbpju4e3ZQ730mzKzE3YuDrqO76XMmnmT5rMn0OaNpp2EZEZEEpHAXEUlACvfoLQu6gB6iz5l4kuWz6nN2ENgNVRER6T7quYuIJCCFu4hIAlK4R6GrDcITgZk9aGZVZrYl6Fq6k5nlmdnLZrbdzLaa2ZeDrqk7mNkAM1ttZhvbP+f3g66pO5lZipmtN7Nng66lO5nZPjPbbGYbupoSqTH3LrRvEL4LuJzIpiRrgMXuvi3QwmLMzD4ENBLZC3da0PV0l/a9fUe7+zozSwPWAh9LwD9PAwa7e6OZ9QVeB77cvsdxwjGzrwLFQLq7Xxd0Pd3FzPYBxe7e5cNa6rl3LZoNwns9d38VqA26ju7m7gfdfV3798eA7XSy329v175ZfWP7Yd/2r4TsyZlZLnAt8EDQtcQThXvXotr8W3ofMysEZgGrgt05J50AAAFsSURBVK2ke7QPVWwAqoDn3T0hPyfwY+DrQDjoQnqAA//fzNaa2ZLTNVS4dy2qzb+ldzGzIcCTwN3u3hB0Pd3B3dvc/VwiexrPNbOEG24zs+uAKndfG3QtPeQCd58NXA3c2T6c2imFe9e0+XeCaR+DfhJ4xN2fCrqe7ubudcArwFUBl9IdLgA+2j4WvRy41Mz+M9iSuo+7V7b/WgX8jsiwcacU7l2LZoNw6SXabzT+Etju7vcGXU93MbNsM8ts/34gcBmwI9iqYs/dv+nuue5eSOTv5kvu/tmAy+oWZja4fRIAZjYYuAJ439ltCvcuuHsIeHeD8O3AE+6+NdiqYs/MHgPeAiaZWYWZfSHomrrJBcDniPTwNrR/XRN0Ud1gNPCymW0i0kF53t0TeppgEhgJvG5mG4HVwB/c/U/v11hTIUVEEpB67iIiCUjhLiKSgBTuIiIJSOEuIpKAFO4iIglI4S4ikoAU7iIiCei/ATzkPvC4BOgSAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -244,7 +243,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAcM0lEQVR4nO3deXSc9X3v8fd3Fo1sS7axJRtj2YjFZgmLAWG2NiFAKEuK0zRpgNJmoeFeGnLbk9zcm9zkkISEXpqepJekXBJfCjQNhZClhbDEhMSEpfEiwCy2MTheZYMty8a7LUv63j9GkqXRyDOyZ/Rofs/ndY5PNM88M/MdQT7+8X1+z+9n7o6IiIQlEXUBIiJSegp3EZEAKdxFRAKkcBcRCZDCXUQkQKmoPriurs4bGxuj+ngRkYr04osvbnH3+kLnRRbujY2NNDc3R/XxIiIVyczWFnOe2jIiIgFSuIuIBEjhLiISIIW7iEiAFO4iIgEqGO5mdq+ZbTaz1wd53szsu2a20sxeNbOzS1+miIgMRTEj9/uBKw7x/JXAjO4/NwF3H3lZIiJyJArOc3f3Z82s8RCnzAF+6Nm1gxeY2Xgzm+Lub5eoRimRlZt38egrG6HPMs+jMyk+cWEj1elkhJWJSKmV4iamqcD6Po9buo8NCHczu4ns6J7p06eX4KNlKO57YTUPLFyHWfZxT8bPmjae84+fGF1hIlJypQh3y3Ms7w4g7j4XmAvQ1NSkXUKGWWeXM6k2w6IvXwbAwlVtfGzuArq69I9CJDSlmC3TAkzr87gB2FiC95VhomgXCU8pwv1R4C+7Z82cD2xXv31kcqe3JQNg3Q+006JIeAq2ZczsQeBioM7MWoCvAmkAd/8+8ARwFbAS2AN8slzFiohIcYqZLXNdgecd+EzJKpKycRzrc4mk98KqGjMiwdEdqiIiAVK4x8iAnnuf4yISFoV7jDj5562KSHgU7jF2sOcuIqFRuMdIti3Td+zeMxVS8S4SGoW7iEiAFO4xkjvlUW0ZkXAp3EVEAqRwj5NBpkJq6C4SnsjCfevudrbubo/q42PJ6R/uIhKuyMJ9w7t7ue+F1VF9vNBn4TAN3UWCE1m4JxPGqi27o/r4WHLvv7aMiISrFJt1HJbR6SSPv/o2T772eNGvMTNu/9BpXDtbuziVgpYfEAlXZOE+eWw1n7rkxCG95v89t4o33tlZporCl9tzz91uT0TCEVm4j6pK8vnLTxrSa368eD37OzrLVJGISDgqaipkJp1g/4GuqMuoWO79Fw7r6b9r4C4SnsoK91SS/R0K98OVbcvogqpIHFRUuFclEwr3EjrYc9fYXSQ0FRXumXRCPfcjkJ0KKSJxUFnhntLIvRw0bhcJT0WFe5V67kfEod8VVbXfRcJVUeGeSSVoV7iXnFruIuGpuHBXz/0IDDIVUo0ZkfBEdhPT4ahOJ1m9ZTezbntq0HOajp3APR9vGsaqKofjmgopEhMVFe4fv6CRmkxq0Kl7i9ZsY9HqtmGuqnJp+QGRcFVUuJ/eMI7TG8YN+vztjy/jgYVaaXIwuXeoiki4KqrnXkgqmaCjU8PQYmkPVZFwBRXu6YRxoEuzaQbjrumPInERVLinkgncobNLY9Fi9C4cpl+XSHACC/dsWB3o1Og9H6f/TkwaxYuEK6hwTyeyX6dDI/e8BmvLaA9VkfAEFe49I/cOjdyLom32RMIVWLhnv84BzZjJS78VkfgIKtzTie6Ru2bMFEVTIUXCVVS4m9kVZrbCzFaa2RfzPD/dzOab2ctm9qqZXVX6UgvrGblrrnt+2Z67rqKKxEHBcDezJHAXcCVwKnCdmZ2ac9pXgIfd/SzgWuD/lrrQYqQ1W2aIeqZC6i9DkdAUM3KfDax091Xu3g48BMzJOceBsd0/jwM2lq7E4qU0W6YA7cQkEhfFhPtUYH2fxy3dx/r6GnCDmbUATwCfzfdGZnaTmTWbWXNra+thlHtomud+aLlTIdWhEQlXMeGeLwJyh8bXAfe7ewNwFfCvZjbgvd19rrs3uXtTfX390KstIN07FVIj92Io20XCVUy4twDT+jxuYGDb5UbgYQB3/x1QDdSVosChONiW0cg9H2eQm5j0d6FIcIpZ8ncxMMPMjgM2kL1gen3OOeuAS4H7zewUsuFe+r5LAT1tmS/85FXGZPp/tf/6vhO4+owpw13SiNYzc0Z3qIqEp+DI3d07gFuAecBysrNilprZbWZ2Tfdpnwc+bWavAA8Cn/AIpmC855hx/PGZx9BYN4b62kzvnzc37WT+is3DXc6I495/bRkRCVdRm3W4+xNkL5T2PXZrn5+XAReVtrShGzcqzfeuO2vA8fd+a76WJMhDyw+IhCuoO1QHk0oaBzQ9ctCeu4iEJx7hnjA6NYNmwDZ72kNVJFwxCfeEZtDkof67SLhiEe7ppOmuVbpvTsjTl9FvRiQ8sQj3ZMJ0Y1Me6r+LhCsW4Z5KJrQkAT1TIfMfF5GwxCLc00nTptmHoN+MSHhiEe7JREJTIbupFSMSD7EI93TCdBMTg0+F1NBdJDyxCPeU2jIiEjPxCPeELqhCdoGwvtvsaeEwkXDFI9w1cs9L7XeRcMUj3BMJDmie+4Cee9/jIhKWmIS7afmBPHrXlom2DBEpg3iEu9oywMA9VEUkXEWt517p0skEe9s7mf/GwQ07pk0YxYmTaiOsavg5/Tfr6PlZbRmR8MQi3MePTrO7vZNP3r+437Elt14eYVUiIuUTi3D/64tP5JKTJ9HTmXlgwVp+/vKGaIuKgDv9rqge7Llr6C4SmliEe1UqwRkN43sfz39jM51dnl1IK8ZN6Ph+c5HwxeKCaq50MhtrcZsemTNwP3g8Xr8GkViIZbinktmvHfvpkRq6iwQrnuGeiOfInUGmQsbstyASC7EM93TPyD1m680MNhVSfRmR8MQy3FPdPXftqyoioYpluKcT2a8dt5Uic+9Q1fIDIuGKZbj3jtzj1nMXkdiIabjHc7aMkzNy7zmuv+NEghPLcE/HdbZMjjjfwCUSuliGe+/IPWbh7t5/tkzf4yISlpiGe/fIXW0ZEQlULMO9Z7ZM3Ebug9FvQSQ8sQz3g7NlYjZyz0lx0z1MIsGKxaqQuXoWDlu7dQ/1m3YC0Fg3pvfOVRGRShfLcK/JpAH40s9f6z32lxccy21zTouqpGGR7bnn2YkponpEpHyKCnczuwK4E0gC97j7HXnO+TPga2Sz4hV3v76EdZbUzMk1/PBTs9mx7wAA33xsOVt27Y+4KhGR0ikY7maWBO4CPgC0AIvN7FF3X9bnnBnAl4CL3H2bmU0qV8GlYGa8d2Z97+O75v+e9o4YjF/d+8+Q6e25x+C7i8RMMU3m2cBKd1/l7u3AQ8CcnHM+Ddzl7tsA3H0zFaQqabFYZ2bAVEjNhRQJVjHhPhVY3+dxS/exvmYCM83sBTNb0N3GGcDMbjKzZjNrbm1tPbyKyyCdTMRuKQIRCVsx4Z53Z7acxylgBnAxcB1wj5mNH/Ai97nu3uTuTfX19blPRyadTHAgBm0Z9/7/MDVwFwlXMeHeAkzr87gB2JjnnEfc/YC7rwZWkA37ipBOJWiPQVtmMGq5i4SnmHBfDMwws+PMrAq4Fng055z/AN4PYGZ1ZNs0q0pZaDnFp+fu/adCmvUeF5GwFAx3d+8AbgHmAcuBh919qZndZmbXdJ82D2gzs2XAfOAL7t5WrqJLLZ1MxCLcRSQ+iprn7u5PAE/kHLu1z88OfK77T8XJhnv4o9fBeu5qy4iER/fbk11rJg4j98G22ROR8CjcgaqYt2U0cBcJj8KdGLVlgL6NmXwbd4hIGBTu9Mxzj/HIPfy/10RiJ5arQuZKp4y9Bzr5zlMrADi+voYPnZV7E27lc3f13EViQuEOnDS5Fge+N38l7pAwuObMY0gk4pF+mucuEh6FO/Dhsxv48NkNANw1fyX/MG8F7Z1dVCeSEVdWennXklC2iwRHPfccmVT2VxLicgS5UyFFJFwK9xxVPeEegwusCnqRcCncc1Qlww13x/tNf9RUSJFwKdxz9Izc9wcY7oPRTkwi4VG45wi5LaPlB0TiQ+GeI+y2TP5A18BdJDwK9xyZdHb6Y3tnZ8SVlF/vqpCRViEi5aBwz9Ezcg+x5+7uuogqEhMK9xwh99xz9e7EpKG7SHB0h2qOnpuY5i3dxNq2PWRSCebMmsqoqsq/W9Wh3y2qGsOLhEvhnmPS2AxVqQQPLlrXe6y2Os3VZ0yJsKry0toyIuFRuOeYVFvNkls/wL4DXWx8dy8f/N7z7N7fEXVZpZG7zZ6G7iLBUrjnMboqxegq6OzKjmj3d4QxcyY7FXJgoqvnLhIeXVA9hEw63JkzkD/oRSQMCvdDqE5lL6KGEu7ZqZB5jg97JSJSbgr3Q0gnDTPYdyCMtsyg1JcRCY7C/RDMjEwqEc7IHV1EFYkLhXsBmVSS/QGP3M3UlhEJkcK9gOp0QCN3H3jjkgbyImFSuBeQSSXZe6CTzi6nq6uyx7iOayqkSExonnsBo6uSPLJkI48s2Ug6afzbp8/n3MYJUZdVMpoOKRImhXsBt/7xqTSv2cau/R3MfXYVq1p3VWy452vLgJYfEAmRwr2AC0+o48IT6ti2u525z65iT3tYF1c1bhcJk3ruRepZFXJvBc+ccSdvmqvnLhIehXuRMqkEZrA3tJG7pkKKBEnhXiQzY1Q6WfFtGe3EJBIPCvchGF2VrPC2jA+4Q9UwtWVEAlRUuJvZFWa2wsxWmtkXD3HeR8zMzaypdCWOHNXpZHBtGQ3kRcJUMNzNLAncBVwJnApcZ2an5jmvFvhvwMJSFzlSjK5K8tTSd7j0289w5Z3PsWzjjqhLGpJBrqdqKqRIgIoZuc8GVrr7KndvBx4C5uQ57xvAt4B9JaxvRPn0Hx7PxSdP4ri6Gpa/vYOX12+LuqQjpoG7SJiKCfepwPo+j1u6j/Uys7OAae7+2KHeyMxuMrNmM2tubW0dcrFR+2jTNO66/mzuvHYWALv2Vdb2e+6DrAqpgbtIcIoJ90PGgZklgH8EPl/ojdx9rrs3uXtTfX198VWOMKOrkpgRxN6qWn1AJEzFhHsLMK3P4wZgY5/HtcBpwDNmtgY4H3g01IuqkJ0WWVOVYmeFhbvjeadCauAuEp5iwn0xMMPMjjOzKuBa4NGeJ919u7vXuXujuzcCC4Br3L25LBWPEGMyqSDaMtmpkIp3kdAUDHd37wBuAeYBy4GH3X2pmd1mZteUu8CRqqY6xUvrtnHHk2/wnadWsHV3e9QlHRa1ZUTCVNTCYe7+BPBEzrFbBzn34iMva+Q7Z/pR/PuSDdz7/GraO7s4etworj9vetRlHdJg2+xp4C4SHt2hepj+/iNn8OY3r+SVr14OwLt7K3TkHnUBIlIWCvcjVJ1OkE4aO/aO/P57doSuC6oicaBwP0JmxrhRaXbsOxB1KYdFOzGJhEmbdZTA2Oo0b76zkydfexuAM6aNZ+r4URFXlc/AhcNAPXeRECncS2DqUaN47q0tNK/NLkfwhzPq+Ncbz4u4qoHybbOncbtImBTuJfD9G85h/bY9ANz++HI2vrs34oqGRguHiYRH4V4CYzIpTj56LADH141hyfp3I64ov7xTIU1tGZEQKdxLbNLYanbu6+Dc258G4Oix1fz05gvIpJIRV5af2jIiYVK4l9g1Zx7Dph37ONDptGzbw3NvbWFd2x5mTK6NurTsTkyKc5FYULiX2LQJo7ltzmkAvLh2G8+9tYWFq7fS2d37mD5hNKOrRs6vXVMhRcI0clImQMdOHI0ZfOU/Xu89dvFJ9dz/ydmR1DP48gNquouERuFeRnU1GX7yXy6gded+AO59YTVr2/ZEVk/eqZAauIsESeFeZk2NE3p/Xrh6Kz97saXkn/Fqy7us3zpw+uWJk2o46ejCvX6N20XCo3AfRvW1GXbu7+A7T63AzEgljI/Nnsak2uqi3+PNTTt5e/vBbWo7Oru4+Ucv0d7ZNeDc8aPTfOXqg3uZt3d0DeixG5oKKRIihfswOn3qONJJ47u/Wdl7LJVMcPPFJ+Q9f13bHhasbut93NnlfPWRpXmD/Ad/cQ7H1Y3pfbxs4w7+9sdL+O8/eaXfeXU1VUf6NUSkAijch9F7Z9bz1u1X9T5+z62/ZMuu/b2Pl6x/l3e2H2yv/NP8lby+YUe/90gmjO/fcA71tZneY7XVKWbmTLWcObmWC0+YyP6O/n8RNBzVf80bM9MdqiIBUrhHaGJNhrbucH93Tzt/evd/0tnVP2hvef+JXDv74Ba2o6tSTBhT3Oh70tjC7Z7OLqdlW2UtlyAihSncIzSxpoqFq7fyP3/6Km272+nscv7+T0/njIbxQHaUfkJ9DclE+aa0dLnzzIpWXmvZzukN48r2OSIyvLSee4QuOWkS7vDbN1t5fcN2Tp0ylqtOn8IpU8ZyypSxzJxcW9ZgB/j6Ne8BYEOFLXYmIoemkXuEPnvpDD576YxIazi3e6rmzgrdbERE8tPIPebGVqcB2LFv5G8TKCLFU7jHXE119j/eduzVyF0kJGrLxFwyYdRmUjyyZANvvLNjwPMfPruBS06eNOB4wqzs1wNE5PAp3IU5Zx1D85ptA9a9eeOdncxbuinva6qSCX568wW9M3tEZGRRuAvf/NDpeY+vbdvNY6++PWDVyLbd7dz3whrWtu1RuIuMUAp3GdSxE8fwmfefOOD4urY93PfCGto7Bi6DICIjgy6oypBVpbL/2uQubSAiI4fCXYYs0x3u7R2dEVciIoNRuMuQaeQuMvIp3GXIqnpH7gp3kZFK4S5DlkoYCdPIXWQkU7jLkJkZValE3k1DRGRkULjLYcmkkuw/oAuqIiOVwl0Oi0buIiNbUTcxmdkVwJ1AErjH3e/Ief5zwF8BHUAr8Cl3X1viWmUEqUomWLJ+O//4qzcHPJdJJ7jh/GN7V5wUkeFXMNzNLAncBXwAaAEWm9mj7r6sz2kvA03uvsfMbga+BXysHAXLyHDKlLE8vXwTy98euNgYwJRx1fzJWQ3DXJWI9Chm5D4bWOnuqwDM7CFgDtAb7u4+v8/5C4AbSlmkjDz3fLwp7/Ftu9s56xu/YttuLSEsEqVieu5TgfV9Hrd0HxvMjcCT+Z4ws5vMrNnMmltbW4uvUipGbc/68NrZSSRSxYR7vkW7Pc8xzOwGoAn4h3zPu/tcd29y96b6+vriq5SKkUomqMmk2K7NP0QiVUxbpgWY1udxA7Ax9yQzuwz4MvA+d99fmvKkEo0blea1lu38ePG6vM/PPm4ix9WNGeaqROKlmHBfDMwws+OADcC1wPV9TzCzs4AfAFe4++aSVykVpbFuNC+sbKN57ba8z1904kQe+Kvz8z63Y98BfvHKRjq78v7HYa+zpx/FaVPHHXGtIqEqGO7u3mFmtwDzyE6FvNfdl5rZbUCzuz9Ktg1TA/zEzADWufs1ZaxbRrB7P3Eubbva8z73v598gxdWbuHXy/Pv8DRv6Ts83NxS8DPObBjHI7f8wRHVKRKyoua5u/sTwBM5x27t8/NlJa5LKlgmleSY8aPyPndu41H84pWN3PgvzYO+fnbjBO6+4exBn//6L5axeM3WI65TJGTaiUmG1Z+fdyznHHvUIdsux04cw7hRg98ANWV8NW272nF3uv9LUURyKNxlWCUTxnuOObJe+cQxVbR3dvGDZ1eRTg4+4StpcPUZx1BfmzmizxOpRAp3qTgnHT0WM7jjyTcKnrt1dzufu/ykYahKZGRRuEvFed/Mel7/2h/RUWBGzaXf/i2bdmhWrsSTwl0q0phM4X9162szbNmlcJd4UrhLsOpqqmheu41P3reo4Lk11Wn+7k9Oo1YrWUogFO4SrGvOPIbtew/Qtjv/nPsee9s7eWtzKx85p4H3zdSyGBIGhbsE66NN0/ho07SC523asY/z/u7XLFrdxoTRVUW999HjqjULR0Y0hbvEXn1NhtpMirvm/5675v++qNdMHpthwZcu1Tx7GbEU7hJ7iYTxs7++kHVte4o6/5k3N/OjBet4452dTBhT3EgfYGx1mlFVycMtU2RIFO4iwMzJtcycXFvUuaOqkvxowTquvPO5IX1GXU2Ghf/rUpIJjfal/BTuIkN0/vETufPaWeze31n0a17bsJ0HF63j3udXM7Gm+NF+j6ZjJzB94ughv07iS+EuMkTJhDFn1qE2IxtozZbd/HjxOm5/Yvlhfeb5x0/goZsuOKzXSjwp3EWGQWPdGBZ9+TJ27+8Y8mv/6TcreWTJRq6d+7vD/vyJYzJ8+8/OpDqtnn9cKNxFhkldTYa6mqFPn7zh/GPZ8O7egsstDGb3/g4WrNrKaVPHcUL9ke2AZWacd/wExupmrxHP3A/vX5gj1dTU5M3Ng6/pLSKlsX3vAWbf/jT7O7pK8n6fuLCRL199Skneq8ehVveU/szsRXdvKniewl0kfG9v3zvo7lhD8Y3HlrFwdek3SvnM+0/gC390csnfN0QKdxEpubc27WTe0ndK+p6/XPoOb23axZRx1SV93x6pZII7Pnw6TY0TyvL+w63YcFfPXUSKNmNyLTOKvB+gWH8wo55/+c81dJVpoPnr5Zu5+YGXmDx2eJaLqMmkuPvPz+GoIdzgVg4KdxGJ1Kxp45n1sVlle/8HF63j6WX5N2QvtY4u57dvtnL1d58ralnqclK4i0jQrps9netmTx+2z/v2Uyv4feuusr3/00Wep3AXESmhz5d5W8e7byjuPM0/EhEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAhTZwmFm1gqsjeTDD08dsCXqIoaBvmd44vJd4/I9T3L3ggv8RHaHqrvXR/XZh8PMmotZia3S6XuGJy7fNU7fs5jz1JYREQmQwl1EJEAK9+LNjbqAYaLvGZ64fFd9zz4iu6AqIiLlo5G7iEiAFO4iIgFSuBfBzK4wsxVmttLMvhh1PeVgZvea2WYzez3qWsrJzKaZ2XwzW25mS83sb6KuqRzMrNrMFpnZK93f8+tR11ROZpY0s5fN7LGoaykXM1tjZq+Z2ZJipkOq516AmSWBN4EPAC3AYuA6d18WaWElZmbvBXYBP3T306Kup1zMbAowxd1fMrNa4EXgQwH+8zRgjLvvMrM08DzwN+6+IOLSysLMPgc0AWPd/YNR11MOZrYGaHL3om7U0si9sNnASndf5e7twEPAnIhrKjl3fxbYGnUd5ebub7v7S90/7wSWA1Ojrar0PKtnI890958gR3Jm1gBcDdwTdS0jicK9sKnA+j6PWwgwDOLIzBqBs4CF0VZSHt2tiiXAZuBX7h7k9wT+D/A/gK6oCykzB54ysxfN7KZCJyvcC7M8x4IcAcWJmdUAPwP+1t13RF1PObh7p7vPAhqA2WYWXLvNzD4IbHb3F6OuZRhc5O5nA1cCn+lupQ5K4V5YCzCtz+MGYGNEtUgJdPegfwY84O4/j7qecnP3d4FngCsiLqUcLgKu6e5HPwRcYmY/irak8nD3jd3/uxn4d7It40Ep3AtbDMwws+PMrAq4Fng04prkMHVfaPxnYLm7fyfqesrFzOrNbHz3z6OAy4A3oq2q9Nz9S+7e4O6NZP+/+Rt3vyHiskrOzMZ0TwDAzMYAlwOHnNmmcC/A3TuAW4B5ZC++PezuS6OtqvTM7EHgd8BJZtZiZjdGXVOZXAT8BdkR3pLuP1dFXVQZTAHmm9mrZAcov3L3YKcJxsBk4HkzewVYBDzu7r881As0FVJEJEAauYuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiA/j9oOWS87xsUxwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcNklEQVR4nO3de5SU9Z3n8fe3bk1fgUCD2A2ChouiRmN7STyZKF7JzSSTSYwTs3HnHDWrc8x6ZkYzu7nsJJnJJpkY3XE0jDHu7OZEM9FJ3IxKVOI9RiCKihdAQGkQaFDk3k13f/ePqm6b6mqquqnqp+v3fF7ncEJVPV31LTn58OX7/J7fY+6OiIiEJRF1ASIiUn4KdxGRACncRUQCpHAXEQmQwl1EJECpqD548uTJPnPmzKg+XkSkKi1fvnybuzcXOy6ycJ85cybLli2L6uNFRKqSmb1eynEay4iIBEjhLiISIIW7iEiAFO4iIgFSuIuIBKhouJvZ7Wa21cxeHOJ1M7ObzGyNmT1vZu8vf5kiIjIcpXTudwAXHuL1hcDs3K/LgVsOvywRETkcRde5u/tjZjbzEIdcBPyrZ/cOftrMJpjZNHd/s0w1Splsfmc/dy3dQE9vb/9z6WSCSz9wFBPqMhFWJiLlVo6LmFqADQMet+eeGxTuZnY52e6eGTNmlOGjZTj+/dmN3PDQKgDMoG8r/2kTavnMKa0RViYi5VaOcLcCzxW8A4i7LwIWAbS1tekuIaOsr2Nf9e2FZFIJNu7Yx5nfXUJvr/4oREJTjtUy7cD0AY9bgU1leF8ZJV7472IRqWLlCPd7gS/mVs2cAbyjefvY1DeGsdy/tSzveREJR9GxjJn9HDgLmGxm7cA3gDSAu98K3Ad8BFgD7AUuq1SxIiJSmlJWy3y+yOsOXFW2iqRi+hr0vo69r4NX4y4SHl2hKiISIIV7jLw7c8+27Jbr4TVzFwmPwj1G+lbFFFq7KiJhUbjH2Lszd7XuIqFRuMeIlkKKxIfCXUQkQAr3GOlfCpnXuqtxFwmPwl1EJEAK9zjJG65bf+uu3l0kNJGF+1t7uti4Y19UHx9LzrsnU0UkbJGF+8Yd+/jB4lej+nhB2w+IhCyycB+XTrJ2256oPj6W3HUBk0hclONmHSNSl0myYsMOjv7qfwzr564++71ce/7cClUVL1rnLhKuyMK9uaGGL50zGx9Gsty5dAMvvbmzglWFzfF3l0Hy7pLI4fwZiEh1iCzcM6kE1543Z1g/8+SabXR29xY/UEQk5qpqKWRNKknnAYX7SOXP3PvHMlEUIyIVVV3hnk7Q2d0TdRlVS0shReKjqsI9k0xoLFNGpmuYRIJVVeFek07SpXAfsexYRq27SBxUV7in1LmXU/+dmCKuQ0TKr6rCPZPSzP1wOEOcURWR4FRVuKtzrwytcxcJT5WFe1LhfjjyG3d17iLBiuwippEYl07Q1d3LSX/32yGPmT6xjl9ddSbJhJIrn5ZCisRHVYX7p05u4Z19B+jtLTxGeOnNnSxd/zZ7urppGpce5eqqj/aWEQlXVYX7UZPq+cbH5w/5+v9+aj1L179Nd4/SqhB311JIkZioqpl7MalkNri6ezSXL0X/xmFaDCkSnKDCPZ3Ifp0DQ4xt4s5dM3eRuAgq3NW5D49m7iLhCizcc527Zu4FOVoKKRIXQYV7Orf8sbtXnXsh2bHM4ETXX4Ui4Qkq3Ps6d62WKU3/3jL6zyUSnMDCPRtWBzRzL8hxLYQUiYmgwr1vtUy3VsuUpH8/dw1mRIJTUrib2YVm9qqZrTGz6wu8Pt7M/p+ZrTCzlWZ2WflLLU6d+6F5/hlVEQlW0XA3syRwM7AQOA74vJkdl3fYVcBL7v4+4CzgH80sU+Zai0r3L4VUJzocmrmLhKeUzv00YI27r3X3LuBO4KK8YxxotOxSjAbgLaC7rJWWINU/llHnPhQ17iLxUEq4twAbBjxuzz030D8BxwKbgBeAa9x9UMKa2eVmtszMlnV0dIyw5KG9O5ZRK1qIux+0FFLr3EXCVUq4F4qA/PS8AHgOOBI4CfgnM2sa9EPui9y9zd3bmpubh11sMWkthRwWbSImEq5Swr0dmD7gcSvZDn2gy4B7PGsNsA6YV54SS5fSRUyHNNR+7roTk0h4Stnydykw28xmARuBi4FL8o55AzgHeNzMpgJzgbXlLLQUfZ379xe/ym2PrzvotU+/v4XLzpw12iWNaf1LIZXtIsEp2rm7ezdwNbAYeBn4hbuvNLMrzezK3GHfAj5oZi8ADwPXufu2ShU9lGnjx/HZtlbmTG2kubGm/9eGt/eyeOXm0S5nzHHXCVWRuCjpZh3ufh9wX95ztw74/Sbg/PKWNnypZILvfeZ9g56/5F+epkv3Xh2kf1fISKsQkUoI6grVoaSSCe3xTm77AS2REYmFeIR7wujRSdZBY5n+OzHp7z2R4MQm3LU8cjD18CLhikW4p5MJbSbGIZZCauouEpxYhHsyYbr1XgEav4uEKxbhnkqatiSgb7Ze4E5M+k8jEpxYhHs6kaBHY5lB+k+oRlyHiJRfLMI9mTRtSQCAaxQjEhOxCPd0QmMZOMQVqprLiAQnFuGeSmosIyLxEo9wT5huvUeuc89r3c00cxcJUTzCPWnq3IegEbxImOIR7onsRUxx37fc8YI36Ij5fxaRIMUk3Ptu4qEUy2dmukJVJEDxCPfcTTziPpopNHMXkTCVtJ97tUvnbpy95JWt1KaTADQ31nB8y/goyxp1zuAZu6GxjEiIYhHuE+oyAPyXn/2x/7mEwbNfP5/xtemoyhIRqZhYhPunT25h3hGN/TP3B1/azM2/e429Xd2xCvfsWObg3l1LIUXCFItwTyTsoBHM6i27ALTHOxRcPSMi1S8WJ1TzpXMnWON2YdNQq2I0cxcJTyzDPZXU0sh+atxFghTPcE/Es3NniKWQWucuEp5Yhnvf0si4zdwL3WbP+l4QkaDEMtz7LmrSHu8iEqpYhns6tx1B3PZ4dx+8t4yWQoqEKZbh3t+5xyzcRSQ+Yhruuc49ZmOZwjN3i/1umSIhimW4pxPq3PtoIzGRMMUy3PvXucdsKeRQ91BV4y4SnliGe7p/LBOvVMuOZfJOqEZTiohUWCzDPdU/lolX5z6UeP0VJxIP8Qz3uF7E5D54P3czjWVEAhSLXSHz9W0ctnHHvv4dIlsn1lGbSUZZlohI2cQy3GszSczgxodXc+PDqwFYMG8Kt3/p1IgrqyyHQUN2Q3vLiISopHA3swuBG4EkcJu7f7fAMWcBPwLSwDZ3/3AZ6yyrpnFpfnHFB9iycz8AtzzyGtt2d0ZclYhI+RQNdzNLAjcD5wHtwFIzu9fdXxpwzATgn4EL3f0NM5tSqYLL5dSZ7+n//a+f28SGt/ZGWM0oKbQU0rQUUiREpZxQPQ1Y4+5r3b0LuBO4KO+YS4B73P0NAHffWt4yKyuTTMRi+1/HtRRSJCZKCfcWYMOAx+255waaA0w0s0fMbLmZfbHQG5nZ5Wa2zMyWdXR0jKziCkgnTTfuEJGglBLuBS9qzHucAk4BPgpcAHzNzOYM+iH3Re7e5u5tzc3Nwy62UtLJBAe6Y9C5FxjL5HfyIhKGUk6otgPTBzxuBTYVOGabu+8B9pjZY8D7gFVlqbLC0qkEXTFb8z6QNg4TCU8pnftSYLaZzTKzDHAxcG/eMb8GPmRmKTOrA04HXi5vqZUTm5l7gdvsaT93kTAV7dzdvdvMrgYWk10Kebu7rzSzK3Ov3+ruL5vZA8DzQC/Z5ZIvVrLwckonLRbhLiLxUdI6d3e/D7gv77lb8x5/H/h++UobPem4dO4UuBMTWgopEqJY7i2TL5VMcKDHg589Fx7L6ISqSIgU7kCmbyOxmC6H1PYDIuFRuPPuRmKhj2YKRbj6dpEwKdwZEO7d8exgA59GicRSLHeFzJdOZcP9fy1ZTV0myeTGGi4946jg5tHZmXveCdWwvqKI5CjcgWOa68mkEvzkyXX9XeyCeVNonVgXbWGjRI27SHgU7sAHj5nMqm8vBODXz23kmjufY/+BEOfvg+/EBLoTk0iINHPPU5Mb0XQFuNdMoaWQIhImhXueTF+4B75ypk827NW6i4RG4Z4nk8zeRzXIzp0CFzFFUomIVJrCPU9f597Z3RNxJaNHM3eR8Cjc82SCnrkX2FtGrbtIkBTueTLJgMOdwmGuzl0kPAr3PDXpmJ1QxbS3jEiAFO55+jr3zhA79wK32RORMCnc84S8zr0QM41lREKkK1Tz9J1QfXLNNnp6nWTC+OgJ05hYn4m4ssPnMGjork5eJEwK9zz1NSkm1We4/8XN3P/iZgD2dHZzxYePibiyylHjLhIehXuedDLBk9cvYG9XD+7OKd9+iD2d3VGXVRbZpZAHC23nSxHJUrgXMC6dZFw6e6VqTSoR1MlVLYUUiQedUC0itHAXkXhQuBcxLp0MZiuCoZZCap27SHgU7kXUpBOB7u2eZYbOqIoESOFeRE0qoM4d1wlUkZhQuBdRk0rQGXjnrsZdJDwK9yKyM/cwwr3QzD1/l0gRCYPCvYiaVIJ9B3ro6XV6equ7xx3qNnuutZAiwVG4F1GXSbL89bc55m/v473/7T7uXbEp6pLKSiN4kTDpIqYivnLuHE5snQDADQ+tYvWWXRFXNHLO4Jt1ZJ8XkdAo3Is4vmU8x7eMB+DHj77G3q4wVs70UeMuEiaNZYahNpNk34HqDXd3Cqa5Ru4i4VG4D0NtJsm+0Dp3M41lRAKkcB+G2nSSvV3Vu0PkEI27iARI4T4MtZkU+6r5gqYCSyENLYUUCVFJ4W5mF5rZq2a2xsyuP8Rxp5pZj5l9pnwljh216QT7qrhzL0itvEiQioa7mSWBm4GFwHHA583suCGO+5/A4nIXOVbUZVKsaH+Hc/7xEc6/4VEeX90RdUnDoqWQIvFRSud+GrDG3de6exdwJ3BRgeP+Ergb2FrG+saUL5wxg/OOm8q8aU2s2bqbp17bHnVJh02Nu0iYSlnn3gJsGPC4HTh94AFm1gJ8ClgAnDrUG5nZ5cDlADNmzBhurZFbMG8qC+ZNBeDkv/stu/dX14hmqO0H1LqLhKeUzr2UOPgRcJ27H3KdoLsvcvc2d29rbm4utcYxqb4mFcS9VbUFsEiYSunc24HpAx63AvkbrLQBd+aCYjLwETPrdvdflaXKMaihJsWuKgt3Z4iNw9S6iwSnlHBfCsw2s1nARuBi4JKBB7j7rL7fm9kdwG9CDnbIhnv1jWUGn1DNLoWMph4RqZyi4e7u3WZ2NdlVMEngdndfaWZX5l6/tcI1jkkN41K8tGkn373/FRIGF586gxmT6qIua9g0lREJU0kbh7n7fcB9ec8VDHV3/9LhlzX2nTx9Ik+9tp3bn1xHV+5mHn9z4byIqzq0Iccy6txFgqNdIUfomnNnc825swE45VsPsmPfgYgrGhndiUkkTNp+oAyaatPsrIJwH6pD1wlVkfAo3MugqTbNzio7udpHM3eRMGksUwZN41K0v7WX+194E4DZUxt575SGiKsaLDtzL7D9gBp3keAo3MugdWIdj6/expd/9kcAjp5cz5K/Oivaogpx14RdJCYU7mXwzU8cx3/64FEA/OTxddy7YlN2TXmVzDzUuIuER+FeBjWpJPOOaAJgztRGOrt72bm/m/G16YgrO1ihpZBmprGMSIAU7mU2pakGgAU/eIREwmisSXHXFR+gubEm4soKq45/W4jIcGm1TJl9eE4zl505k/PnH0HbURNZu20PL258J+qygNyukIVfGeVKRKTS1LmX2YS6DN/4+HwAtu7cz/0vbubZN95m2oRxAExrqmV83dgZ11TJaQERGSaFewVNbqihPpPkpiVruGnJGgDeO6WBh679cCT1OIVP8mrmLhIehXsFJRLGXVd8gA1v7QXg189tYskrWyNbSVNoLKPOXSRMCvcKO75lPMe3jAdg4459PLByMzv3dZd1NLN6yy5Wbdk96PkjJ4zj5BkTi/68GneR8CjcR1HfipkbHlrF+No0ZnDRSS3Mmlxf8nu8sX0v67bvOei5v/q3FXTs6hx0bDJhfPuTx5NOZs+b79h7gGnjxx10jGG45jIiwVG4j6JjpzVRm05yx1Pr+5/r2NXJdz51QsHjt+7az6OvdhzUWX/vgVfZtntwkH/rovmcfvSk/sdbdu7nSz9dylfveeGg4z40e/JhfQcRqQ4K91E0Z2ojL3/rwv7HF9zw2EFB/ermXazb9u545efPbODRVR2D3ucfPn0Cc6Y29j+uSSWYf2TTQXP8OVMbeeZvz2Fv18G3tR3UuZvGMiIhUrhHaFJDhu27u4DsLfAuXvR73t578NbBf/r+Vv7rebP7H9ekkiVfEDWpoYZJxQ/jje17q2q7BBEpTuEeoUkNNTz66lau++XzdHb38PbeA1x73hzOO25q/zFHN9dTk0pWrAYzY+22PTzw4mYWnjCtYp8jIqNLV6hG6EOzJ1Nfk+LRVR08vfYtjp5cz6dObuHYaU39vyoZ7ADf+eTxQHYlj4iEQ517hD7bNp3Ptk2PtIbjpjVhBruq9GYjIlKYOveYSySMhkyKnfvH/m0CRaR0CnfJ3QNWnbtISDSWERrHpXhiTQdX/J9lg147e+4U/vSU1kHPG5BKqjcQGasU7sLHTpzGb55/k9e37z3o+Ve37GLxyi1cn3chFEDC4JYvnMIF848YrTJFZBgU7sLVC2Zz9YLZg57ftruTf1vWTk9v70HPd/c6P3poNWs79gz6GREZGxTuMqTJDTV8+axjBj3fkwv3ru7eAj8lImOBhqYybMmEkUoYnd09xQ8WkUgo3GVEalIJde4iY5jCXUYkk0rQqXAXGbMU7jIiGXXuImOawl1GpCaV1MxdZAxTuMuIZFIJunrUuYuMVQp3GZGaVILOAwp3kbFK4S4jos5dZGwr6SImM7sQuBFIAre5+3fzXv9z4Lrcw93Al919RTkLlbElk0ywtmMPNzy4atBryYTxuVOnM7VpXIGfFJHRUDTczSwJ3AycB7QDS83sXnd/acBh64APu/vbZrYQWAScXomCZWw4dloTf1j3Fjc+vLrg6wb85TmDtzQQkdFRSud+GrDG3dcCmNmdwEVAf7i7+1MDjn8aGLyNoATlm5+Yzzc/Mb/ga/O//sCge8GKyOgqZebeAmwY8Lg999xQ/gK4v9ALZna5mS0zs2UdHR2lVylVpak2rZt/iESslHC3As95wQPNziYb7tcVet3dF7l7m7u3NTc3l16lVJXxtWne2adwF4lSKWOZdmDgjT5bgU35B5nZicBtwEJ3316e8qQaNdWmea1jN3ctfaPg6/OPHM/xLeNHuSqReCkl3JcCs81sFrARuBi4ZOABZjYDuAe41N0HL5+QWJk1qZ5n1r3FdXcPvskHwFGT6nj0r88u+FpXdy+/enYj+4tc/TpnaiNnHD3psGsVCVXRcHf3bjO7GlhMdink7e6+0syuzL1+K/B1YBLwz2YG0O3ubZUrW8ayv//0CVxzbuGVMnc8tZ5/eXwti1duJpUYPPFb9vrb3PLIa0U/Y1J9huVfO++waxUJlbkXHJ9XXFtbmy9bNvienRK2Ja9s4T/fceg/99aJtfzqqjMLnuwBWPT4Wn786FpWf2chad3HVWLGzJaX0jzrTkwyqs6eO4XFX/mTQ246duSEWiY31Az5euvEOgDe3tPFFF0oJVKQwl1GlZkx94jGw3qPSfUZAG5/cj3NjUP/JQBw7rFTOGpS/WF9nkg1UrhL1Zk9pYFUwrj10eKz+ZUb3+GHnztpFKoSGVsU7lJ1Zk9t5IVvXlB047Iv/uQPbNm1f5SqEhlbFO5SlWozSWpJHvKYKU3jeGP73lGqSGRsUbhLsCY31PDoqg4u++kzRY+tSSX52sePo2VC7ShUJlJ5CncJ1gXzp/LSmzvZvqfrkMd19zgvvbmTD82ZzJ+fftQoVSdSWQp3CdZZc6dw1twpRY/r7XXmfe0Bnn1jBye2TCjpvd/TkFGXL2Oawl1iL5Ewjm6u55fL2/nl8vaSfiaTSrD8v59L47h0hasTGRmFuwiw6NI2Vm3ZVdKxL2x8hxsfXs3S9W8x/8jSN0CryyT1l4GMGoW7CDBjUh0zJtWVdOzsqQ3c+PDqotso5BuXTvDkdQuYdIirb0XKReEuMkxHTapn0aWnsG33oU/UDrRxx15u/t1r3PbEOmZPaRj2Zx47rYljpzUN++ckvhTuIiNw/vwjhnX87s5ufvrk+pJ2vCykdWItT1y3YEQ/K/GkcBcZBQ01KZ66fsGI7lB19/J2blqyhs/9+PfYUFtlFlGXSfG9z5x4yA3ZJCwKd5FRMqEuw4S6zLB/7s/apvPshh10dvcykh26u3t6eXrtVm595DVOm/We4b9BnpNnTCy6YZtET/u5iwTO3TnjHx5my87OsrzfucdO4ZYvnFKW9+qTShg20n+WxEyp+7kr3EViYNvuTja/c/ibqC16bC33rhh0C+XDdtFJR3LjxSeX/X1DpJt1iEi/yQ01ZZm3X79wHnOPaKScTeHv127nN8+/yYoNO8r2ngMlzPjrC+ay8IRpFXn/sUqdu4hEav22Pdy0ZDU9vZXJoqde286Bnl5aJ47OdhGZZIIf/Nn7OLp5+EteS6HOXUSqwszJ9fzws5W7ocpvV27mrqUbKvb++R5b3cHnFj3NhNpor0ZWuItI0M6ff8Swr0s4HHc8uY5n1r9Vsfd/qMTjNJYREakipY5lEqNRjIiIjC6Fu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiAQosouYzKwDeD2SDx+ZycC2qIsYBfqe4YnLd43L95zr7o3FDops+wF3b47qs0fCzJaVclVYtdP3DE9cvmucvmcpx2ksIyISIIW7iEiAFO6lWxR1AaNE3zM8cfmu+p4DRHZCVUREKkedu4hIgBTuIiIBUriXwMwuNLNXzWyNmV0fdT2VYGa3m9lWM3sx6loqycymm9nvzOxlM1tpZtdEXVMlmNk4M3vGzFbkvuf/iLqmSjKzpJk9a2a/ibqWSjKz9Wb2gpk9V2xJpGbuRZhZElgFnAe0A0uBz7v7S5EWVmZm9ifAbuBf3f34qOupFDObBkxz9z+aWSOwHPhkgH+eBtS7+24zSwNPANe4+9MRl1YRZnYt0AY0ufvHoq6nUsxsPdDm7kUv1lLnXtxpwBp3X+vuXcCdwEUR11R27v4YULkbP44R7v6mu/8x9/tdwMtAS7RVlZ9n7c49TOd+BdnJmVkr8FHgtqhrGUsU7sW1AANvnd5OgGEQR2Y2EzgZ+EO0lVRGblTxHLAVeNDdg/yewI+AvwF6oy5kFDjwWzNbbmaXH+pAhXtxVuC5IDugODGzBuBu4CvuvjPqeirB3Xvc/SSgFTjNzIIbt5nZx4Ct7r486lpGyZnu/n5gIXBVbpxakMK9uHZg+oDHrcCmiGqRMsjNoO8Gfubu90RdT6W5+w7gEeDCiEuphDOBT+Rm0XcCC8zs/0ZbUuW4+6bc/24F/p3s2LgghXtxS4HZZjbLzDLAxcC9EdckI5Q70fgT4GV3/2HU9VSKmTWb2YTc72uBc4FXoq2q/Nz9q+7e6u4zyf5/c4m7fyHisirCzOpziwAws3rgfGDI1W0K9yLcvRu4GlhM9uTbL9x9ZbRVlZ+Z/Rz4PTDXzNrN7C+irqlCzgQuJdvhPZf79ZGoi6qAacDvzOx5sg3Kg+4e9DLBGJgKPGFmK4BngP9w9weGOlhLIUVEAqTOXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAL0/wHYx2a0bgWhnQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -256,11 +255,11 @@ } ], "source": [ - "print('Kinked R consumption function:')\n", - "plotFuncs(KinkyExample.solution[0].cFunc,KinkyExample.solution[0].mNrmMin,5)\n", + "print(\"Kinked R consumption function:\")\n", + "plotFuncs(KinkyExample.solution[0].cFunc, KinkyExample.solution[0].mNrmMin, 5)\n", "\n", - "print('Kinked R marginal propensity to consume:')\n", - "plotFuncsDer(KinkyExample.solution[0].cFunc,KinkyExample.solution[0].mNrmMin,5)" + "print(\"Kinked R marginal propensity to consume:\")\n", + "plotFuncsDer(KinkyExample.solution[0].cFunc, KinkyExample.solution[0].mNrmMin, 5)" ] }, { @@ -293,7 +292,7 @@ "metadata": {}, "outputs": [], "source": [ - "KinkyExample.track_vars = ['mNrmNow','cNrmNow','pLvlNow']\n", + "KinkyExample.track_vars = [\"mNrmNow\", \"cNrmNow\", \"pLvlNow\"]\n", "KinkyExample.initializeSim()\n", "KinkyExample.simulate()" ] @@ -312,7 +311,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3xb5bnA8d/jHc8kHlmO4+w9cRaBkIQWApSyOtij0NCW2dIWKG1ZpZTbC6TcMkohUCiEUvYMGZAEEkIG2cvZiTNsZ3gvjff+cY5kKZZsJbGsxH6+n48+1hmS3iMfnefdR4wxKKWUUkeLinQClFJKnZw0QCillApIA4RSSqmANEAopZQKSAOEUkqpgGIinYDmlJGRYXJzcyOdDKWUOmWsWLHioDEmM9C2VhUgcnNzWb58eaSToZRSpwwR2RVsm1YxKaWUCkgDhFJKqYA0QCillApIA4RSSqmANEAopZQKSAOEUkqpgMIWIERkhogUici6INuvEpE19mOxiAz32bZTRNaKyCoR0X6rSikVAeEsQbwMTG1k+w7gLGPMMOBh4Pmjtk82xowwxuSFKX3qJLZqTwkL84sjnQyl2rSwBQhjzELgcCPbFxtjjtiLS4DscKVFnXpufHkZ185YyrKdQU8h1YxKquoinQR1EjpZ2iBuBD71WTbAbBFZISLTGnuhiEwTkeUisry4uHXlOPeXVtMWb+jkcLk5VGldsD5avS/CqWn9lmw/xIiH5jB/c1Gkk6JOMhEPECIyGStA3O2zeoIxZhRwHnCLiEwM9npjzPPGmDxjTF5mZsDpRE5JBUeqGP/o5zzwwfpG96uuc/GH99bxxtLdLZSy8MsvLPc+X7JdSxChKqtxcP/76yircTS6nzGG0ioHD3+0gaLyGt5ftReAr7YcbIlkht2KXUc4XKklouYQ0QAhIsOAF4CLjDGHPOuNMfvsv0XAu8CYyKQwcjbuty6S//p6F7e89i3lQX70767cy6tLdvE/n21uyeSFlSdAXDEmh82F5VzyzCJKqwIfv8ttmq2U9e3uI9z5xkoKy2qO6/V/fH8dufd83CxpOR5Pzd3Cv77exfsr9za63z8Wbmf4Q7N58asdjHlkHjOX7gFga3FFSyQzZDUOFwvzi3G43IBVsqxzuht9TZ3TzWXPLmbUw3Oa3Lel7DxYye/fW0uNwxXppByziAUIEckB3gGuMcbk+6xPEpEUz3PgHCBgT6jWbJvPj/Xjtfv5bH1hwP12H64CoLzGgdPV8j+IGoeLsx+fz9wNgdN3PPYcrgbg3vMH0L1jO1buLmF+fsPqD7fb0Pt3n/DQRxtO+DNdbsNtr6/kvVX7+NPHG73rtxdX8NGa0Kq5XvnamvPsUEXtCafnWC3aepAXvtoBgMMVPGA+/NEG/vLpJu/y0G5pAAzplsrqPSUnVZXmf1cUcO2MpVz/0lK2FJYz/tF59Pv9pzz44XpvOuucbr807y2p9j7fWtQw4BWX13L+377k803Nc75+snY/N768DLc7+Pf23IJt/HvJbl60/z+nknB2c50JfA30F5ECEblRRH4mIj+zd/kjkA48c1R31k7AVyKyGlgKfGyMmRWudJ4op8vN3+ZuYY99oW4uW4sqEKlfXre3NOB+++wfhMNl2HOkOuA+4bTpQDnbiiu55501x/S6hfnFvPL1zgbr65xu1hSU0ik1ntSEWD6/axLxMVGsKWh4/NsPVgLw0qKdzFq3/4SqFdbuLfVeXLb4VHHd8PIybn19ZdDvP5D8wvDkxEuq6rjs2cWs3lPit97tNn7f5b6S4OfBm8v3+C2/f8sEvvnd2Vw5pgdHqhzeDMe8jYXNfk43xuFyN7jIbj5QBsCirYe4+d8rOFhh/X9fWrSTZ+Zvo6zGwbnTF9Lz3k+YOn0hALsOVXpfH6gk+OTcfDbsL+OtFQVNVsWF4o43VjJvUxGrCkqC7uPJ7H28Zj+1ThdfbiluNKCcTMI23bcx5oomtt8E3BRg/XZgeMNXnJzmbiziybn5PDk3n1E57YmPiebfN40lOkqafnEj1haUMqF3BunJcby/ah8rdx8JuN/ekmoSYqOocbjZWlRBz4ykE/rcY7V+n3XhDOV4731nLf9dvoeROe1ZttM6nguGdiE9Od67zyMfb2DuxkL6d0oBIDY6isFdU1kT4Af4rc938rN/f0tmSjzf3Hs2Ucfx3S/aatW/XzSiK3M2FGKMoaTKwa5D1kVy5tLdPHLJ0ICv3VZcwQtfbvcubykqZ3zvdO9ydZ2Lr7YeZGi3NDqnJRxz2jy+3X2EFbuOcNHTi3jlJ2OY2M9qc7vnnTV8tr6QM/tmsOdwFftKgweIlPgYpgzI4qIRXemS1o6oKKFTagIjurcHYOXuEtLaxXLjv6z82u/OHwDAwC6pnNn32Nr4SqscxMdGkRAb7be+vMbBjf9azuT+WVw5NofUhBj63vcpl43K5vEf1f/0txdXMrBLKvmF5WwvrmRMz450TUvgvVX7+Otnm3l58U6Ky63S2qYD5dQ53d4AB7C/tGGA2LTfCjqz1h3gk7UHePG6PM4e2OmYjstXZnI8+0prmLOhkFE5HSipquOZ+du44+y+JMXHUFrlYJUd0PMLy7nrzdV8tGY/N0/sxb3nDzzuz20pEW+kPtX91ydH9u3uEr7efogPVlt1wBv3l1FR6wQ4pqL7joOVbC4sZ8qALP52+UiuHpfDzkOBc3P7Sqo5vXcGQKM5vs0HyvkihF4qxhhW7DrszeF8u/sIz87fFrD+dNehSr7Mty6sFTXOJnNFM5fuxuk23uAAMGv9Ae/zshoHry6xqmlKqutLA4O7prFxf7n3OzxYUctr3+xi9lHVbsXltWz2yf0fbX9pNQ9+uJ5ap/+xGGN4f9VehmWnMbJ7e6rqXBysqGODfTERgdV2gKqodfLeyr1+1Xk/fO5rbz2+dZx7vPXmAM/M38pPX1nO9S8tDVgNeKiiNqTuvNuL63PHMxbVV1e8ubwAgO8M7ET3jonsLQnchmKMobiili5p7ZgyoBMDu6R6t/XrlExWSjx/+nijt6oM4M+fbOLPn2zimheXcvOroY1ZnbuhkLveXM3wh2bzp48bVv/lF1awdMdhHpu1iUc/2ejNYb/9bYHfftuKKxjUJRWXfV5dOrIb0y8fyR++Nwiw/t+JcfXBZ8fBSnYerCLGziAcCFCC8JSyPafqjf9azg+fW+z9nR6prOOJOfkcbKSa0OU2/PC5xdzz9hr22UFowz7rXPn1f9fw/MLtzN1onZsfrNmHw2W4bUofnG7DR2v2AzBnQyHr95U2KOXUOFy43Qa32wStMj5UUcvPXl1BUbn12ucWbOP6l5aGpVSiAeI4TJ+bz3MLtuF2G5btPMwVY7rzw9Pqh3Es2FxMUVkN5/3tS371n1Vc8swipk7/MqQgUXCkypubPXtgFgDdOyRSWu3giTn5fLv7CAdKa3C5DTUOF4VlNQztlkZiXDQFjVQxnTt9ITe8tKzJz5+fX8xlz37N43OsRu8/vr+Ox2Zt4sm5+X77ud2Gs/46n1nrDxAlUFnn4tf/XU1ptaPBfi9+tSNo9Y/nhwVwydOLvD/cpy4f6V3fv3MKFbVO74/xF699y33vrmPuxkJuntiL564+jVdvtPoxLNl+iEB2HarknCcW8tKinX69dZwuN68v3U1+YQXXjs8lJz0RgJ2HKtluX7guGdmNdXvLGPnQbIbc/xl3/mcVH6zeR35hOaXVDr9j+/0FA9m4v4znF9aXKGats4LgpgPlPDEnn+lz83nhy+3eC9/jc/L54XNfe3sT+SqvcXDnGyv53882s624kg6JsVx/ei6Ltx3icGUdDpebmCjh0pHduGpsDt3at2NvkPNgW3EFDpchKyW+wbaY6Cheu2kstU4XT8zJD/BqGrSD7S2p5pJnFvGhT1fkjfvLuOmV5d6L/fsr97Fi12G/c9+T6wd4Y9kevvPEQu+yZ79P1+6nsKyWEd3TGN/LKo2dP6wLADee0dO7/2Wj6n93+YXlLN15iFE5HchMiaewtOHFt7i8ll6Z/qXsZTuP8MbS3RworeGipxfx1LwtvNdIQ/+ynYet1yyzMgVxMVHe9o7F26xzy1PyXLC5mNz0RK4Z38P7+mHZaewtqeaCp77i/L996Ze+CX/5nHOnL+SxzzYx7MHZDaoTy2ocPDk3n1nrD3jbkhZtPUhRWe1xlZybogHiGFXUOpk+dwt/+XQT24orKKtxMjKnAz8a3R2A3PRElu08wnv2j332hkJW7i5hc2E5c5poyF287SBnPPYFf/1sM0lx0eR0tC5W3e2/T83bwoMfbmDco/O4++01bNxfhttYxf/sDu0oOBK4BOGbYw7WGwqsqpAZdkPav5fspqishnV7rQv4O9/655rzi+pz6u/dMsHaZ+VeLnt2sbeR1hjDB6v38fBHG7jhpaXe/a8Z14OZPx3HiO7tvbniGoeLbfbz307tz9he9VU0/Ttb1U2bD5Qxa91+lu6wctsXDu/KLVP6MHVIZ87sm0n3ju34epsVIA6U1vDEnHzKaxys3H2Es/46n3I7l+j7o3t1yS7ue3cdPTOSuGhEV4Zlt6ddbDT/M2sT3+w4TFJcNOcM6gzAkSoHnVOtKqJfvbmac55c2OB/euMZPTl3cCee+WIrhypqyS8sZ0tRBQ9cOIjvDMzimfnbmD53C3/6eCPv2BdRT8nPk7v0NXt9Ie+t2sffv9jKzKW76ZOVzIXDu+B0uRn/6Dxun7kSp9twRt8MYqKj6Nq+HQcrahuU+Iwx3gtxVmrDAAHQt1MKf79yFO1io/n7lSOZdeeZDfbxzQD8/fOtrNxdwm0zV/L2CutY3j3qwlpe6+SyZ7/m4qcXUV1npanYzvnefnbfBu9/7QzrPPnP8j30SE/k8jE5PHv1KOb8ciKpCbHe/Z67+jQeuWQI6clx3nXf7DjE+n1lnNE3gy5pCQ2q2mbaXcF/nNe9wef+6eONXPnPJew+XEVCbBQ7DlZS43BxyTOLvOeUlfZa3lpRX9L5+5UjuW1yH/aWVDP2z3Opso/RU5Jdu7eEkTkdyEpJoJdd/XvB0C7U2j2sDlXWUVVnnZfr95VxqLKOLUUV/GPBdqrqXDxuB+vdh6o4UFrDyIfm8O8l1nGs2l2C221YtaeE4XYVYXPTABGiorIabn51OcMe+My7bol9oRqd25HRuR3Z8ej5/HRiL/aWVPPnTzY1eI9pr67w6+N/tNe/sf7xpdUO+mQlI3YrdXaHdt59PBe3t1YUsM7OfQ/plkp2h8QGJYhn52/jTx9t8JZIAKZO/5LqOhf/XLidq15Y4tdQ99u31/ClnbsurXawYpdVFXT1uByKy2tZYzfUllY5mDrdyvl8dfdkhmW3582bx3P31AHsPlzF6Efm8vaKAp6Yk8+d/1llpdtuZP79BQP544WDGN87nd6ZyeywG5o9x37pyG7ccHp9DhGgX5YVID7fVMQdb6xicNdUtjxyHv93xUi/i8b4XunM3lDIm8v2MO7ReTw1bwtTp3/JJc8s9nu/91fv8/7oPQHwuatPIzY6iozkeO67YCDLdx3hozX76ZWZzLheHb2vnXvXWdw6uY93+Zn5W4mJEi4e0ZVpE3shIvzm3P5U1rl4c3kBb60oICZKuHB4V6ZfPpLrxvfg9Z+OJTMlngX2VCKexvGN++tLUx7zj5pu5HfnD+S0Hh15Y9p4ap1uPrVLJ8Oyrd5IXdtb58oBO/e8+1AV97y9xu/c6JgYRzBn9ctk9f3n8L1hXRnQOZUZ1+ex6J4p3vefvf6Atypj0daD3raLu/67mifn5PPpuv3eqqtB9t++WcmsLijlQ7s3WHF5LVECt0zuzes3jWXBbyYx55fWUKcvtxzE7TasKShlTG5HYqOjaJ8YR1+7Tcpj6pDOXDW2B9eM68G5gzvRITGWfy/ZjTEwZUAWg7umsmpPibeUBvDgh1Z118R+mbSLjWZIt1Q+u3Mi/7jmNMDq9JCRHEf/zqm89s1u/ruigJW7S7jX7oCxbOdhRj8yl7dWFDAmtyObHp7K94Z19R5vYZmVMYqNFrYUlrN0x2EKy2q9PcXe/cUEPrn9zAbthN976itqHC5vtZRHt/bt+HJLMcXltUz86xeMe3Se3/FsP1jJyj1HKK9xMlIDRGTd+Z9VfLa+EN9qvne/LSC7Qzty7WoJEeHHed0bRPO7vtvP+3zzgcABwuU23gsGQHJCff+B3pnJJMfHNCgav7J4Jx0SY+nWvh090hPZsL/Mm7veXlzBY7M28cJXO/y61+0tqbYaXD/ZyKKth5i3sZDfvrWa/5u3hY/tH/CoHCv9i+zi8iUjuwGwzH7vBVusdP7wtGyyO1jHPqZnR34+qTdXj+2B21gXjP/7fKtfekd0b8+VY3OIjbZOu16ZSRwoq+Hipxfx0Ecb6JqWwIMXDaZdnH+jZlpiLF3SEpi5dA+1TjePXTbM+x6+PA3Dv317DSnxMd7jHdotjUX3TGHuryby80m92XWoiiv+uYTyGgc7D1UytmdHbykF4OpxPXjs0mEkxEZx81m9aO9zQU2Oj+HO7/Tl9xcMtL/nSgZ3S2P65SP5nd3o2CcrheHZacxat5/1+0oZ0i2N9OR4kuNjePCiIZzeO4PJ/TOZv7mYhz7c4C1FFRyp9suhG2NYsv0QF4/oyvWn5/LGtHGMzOng/b49fnNuf/rYQbSbHSAuenoRtU4Xv35rNW8s28Prdu65a1qC9z2CiYup/26nDOhEt/bt+LPdQP+bt9ZwpZ2x2FtSzYQ+6Xx6x5m0T4zlb/O2sOdwNZeN6sa6B8/lnV+czt1TB/D+rRPomZHEh6v38dKiHSzedoj05HjiY6I5vU8GPdKT6NsphT9dPASAaa8u53BlHcNCuOilJ8fzj2vyGNvT+t8P6pLKkG5pjOuVTnmN01uF6cmlX396LgO7pLL6/nN4/5Yz6N85hXMHd+bDW88A4PLRObjcVu7+D+9ZvesT46xz6bN19e1lvbOSvI3vZ/TN8EvTBUO7sK24kltf/5b4mChvVXFaYiyDuqZ6g7jH9oOV3D5zJc/O30bfrGTiY6KIjhLuPm8AxuB3XfBtNwJ44Uvrt60liAjyFOMGd/X/53y7u4Sz+mV6c/pg1eV62iN+Pqk3N0zI5acTe3l/YIH6ZucXljPjqx2U1zh57LKhXDqqGzdP7O3dnhQfw7oHz+W35w7we92WogquOz0XEeFnZ/UmKS7aW4z2bWhctPWQ9yIP+I0b+OV/VvPm8gIen5OP28DsX07k8R+NAOpH1g7umkavzCQW2bnu+ZuL6JAYy18uG9bgWH47tT8vXT+an0zo6c1BxkVHsfqP5/DuL073/tgAxtoXOU8vj9d/Oo4UnxKBr36dUnC5DdFRQt9OyQH3+d6wrvzm3P50a9+O//nBMF64No+fTOjJKz8ZQ7f27eiTlcL1p+d691+28zA7D1YG7Pn1o9HdWffAuXxvWFcAPr/rLGbbudyY6ChuOrMXZ9oXBk9A9XXe0C6sLihlbUEpGckNc+zXn96Tilqnt7H5vCFWNda/Fu/07nOgrIbi8lpGdG/PA98fzDifajdfvj2mPAGitNrBN9sPe9tRPlhlBf/3bpnQIACHItf+juJioliy/TB/nbUZl9uQ0zGRgV1SWXT3FO++p/XoQHJ8DAmx0fx8Um8S42I4vXc6X245yIMfbmD5riNkJjes5uqTZf1f524sIjZamDIgK+T0JcZbx3T9hFzA+k6io4SP11rVdp6uv54ST5x9EfYYmp3G2gfO4Zff7ccVY3L83vtAWQ3GGNb7tJd5AjJAQmw0v79gIGNyO3LpyG6c1T8Tl9tQVF7Lny8ZSo90//OrT1YyXY7qzTbbrqqccf1ohme3Z2LfDO/v59f/Xe3db1L/TJ788XBeu2ksMVHCp+sOkBQX7f3umlvYurm2JntLqqmqc3HpqGzW79tgNQTaJ9zlo3Ma7H/lmBw6pSYwZUCW9yS8cmwO/1i4rcFo1dtmrvRr5DuzbyY/DvCe0DCnAvUNdp1SExjVowNbisp5f9VeXl68kx7pid7GssFdUzmjTwa7D1fxt3lbAPjesC58tGY/w7PTGJqdhjHWhdjpchMXE8XOQ1V0SIwlITaaqYM789yCbRworWFh/kHO7JsZsGtrQmw0kwdkMXlAFsYYjlQ5MMaQltjwwj/KJyd773kDvBehQPp3TmFBfjEpCTHExwS+wMVGR3HL5D7c4lMF9J1B/l0YO6UmsOnhqQx7cDY/ednqlRPsc2N8Sim9Mhv+AM8f2oUvtxz0ViH4Om9IZ/7y6SbKapx0TGoYIAZ1TSWtXSyl1Q4Gd03lz5cMxeFy88rXu7h1ch+iosRbnRgsJ90rM4ntxZX086l+8e1G66nPB+scTk2IITNAA3UokuNjWH3/OaQmxHDlP7/x9jbL6Wh9d0nxMVw4vCsfrt7H4K4Nv49ROR147Zv66WA87Wu+fI9j0T1TyEoJvUvwHWf3pUtaApfaGaGslAS+MzCL5xZs47kF27wZtG4d2gV9D0/m5KqxPTizTyYPfLiejklxvLWigA37y1i+y+qQcv7QLt6egx43ndmLm87sBfh3vPju4IZdaBNio/nq7ims31fK1S98wz+vzePHzy8hr0cHundM5J/X5REdJURLw9/XmX0zvJ+dm5HE1qIKhmannXC3+mA0QITAk+sfnp3Gp3ecSbcO7fh8YxH7S2sYmt3wxxAVJXx3UMMTY0i3NBZtPWh3qWxPj46JfsHh9N7pDYqfvpLjY5j503EUV9SyZPshslLi/XLcfbNSmLFoB3e8YdX7P3vVaZz/lNVW0CM9ie8O6uTN2RworebPlw4ltV0sN57Rk94+F8CY6Ch6ZSSx6UA5nexG2R/ldeeZ+dsY9+g8wKqrboqIBLw4+n5Ps385kXax0d6G+GAuGNqF5xduP6ZcZTAJsdHcf+Eg7nvXqkIYndt4lUswl4/uTk7HRG8vG1890pPo3rEdew5X0yHId/Dkj4dz7ztreeUnY+iQFMcFw7owd2MR6/eVMTQ7jQ37y4mS+rr8o/37xrGsKSglOb7+ZxwXE8XGh6by0EfrvV1v28VGU+1w0bdTil9p91iltbPOtZ9O7MnXdm8x39LX4z8czv0XDvKrovI4q38m43p1ZNOBckqqHAEzOx2T4vjg1gl0Tk04puAA1vf9m6NK2ON7pXt7Xr2xzApO3Rr5ffnKSU9kxvWjWbztIG+tKOAnLy/D4TJ8f3g3vxJbIL2zkuiZkcQ143r4tZH5io4ShmW3Z80D5wJWQEy0q6w837Ovt38+nvSkeL/MTHpSHFuhQbBqThogQrDF7rHTJyvZWx99sU+VTaiuGJ3Dx2v2c8cbq+jfKYWJ/ax/7COXDGFw17SQiomek/P7w7s22OZb9fLSDaMZ5FMl5mkniY4SHr20fsDXn4MM/uqdmcymA+XegJWbkcStk/vwr8U7GdY9je+cwOAiX/2OanwMZnj39qx54BxvH/cTddXYHt4AMaL78QUIEWFCn+A/zvSkePYcriY9SICYMqAT3/yu/nuc2DcTEasxfmh2GtuKK+jeMbHBQDOPru3bBcxQtIuL5tFLh3kDxA9Oy+bVJbvo20zVEJP6ZTFtYi8GdUn1K7HExViN/IFkJMfzxrTxfLP9EHe8sYqpdpXa0YZlN19dek+fTM+aglLaxUZ7MzyhGtC5vgF6Yr/MJoMDQHxMNF/8etIxfU5Tgeu0Hh0brEux2ynPDBBsm4sGiBBsKawgMyXer7HyeEzok85ffzCM37y1hs2F5d6ucD0zkrx1oyfibJ/c9SQ7h//QRYO5/4P1TebQj5Zk1+leMLSLd92vz+3PXef0O6Fc6IkIlhs7Xm/9bDwVtc6wFc89P+AOIZ436cnxDM9uz+wNB7j97D5sK6rwK9kdK6vrczXnDelsBYgQg3FToqLE2yB/rMb2SmfJ785ulnQ0pddRVYen9ehwzP/rjklxZKbEU1xeS58T+F8cr5euH40zyAC4hy8ewrhe+5vl2hGMBogQ5BdV0C9Iw+ixEBF+mNedovJa/uoz+2qvjOY58bJSE3jxujxcbuO9iF87Ppdrx+ce83vdNqUvPdKTGpSUIhUcwiEvt2GurDkl2Q3ygapcgjlvSGce/XQTD364gR0HK08od/j+LRMosgeGXX96LucPDZxrb62OLl2N7Xl8/+9BXVJZUF5M1/bHP03K8ZrcSJVql7R23naPcNEA0YQvNhexek+JX++XE3XFmBwKy2q4dFQ2CzYX0ynIwKXjcSLzyvjq3jHRr7FXHbth3dOYtf5AwDrlYG46sxdrCkp5efFO4qKjTqgqLz053jvP1QPfH3zc73Oqio4S/nHNaXTvkMi6faVBq7WacsOEXBbkFzMyQG+11k5Opul9T1ReXp5Zvjy0+WJC9f2/f8WaglL+M22c3+hepZrichsWbT3ImX0zjqnkdaC0hsdmbeLGM3oyJEAPKdXyymscQbtgn+pEZIUxJi/QNi1BNKKorIY1BaX85tz+GhzUMYuOEu+Mq8eic1oCT/54RBhSpI5Xaw0OTdGBco34drfVD/30EHouKKVUa6MBohFb7e6toXbFVEqp1kQDRCO2FFXQrX07kuK1Jk4p1fZogGjElsIKeodpjhOllDrZaYAIwhjD7sNVDQbbKKVUW6EBIojSagcVtU6/ezEopVRbogEiCM8NVjRAKKXaKg0QQXhu3+m5IY5SSrU1GiCC0BKEUqqt0wARRFF5LfExUcc0j45SSrUmGiCCKC6vJTMlvlXNXqqUUsdCA0QQngChlFJtlQaIIIrLawPeWF0ppdoKDRBBFFdoCUIp1bZpgAjA4XJzuLJOA4RSqk3TABHAoYo6AA0QSqk2TQNEAMXltQDaBqGUatPCFiBEZIaIFInIuiDbrxKRNfZjsYgM99k2VUQ2i8hWEbknXGkMpriiBtAShFKqbQtnCeJlYGoj23cAZxljhgEPA88DiEg08DRwHjAIuEJEBoUxnQ14SxAaIJRSbVjYAoQxZiFwuJHti40xR+zFJUC2/XwMsNUYs90YUwe8AVwUrnQG4gkQGVrFpJRqw06WNogbgU/t592APT7bCux1AYnINBFZLiLLi4uLm3lmWq8AABcESURBVCUxxeW1pCbEkBAb3Szvp5RSp6ImA4SI9BaRePv5JBG5XUTaN1cCRGQyVoC427MqwG4m2OuNMc8bY/KMMXmZmZnNkqaDFXVkaPWSUqqNC6UE8TbgEpE+wItAT+D15vhwERkGvABcZIw5ZK8uALr77JYN7GuOzwtVWY1DJ+lTSrV5oQQItzHGCVwCTDfG/BLocqIfLCI5wDvANcaYfJ9Ny4C+ItJTROKAy4EPTvTzjkV5jZPk+JiW/EillDrphHIVdIjIFcB1wIX2uiaz1yIyE5gEZIhIAXC/53XGmOeAPwLpwDP2jKlOu6rIKSK3Ap8B0cAMY8z6YzqqE1RZ66RLWkJLfqRSSp10QgkQNwA/Ax4xxuwQkZ7Av5t6kTHmiia23wTcFGTbJ8AnIaQtLCprnSRpCUIp1cY1eRU0xmwQkbuBHHt5B/CXcCcsksprtYpJKaVC6cV0IbAKmGUvjxCRFm0TaEnGGCo1QCilVEiN1A9gDV4rATDGrMLqydQqVTtcuA1axaSUavNCCRBOY0zpUeuCjks41VXUOgFITtAAoZRq20K5Cq4TkSuBaBHpC9wOLA5vsiKnstYFQHK8jqJWSrVtoZQgbgMGA7VYA+RKgTvDmahIqqixShBJcVqCUEq1baH0YqoC7rMfrZ5WMSmllCWUXkxzfOdeEpEOIvJZeJMVOZWeAKGN1EqpNi6UKqYMY0yJZ8GeojsrfEmKLE8JQnsxKaXaupDmYrLnTQJARHrQBnoxpWiAUEq1caFcBe8DvhKRBfbyRGBa+JIUWZVaglBKKaCJACHWLHrrgVHAOKx7NfzSGHOwBdIWERW1TkQgMU67uSql2rZGA4QxxojIe8aY04CPWihNEVVR6yQ5LgZ7hlmllGqzQmmDWCIio8OekpOEzuSqlFKWUK6Ek4GbRWQXUIlVzWSMMcPCmrIIqah1kqSjqJVSKqQAcV7YU3ESqah1kZygtxtVSqlQAkSr7dIaSEWNQ+dhUkopQgsQH2MFCQESsKb63ow1P1OrU1nrIiM5PtLJUEqpiAtlLqahvssiMgq4OWwpirCKWqfOw6SUUoTWi8mPMeZboNX2aqqqc+oYCKWUIoQShIj8ymcxCmvQXHHYUhRh1Q4XiTrVt1JKhdQGkeLz3InVJvF2eJITWcYYahxuEmK1BKGUUqG0QTwIICIp1qKpCHuqIqTW6QagnQYIpZQK6X4QQ0RkJbAOWC8iK0RkSPiT1vKq66zbjSbEHnPTjFJKtTqhXAmfB35ljOlhjOkB3GWva3WqHVaA0BKEUkqFFiCSjDFfeBaMMfOBpLClKIK8AUJ7MSmlVEiN1NtF5A/Aq/by1cCO8CUpcmocniomDRBKKRVKCeInQCbwDvAukAHcEM5ERUqNVjEppZRXKL2YjgC3A4hINFaVU1m4ExYJ1XVWLyYtQSilVGi9mF4XkVQRScK6u9xmEflN+JPW8rSRWiml6oVSxTTILjFcDHwC5ADXhDVVEeKtYorTbq5KKRXKlTBWRGKxAsT7xhgHIUwBLiIzRKRIRNYF2T5ARL4WkVoR+fVR23aKyFoRWSUiy0M5kOZQrY3USinlFUqA+AewE6tr60IR6QGE0gbxMjC1ke2Hsdo2/jfI9snGmBHGmLwQPqtZaCO1UkrVazJAGGOeMsZ0M8acbyy7sG5D2tTrFmIFgWDbi4wxywDHMaU4jOpHUmuAUEqpUBqpO4nIiyLyqb08CLguzOkywGx7Wo9pTaRvmogsF5HlxcUnNslsjUN7MSmllEcoVUwvA58BXe3lfODOcCXINsEYMwrrfti3iMjEYDsaY543xuQZY/IyMzNP6EOrHS7iYqKIjpITeh+llGoNQgkQGcaYNwE3gDHGCbjCmShjzD77bxHW4Lwx4fw8jxqHS9sflFLKFkqAqBSRdOyeSyIyDigNV4JEJMmeWhx77MU5WDPJhl11nQYIpZTyCGUupl8BHwC9RWQR1rQbP2jqRSIyE5gEZIhIAXA/EAtgjHlORDoDy4FUwC0idwKDsKbyeFdEPOl73Rgz6xiP67jUOF061bdSStkaDRAiEgUkAGcB/QEBNttjIRpljLmiie0HgOwAm8qA4U29fzhU17m0gVoppWyNBghjjFtEHjfGjMeaZqNVq3a4dKpvpZSyhVKfMltELhO7zqc100ZqpZSqF2obRBLgFJEarGomY4xJDWvKIqDa4SI1ITbSyVBKqZNCKNN9p7REQk4GNQ63tkEopZRNu+z40EZqpZSqpwHCR43DpVN9K6WUTa+GPqq1kVoppbxCmazv1VDWneqMMdqLSSmlfIRSghjsu2Dfl/q08CQncupcbtwG4jVAKKUU0EiAEJF7RaQcGCYiZSJSbi8XAe+3WApbSE2dNdW3liCUUsoSNEAYYx61u7j+1RiTaoxJsR/pxph7WzCNLaLaez9qDRBKKQWhVTHdJyJXi8gfAESku4i0yPTbLanWaQWIuGhtt1dKKQgtQDwNjAeutJcr7HWtitNtAIiJbvUziiilVEhCmWpjrDFmlIisBDDGHBGRuDCnq8U5XVaAiNUShFJKAaGVIBx2zyXPDYMyse8u15o4XNYhxejtRpVSCggtQDyFddvPLBF5BPgKeDSsqYoAl1YxKaWUn1Am63tNRFYAZ2PN5HqxMWZj2FPWwpxuTwlCq5iUUgpCCBAicqMx5kVgk8+6vxhj7glrylqYw6UlCKWU8hVKI/UPRKTGGPMagIg8A8SHN1ktz1PFpI3USillCSVAXAp8ICJu4DzgsDHmF+FNVsvzNFJHayO1UkoBjQQIEenos3gT8B6wCHhIRDoaYw6HO3EtydvNVdsglFIKaLwEsQK7a6tNgAvshwF6hTFdLc7bSK1tEEopBTQSIIwxPUUkChhvjFnUgmmKCO9Iaq1iUkopoIlxEMYYN/C/LZSWiHJ6ezFpFZNSSkFoA+Vmi8hlItKqs9Y6kloppfyF0ovpV0AS4BSRGqy2CGOMSQ1rylqYjqRWSil/oYykTmmJhESaw9sGoVVMSikFoZUgEJEOQF8gwbPOGLMwXImKBKddxRSrJQillAJCm2rjJuAOIBtYBYwDvgamhDdpLctTxaQD5ZRSyhJKfcodwGhglzFmMjASKA5rqiLAofeDUEopP6FcDWuMMTUAIhJvjNkE9A9vslqeU3sxKaWUn1ACRIGItMeaamOOiLwP7GvqRSIyQ0SKRGRdkO0DRORrEakVkV8ftW2qiGwWka0i0iKzxjq0ikkppfyE0ovpEvvpAyLyBZAGzArhvV8G/g68EmT7YeB24GLflfbd654GvgsUAMtE5ANjzIYQPvO4udxuYqKEVj7cQymlQhZShbuIdBCRYUA51kV7SFOvsXs5BZ3QzxhTZIxZBjiO2jQG2GqM2W6MqQPeAC4KJZ0nwukyOgZCKaV8hNKL6WHgemA79feiNoSvF1M3YI/PcgEwtpH0TQOmAeTk5Bz3hzpcRmdyVUopH6GMg/gR0NvOzbeEQNl4E2CdtcGY54HnAfLy8oLu1xSX2020liCUUsorlCzzOqB9uBPiowDo7rOcTQiN4ifK4TY6iloppXyEUoJ4FFhp90aq9aw0xnw/TGlaBvQVkZ7AXuBy4MowfZaX0+XWUdRKKeUjlADxL+AxYC31bRBNEpGZwCQgQ0QKgPuBWABjzHMi0hlYDqQCbhG5ExhkjCkTkVuBz4BoYIYxZn3oh3R8nG6jXVyVUspHKAHioDHmqWN9Y2PMFU1sP4BVfRRo2yfAJ8f6mSfC6TI6iloppXyEEiBWiMijwAf4VzF9G7ZURYDTHgehlFLKEkqAGGn/HeezLpzdXCPC6dIqJqWU8hXKSOrJLZGQSHO6tYpJKaV86RXR5nC5dSS1Ukr50ABhc7qMtkEopZQPDRA2lw6UU0opP6HecvR0INd3f2NMsFlaT0kOt5v42JC+DqWUahNCmazvVaA31u1GXfZqQ/BpvE9JWsWklFL+Qsky52GNcD7uifBOBU63IUZ7MSmllFeok/V1DndCIk3nYlJKKX+hlCAygA0ispSWmawvIqy5mLQEoZRSHqEEiAfCnYiTgdPtJlbbIJRSyiuUkdQLWiIhkaa3HFVKKX9N1qmIyDgRWSYiFSJSJyIuESlricS1JIdLG6mVUspXKFfEvwNXAFuAdsBN9rpWRWdzVUopfyGNDDPGbBWRaGOMC3hJRBaHOV0tzuXSkdRKKeUrlABRJSJxwCoR+R9gP5AU3mS1PIdbu7kqpZSvULLM19j73QpUAt2By8KZqEjQ+0EopZS/UHox7RKRdkAXY8yDLZCmFmeM0ZHUSil1lFB6MV2INQ/TLHt5hIh8EO6EtSSX25pFRMdBKKVUvVCyzA8AY4ASAGPMKqyZXVsNpx0gorUNQimlvEIJEE5jTGnYUxJBTm8JQquYlFLKI5ReTOtE5EogWkT6ArcDraqbq9PlBtCR1Eop5SOULPNtwGCsifpmAmXAneFMVEtzuKwShA6UU0qpeqH0YqoC7rMfrZKnkVp7MSmlVL2gAaKpnkqtabpvh6eKSUsQSinl1VgJYjywB6ta6Rug1V49nd4SRKs9RKWUOmaNBYjOwHexJuq7EvgYmGmMWd8SCWtJ3kZq7cWklFJeQa+IxhiXMWaWMeY6YBywFZgvIre1WOpaiLebq5YglFLKq9FGahGJBy7AKkXkAk8B74Q/WS3L6e3FpCUIpZTyaKyR+l/AEOBT4EFjzLoWS1ULc7itKiYdSa2UUvUayzJfA/QD7gAWi0iZ/SgP5Y5yIjJDRIpEJGBgEctTIrJVRNaIyCifbS4RWWU/wj7vk0tHUiulVANBSxDGmBO9Wr6Mdee5V4JsPw/oaz/GAs/afwGqjTEjTvDzQ+bQkdRKKdVA2LLMxpiFwOFGdrkIeMVYlgDtRaRLuNLTGKeOpFZKqQYiWafSDWuchUeBvQ4gQUSWi8gSEbm4sTcRkWn2vsuLi4uPKyE6kloppRqK5BUxUHbd2H9zjDF5WOMvpotI72BvYox53hiTZ4zJy8zMPK6E6EhqpZRqKJIBogDr9qUe2cA+AGOM5+92YD4wMpwJ0ZHUSinVUCQDxAfAtXZvpnFAqTFmv4h0sMdfICIZwARgQzgT4tCR1Eop1UAo94M4LiIyE5gEZIhIAXA/EAtgjHkO+AQ4H2uEdhVwg/3SgcA/RMSNFcD+YowJa4Bw6UhqpZRqIGwBwhhzRRPbDXBLgPWLgaHhSlcgnl5M0doGoZRSXlqnQv1I6ljtxaSUUl56RcSnm6uWIJRSyksDBL63HNWvQymlPPSKiM/9ILSRWimlvDRAoOMglFIqEA0Q6P0glFIqEL0iAk63GxHt5qqUUr40QGBVMem9IJRSyp9eFbEaqbX9QSml/GmAwOrmqtVLSinlTwMEVhuEjqJWSil/elXEGkmto6iVUsqfBgisKiYNEEop5U8DBJ5Gav0qlFLKl14Vsbq5ai8mpZTypwECayS1VjEppZQ/DRBYvZh0mg2llPKnV0XskdRaxaSUUn40QGBVMelAOaWU8qcBAnBoLyallGpAr4pYA+W0ikkppfxpgAAcbkO0NlIrpZQfvSpiDZSL1TYIpZTyowECexyEVjEppZQfDRDY4yC0kVoppfzoVRF7qg2tYlJKKT8aIPBMtaFfhVJK+dKrIp4bBmkJQimlfGmAQEdSK6VUIBogsEZS6y1HlVLKn14V0VuOKqVUIGENECIyQ0SKRGRdkO0iIk+JyFYRWSMio3y2XSciW+zHdeFM5zmDOzOoa2o4P0IppU45MWF+/5eBvwOvBNl+HtDXfowFngXGikhH4H4gDzDAChH5wBhzJByJfPLHI8LxtkopdUoLawnCGLMQONzILhcBrxjLEqC9iHQBzgXmGGMO20FhDjA1nGlVSinlL9JtEN2APT7LBfa6YOsbEJFpIrJcRJYXFxeHLaFKKdXWRDpABGoZNo2sb7jSmOeNMXnGmLzMzMxmTZxSSrVlkQ4QBUB3n+VsYF8j65VSSrWQSAeID4Br7d5M44BSY8x+4DPgHBHpICIdgHPsdUoppVpIWHsxichMYBKQISIFWD2TYgGMMc8BnwDnA1uBKuAGe9thEXkYWGa/1UPGmMYau5VSSjWzsAYIY8wVTWw3wC1Bts0AZoQjXUoppZoW6SompZRSJymxMvGtg4gUA7uO8+UZwMFmTM6pQI+5bdBjbhuO95h7GGMCdgFtVQHiRIjIcmNMXqTT0ZL0mNsGPea2IRzHrFVMSimlAtIAoZRSKiANEPWej3QCIkCPuW3QY24bmv2YtQ1CKaVUQFqCUEopFZAGCKWUUgG1+QAhIlNFZLN9V7t7Ip2e5hLobn4i0lFE5th36Ztjz3PV6J39TiUi0l1EvhCRjSKyXkTusNe32uMWkQQRWSoiq+1jftBe31NEvrGP+T8iEmevj7eXt9rbcyOZ/hMhItEislJEPrKXW/Uxi8hOEVkrIqtEZLm9LqzndpsOECISDTyNdWe7QcAVIjIosqlqNi/T8CZL9wDzjDF9gXn2Mvjf2W8a1p39TkVO4C5jzEBgHHCL/f9szcddC0wxxgwHRgBT7YkvHwOetI/5CHCjvf+NwBFjTB/gSXu/U9UdwEaf5bZwzJONMSN8xjuE99w2xrTZBzAe+Mxn+V7g3kinqxmPLxdY57O8GehiP+8CbLaf/wO4ItB+p/IDeB/4bls5biAR+Bbr9r0HgRh7vfc8x5oVebz9PMbeTyKd9uM41mz7gjgF+AjrHjKt/Zh3AhlHrQvrud2mSxAcw53rWolOxppOHftvlr2+1X0PdjXCSOAbWvlx21Utq4AirNvzbgNKjDFOexff4/Ies729FEhv2RQ3i+nAbwG3vZxO6z9mA8wWkRUiMs1eF9ZzO6yzuZ4CQr5zXSvXqr4HEUkG3gbuNMaUiQQ6PGvXAOtOueM2xriAESLSHngXGBhoN/vvKX/MIvI9oMgYs0JEJnlWB9i11RyzbYIxZp+IZAFzRGRTI/s2yzG39RJEW7tzXaGIdAGw/xbZ61vN9yAisVjB4TVjzDv26lZ/3ADGmBJgPlb7S3sR8WQAfY/Le8z29jTgVLvXygTg+yKyE3gDq5ppOq37mDHG7LP/FmFlBMYQ5nO7rQeIZUBfu/dDHHA51l3uWqsPgOvs59dh1dF71ge6s98pRayiwovARmPMEz6bWu1xi0imXXJARNoB38FquP0C+IG929HH7PkufgB8buxK6lOFMeZeY0y2MSYX6zf7uTHmKlrxMYtIkoikeJ5j3WVzHeE+tyPd8BLpB9Yd7fKx6m3vi3R6mvG4ZgL7AQdWbuJGrHrXecAW+29He1/B6s21DVgL5EU6/cd5zGdgFaPXAKvsx/mt+biBYcBK+5jXAX+01/cClmLdrfG/QLy9PsFe3mpv7xXpYzjB458EfNTaj9k+ttX2Y73nWhXuc1un2lBKKRVQW69iUkopFYQGCKWUUgFpgFBKKRWQBgillFIBaYBQSikVUFsfSa3UcRERT/dCgM6ACyi2l6uMMadHJGFKNSPt5qrUCRKRB4AKY8z/RjotSjUnrWJSqpmJSIX9d5KILBCRN0UkX0T+IiJX2fdvWCsive39MkXkbRFZZj8mRPYIlLJogFAqvIZj3bdgKHAN0M8YMwZ4AbjN3udvWPcxGA1cZm9TKuK0DUKp8Fpm7DlwRGQbMNtevxaYbD//DjDIZ9bZVBFJMcaUt2hKlTqKBgilwqvW57nbZ9lN/e8vCuuGNtUtmTClmqJVTEpF3mzgVs+CiIyIYFqU8tIAoVTk3Q7k2TeX3wD8LNIJUgq0m6tSSqkgtAShlFIqIA0QSimlAtIAoZRSKiANEEoppQLSAKGUUiogDRBKKaUC0gChlFIqoP8HFqSk+RmsxHQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU1fn48c+TfSGsCYvs+74JIogi7qC1Vltb8fvTarXYutXaVm2tW1u31tqqrVstRaqitS5FBRQXQEGFgOz7FvYsbEkISWZ5fn/cO5MZMkmGZTKQPO/XK6/M3GXm3EnmPPc859xzRVUxxhhjDpcQ7wIYY4w5MVmAMMYYE5EFCGOMMRFZgDDGGBORBQhjjDERJcW7AMdTdna2dunSJd7FMMaYk8aiRYuKVDUn0roGFSC6dOlCbm5uvIthjDEnDRHJq2mdpZiMMcZEZAHCGGNMRBYgjDHGRGQBwhhjTEQWIIwxxkQUswAhIpNEpEBEVtSw/v9EZJn7M19EBoes2yIiy0VkiYjYsCRjjImDWLYgJgPjalm/GThbVQcBvwdePGz9Oao6RFWHx6h8xhhjahGzAKGqc4G9tayfr6r73KdfAR1iVRZjGjO/X/nPwm2UVngBUFWKyz1xLpU5GZwofRA3ADNCnivwkYgsEpGJcSqTMQ3CzJW7ueutZTzz6XoAnv5kA2c+9inlHl+cS1b/8vYcjHcRTipxDxAicg5OgLg7ZPFoVT0VGA/cIiJjatl/oojkikhuYWFhjEtrYu3AIQ9rdhfHuxgNykcrdwNQUFxBcbmHlz7fRHG5l+U7DsS5ZEfnhTkbmb+xKOrtK71+7vrvUp78aC1n/2k2c9c1nHrC74/tDd/iGiBEZBDwEnCZqu4JLFfVne7vAuAdYERNr6GqL6rqcFUdnpMTcTqRBm3vwUo8Pn+8i3Hc3DB5IeP++jneOB5TYUkFAOUeHxXe2s+y/X7lzMc/5Z9fbD6i91BV7v/fCr7cuKfujY/Rip1OwF2XX8K/v8yjxE01Lc7bV9tuJ6Q9pRU8OmMNV//j66j3yd2yl//kbufpTzcAMO8IgsuJbPryXfR7YCavfp3He0t3Eou7g8YtQIhIJ+Bt4BpVXReyPFNEsgKPgQuBiCOhGrPicg83/TuXU38/i9+/vyrexYnaxsJS/v7ZhhrPfHLdSitvb1m1ddv3lTHhxa/Yvq/6uuNlUd5eTnv4Y95ftpMRD3/MNS8tqHX7vWWVbN936Ij/BvM27GHKl3n86r9Lj6W4YeZvLOKzNQVhn62qBj+vdfklvPb1VkZ1a0Wftlk8P2cjO/Yf4u7/LuPJWetqetk6PTp99TEHuvX5JRSVVtS6TVmllw9X5ldb7vH5a02XzT+sbLlbag+MM1fs5rp/LeDLjXt4f9lOKrw+Js/bXOfJAoDPr3y8Kj/mZ/YA736zg3KPn3vfWcEfPliFiBz394jlMNepwJdAbxHZLiI3iMhPROQn7ib3A62AZw8bztoG+EJElgILgA9UdWasynm8/PrtZbz29dZ6e7+PV+UHvyzvfrPjuL/+Z2sK2Ln/EM98sp7icg/Tl+9i5ordx/y6D05byZ8+XMuUL7dUW/fKV1Vzhq3PL622/s43lvLlpj18srogbHm5x8c3W/dF9QU+XOg+W/eU8d3nvgTgN28vp7jcy4Ite3np802s3hU57RVaqV07aQH7yyrrfM/NRQf56SuLAEhKEMo9PrYUHXtu/FdvLuP6yQv56auLgss2FJRS7vEzoktLPD5lx/5DXDKoHc/+36mUVnh58qN1vP3Ndl6cu5F9B+su++FKyj28MHcTE/7xVcT1fr/yu/dWsXy7k846VOnDF6HyvOAvcxnzx89qfB+/X7n0mS/4zTvLARBxUkcA//fS1/S5r+YqYv7GIvq0zWLqj0dy3RldWLptf7DDPpJbX1vM7LWFTPjHV/zs9SXc+cZSHnxvFa8v2FbjPgH/mreZG6fk8sHyXXVuW5uFW/by4tyNtW6zLr8k+Lh7TpNjer+axHIU0wRVbaeqyaraQVX/qarPq+rz7vobVbWFO5Q1OJxVVTep6mD3p7+qPhyrMh4P32zdx38WbmPqgm3Bf94jpao88eFaVu2MPve+qbCqQmmRmXJU71uTtbtLuH7yQs547FP+PGsdM5bv4uZXF/OTVxbx4ylHf1lKSbmHJVv3A/Cv+VuCTeIVOw4wc8Vu/jhzTXDbDQUlYftWeH0s3e7suza/JJiCmrUqnz73zeTyZ+cz9QgD9GdrC+j925m8v2wnAA+9tzK4rri8qgL5wwereTykbKEC6SiAuesKeWtx3cH6rx+vw+tXzu3Tmi17yuhz30zGPjG7xiAUDVWloKSclMQEPlyZz+mPfMwHy3ZxwV/mAjBuQNvgthf1b0u3nCZ8b1gH3lq8HY9PKff4eSO37grwcHl7qlpzfr/y3OyN5G6pGry4dW8Zk+Zt5uHpq/hg2S763j+Tl+dvCXuNg25lXVbp40CZh0qvn72HBas56wrZ6P7PJyYIqk4lumZ3MQs2O+8XKfCUlHtYuv0A5/VtzajurbigXxu8fmXh5sgDLP1+JTGh6kzc59dgZb9md0nEfUIFTl6OtR/tyue/5JHpa7j0mS/YWFharUUyc8UutuwpIyvNmZC7Q4v0Y3q/msS9k/pk98s3l3LXW8uCz48mD5ibt4+/fbaBe95eVuM2W/eUcbDCG/wSrNx5gOYZyZzVM5u8PWWUVYafEVV4fbyxcGu1L01ZpZdfvbmU3QfKw5YXFJezzU3rvL4wvKK9+62qwDdrVX7w7OvPH61l5opdlJR7eH/ZTvbUkSJ46uP1HKz0cs3IzuTtKWP+xj3kF5fzrWe+4CevLAqrlNfll/KrN5dy1YtfsrnoIIvz9lPhnjG+9vVWzn9yDit3HuDnbywJ7jNnXSH3vrO81rP4yfM2899F2wH468fOqJ7/LdlJQUk5c9YV0i07k5vHdq+23+y1hSzcspdP14SnOAItiJl3nEX75uk8/MEqCkrKq+0PsHjrPv6Tu42PVuZzxantuf28nmHr/zF3E4vy9nHtpAXMXOFUSne+sSSq9M/+Mg8en3J+v9YA5BdXcMtri4Prz+7t9M91zc4kJysVgJ+c3Z2kBKFlZgqDOzbnn19srjPNc7gtIaOCuv1mOo/PXMMj01cHl610T3q+2rQ3WJ7cPOfsuKDY+Zy2haQMB//uI3r9dgan/n4Wy9wTgsA+AHde0Iv/3TIacFoO4/76eXCb/OLwz/3rTXv4/gtf4fMro7tnAzCscwsyUhKDreH5G4t4Yc7GYAX8wfJdwf8zgDO6t2JIx+ZOGbaEB5U9pRVh//N+vwZPYv7+2UbOfWL2MY8UW77jAOf9eQ43vbIobPnk+VvolpPJref0ACAhBuklaGD3g6hvJeUeNh+WGth1oJxTmh9ZNJ+2xDmDrfRG7phdvauY8U9VfRHaN09n14FDXHdGV8b0yubz9UXc+to3/Hp8H3q2yQLgyVnreGHOJpqlJzNuQLvgvh+vLuDNRdup9Pl56qqhgPPFGvXoJySIsOi3FzB/g5Oz7dWmCQUlFewvCx8zv21vGYc8Pp5xO/1uGtONF+Zuomt2Ju/ddiZNUiP/W83fuIcze+Zw7yV9+WR1Pg9MW8mNZ3aN/Jks3Rl8fM4TswFIThTSkhIpqfCyZU8Zl/1tHl6/8ssLe5Gbt4/P1jqjU4pKK3jhmurXV85eW8CD7zl9BeMHtGWFO4pn1qp8Zq1yKv5//HA47Zql8ezsjVw6+BTW7S7hilPb8+iMNVz5vJN++vyuc4JnbEu3Oa9xSvN0LujXhsnzt/Dc7I08cGl/Zq3Kp3tOJou37uf5ORs5cMgTbHGM6ZXDkI7N2fLYJRSWVPDgeyuZt7GIrLQk5q4r5KtNe/jsl82ZtSqf1ORE7jivJwkJNVcChW5FdX7fNmwqPMghjy94dj/lRyPontOEz345llZNqlqbnVtl8ukvxtIiM5m8PWVc8ex8/v7ZBh64tD/g/J1/8soifnNxX0b3yK72nntKK1i2vfpIqPxipyy7D5QHg0JiggRPVqYv38305bt56uP1rHjoIra65ezTNivsLH3lzmIGdXAq5xU7iunTNisYVDNSEimrDK98t+4tC/vu/eDFqrTXqZ1bAJCWnMjFA9vxRu428vYe5KtNTqU/tFMLRnRtyb+/yqNH6yZ0y87ko1X5XDr4FCaM6MRjM9bwzy824QtpYdzwci7pyYlMnTgScPrNyip9ZDdJoai0kk1FB1mXXxI8hmgFWrShZq3Kp7jcQ9O0ZDw+P0u27eeq0zpxXt/WPDpjDd8Z2v6I3iNa1oI4AgXF5WEthG+27sev0Ldd0+CyJdv2R9oVv1/ZWFg9r76ntILZ65xmad6esohBYvK8LWHPd+w/hF/hFxf2Ymzv1nx/eAc+XVPABX+ZGxzRNG+DM1Jj+75DYfvuPuA8LyypYN/BSi595gtun/oNfgWvX3luzkbWFZRw5wW9+OjnZ/PYFYM4v28b/vqDIUy71Tlz27q3jBkhOdYX5m4CnNx6aD9CKK/Pz4bCUvq2zSItOZE/XTmYLUUHueft8LTckI7NGdi+GeCc7Y4PSY0MbN+MqRNH8tRVQ+jcKgOvXxncoRm3ntszeJbnHPueiDn90L/NxH/n4vMr153RJbjs2lGd6Z7ThIyUJBbfdwFPfn8wH/58DDed3Z27x/UJbvfB8l18sHwXXX89ncluuiQrNYl7xvehSWoSGwsP8umafH48JZdz/zyHX765lA0FpcHg0L55Omd0bxV8vZysVEZ3zya/uIIZK3aTnChUev2MfuxTSiq8FJVW1DkkNfDapzRPZ+YdY/jzlc7MNTed3Y0xvapaD03TksP269Qqg6y0ZAa0b8aYXjnMXLE7eDb92Iw1rNxZHJZ6C3XtpAW86P7twQl614zszI79h9h3sJIF7hl3rzZNmPKjEVwzsjMX9W8T3P5gpY9Vu4qDJwNTfzySlQ9dxJs/GUVyogQDnKqycucBBrj/FwDv3jKaSdeFnwRc9eJXwT6lw/sY0pITg49/dl5PLh/anoUhndXT3f/nTYWlDOvUgp+O7U6CwJluYOzcKgOPT9l14BAl5R7mbyhiybb9LN66L/idC6QIH758YPB11+WX8tLnm1ifX3d6KuDW174BoFPLjLDld7y+hL9/toHVu4op9/gZ3qUFPVpnseWxSxjZrVWklzpmFiCitKGglBGPfMJv3lnO6l3FbCwsDeYZX7vxdFY8dBFpyQk8OmN1xKtUH/9wDef9eQ4frgzv6B316Kds23uIIR2bc8jj487/LOG1r7dy2d/nBSu5BVv2cmG/Nmx85GLm33MuAJcPbU+me6b+7cFVZw+zVuWzbPt+Vuxwyhbo7FVVVJW1u53n6/JLeHPRNpbvOMDXm/cyrn9bBnVoxvNzNqIKp3VpCTi565d+OJzvDG1P55aZALyzeAcvf5kXlvd8ZsJQRnVrxdQFW9l1IDwogZOKqPT66d3WaeGM7pHN8C7OWV1OVip3j+vDe7eeybu3jObMns6X8qye2XQM+ZI8esUgBrRvxmVD2ge/uL3cFtPY3q2D25VWeBn7xOxqabfQfpt5bivp1xf34bunduChb/fnd5cNCK5vmZlCcmLV1+PSwVWtsM/XF4aN2uncKgMRIS05kbG9c/h8fSETp4SnBAJuOrsb8+45l6zDKuqL+rchJTGBgpIKzu/bptp+n65xTiLe/WYHP31lUdiJyser8nluttOhGUgfDe/SknduPoO7L+pT7bVqMn5AW3YdKOfpT9dT4fUFh4Ouyy+tdoGZ36/B9NHbN5/ByocuYsqPRnDJIOdzWpS3Lzh66p2bRzO6Rza//84AhnR0/uYizs8lT3/B+8t2cengU2iekUxmahKndWlJxxYZbN3rvGdBSQVFpZUMOKXqRKxXmyzO7dOG7CapDOpQFTg+X+eUOdCf1zU7k39cGx5IOrbM4C8/GMJrN57OU1cN4ZJB7Zg8fwt3/XcpRaWVdM3JZGinFmx69JLg/19n9/fWPWXc9O9FXP2SM8y2wusPvteHK3eTmpTA2b1y+Po355GYILzyVR5/+GA19767os4ULIT3ozwzYShTfjSCx7/rBJxP1xTwpw/X8o47KKVP26YRX+N4shRTlDa5Z/9TFzgd0k3TkrigX1uym6QGO4nP6J7Np2sKuPHlXN6YODI47ExV+ZfbCrht6jec27s1913aj7ZN06h0zz5+e0lfpi7YxluLt/P+Muds5oaXFzLlhtPZXHSQK4a2JzFB3DPEs+jSKjNYttE9WnHP+D48NmMNN7/qNOkzUxLpltOEdW5n76Mz1jB53hZ8qqQnJ1JUWskj06s6Xq8d1ZnlOw6wbPsBLurfhpHdWlb7DJplJNMiI5mZbpAb1KFZsIVyft82rC8o5elP1jPq0U+Zd8+5tA9p7n/sdt4NDDkLPLdPa77atJdOLTP4aUjeP5CiGtKxOTlZqbw4dxOvTxwZDC4APVs7oza87hdqkPu6vdo0YZ0bFPOLK+ianYTH5ydRhE1FpZzWpQVJCQl8uWkPv7igF6lJifz5+8F5ImvUoUUGyx68kCc+XMuUL/OYt2EPA9o35d2bR+PxVX2pu2ZnogpeVT76+RjaNE2jaVoSF/11LuvyS+nQIiPi67dqksq4AW2ZtnRntUEH2U1SmbFiFwPaN+MOt89lybb9DO3UgkqvnxtDBg60dgMEOGmTIxEITH/9eD2Fbmrx5rHdeXb2Rj5eXcCwzi146uN1dM1uwtWndwTgD98ZwKkh7zO0k9OSC5SpSWpS8EQGYEyvbGaubM73hjkz69z37gqSE4UnrhwUNkyzU6sMpi93hpteOcx5r9AWRMDnd51DYoLg9fvpd/+H3Dgll7G9c+ia7Xw/Xrnx9LD/w1Cnu2fd4we0IyUxgf/kOn1T3bIzq23bqZXzd8vbWxY2bDY5Ubj99W8Y1qkF/1uyk5vHdictOZG05ER6tm4SbLXu2HeIEY98wjMThnLxwHbVXj9g537n+/TYFQMZ7LaKVZW731pOi4xkkhMTgnVJrDqmQ1mAiNLuwzrAisu9vLV4OwPaV0XxR68YyO/ed0ZrbNt7KPhPtc8dmTFxTDd2Hyhn2tKdZKYm8fMLnHzqry7qzfAuLfH5lbcWbw++Xt6eMi5yR6GEfjkOP3MQEW4a0433lu4MntX1bdeU/qc05a3FO9hfVhlMBVx1WkfuvKAX//4qjw+W7eK7wzqwc/8hRnVvxendWnHxwHa0b55e45jq8/q2CXbyVnj8vHfrmew5WEF6SmJYk3jt7uLgF/PfX+Xx2Iw1DO/cIthHAnD96K6kJyfS/7Av/g1ndiUnK5XvDGlPQoKw9P4LaZYRfsY9fmA7/vbZhmCKKCFBWPHQRaQkJnDDywv5fH0RBcXltM5K5bvPzefAIQ+7DpRz45ld+e23+kU8tro0TUtmWOcWTPnSSaNlN0klKTGBpKrsRTDdmJKYQM/WTYKf48Qx3fnlm0vpUctwxLvH92FR3j4uGdiObtmZTPpiM6c0T2dop+b84/PNYSPIpi/fxdBOLZixInw45eEtkyPRLCOZq0/vxGtfb+VVd0TYlcM78r8lO1mybT+79h/is7WFfLa2kBK3ldwtJ7wyTU1KZHSPVsEW2uGpnv6nNAt2MgOc16c1Pr+SGvohAr3bZjF7bWHwB8JTuQHpKc5+KSRw+7k9mLO+iDnrnH0yUhI5pVlancedkpTAD07rGDwz7xXyPxrQrlk6SQnC5+urrsL+29VD2Xewkvv+tzKYDrvxrG7B9b3aVPWp7HAr/jcWbgsLEB6fnz/OXMOy7Qe4sH/b4PU0gboDnO/3gt+cR9P0ZKYt2RkcFBOaNosVCxBRWJ9fwv3/c/Kw5/dtw6WD27Gp8CBPfbKes3pWXb3dpmkaPxrdhQ+W7eK5ORtonpHCDWd2DY6uGNqxOeMvbkdxuYdVu4qDnXND3TOF07u1YuYdZ/HgtJX84LSObC4q4+lPnJE2/dvX3pwUEd6/7Uw+WV3AjVNyaZ6RQs82WZRWeJm+3Dnjn/rjkYxyc9+/uLA3v7iwd9hrJAphKZ1I7r+0H12zM5m/sYifnd+TgSHN+84h/9QrdhQzoH0z0pMTg1M9PP69QWGvlZyYwDWjulR7j7TkRL4/vGPw+eHBAZzPOve3F4QtC7Q87vtWPy78y1wKSiqYPH8La3aXkJWWxPl9WzPx7G7VXutIjB/QjnnDi/hP7vbg8MxQ4/q35ZHLB9KuWVpYkP3esA6c1qUFnVtVPzsNaN88nXluCnF0j+xgZfO/JdWHzi5w8+f//jKPnKxUslKTuGtc72rbHalHLh9In7ZZPPXxem47twddszPp1DKDHfvKKCn30LtNFlv3lvGme5LQo3X1gPfs1cMorfQy+rFPSUmqPYtd04COc3q35oU5Vf0b3z21Q1hLJJI7L+zNnRf25oU5G3l0xhp6tcmK+uKxQB9Wq8wUukRoQSQmCG2apgUHM0y//Sz6ndKUPaUV3OfWDU9dNYSWIa2/SJ/NFxuK2FJ0kBaZKTRLT+aVr/L4x+fOVfhfhwy97ZYdvm/rpk6gC6Rf64sFiCg8PnNt8PFLP6zKZ153RpfgGUxAjxzn7GOqe1HNc7M38ojbadXO/TL0aduUeRs2scrt1AqtlPu0bcrrE0cBzhC8pz9xlrfOqvtMSEQY0yuHH43uyvWjuwRbPYHrM0LPSo5W07RkbjmnB7e4w+tChbYgnpy1Lmx45kX928TsYp7DBdIst039hqy0JEZ0acl/fjLquLx2SlICD18+EL8S1sEdkJAgXH16p4j71hYcahN6Rpv72/OZ9MVmnp29ke37yli1q5irTuvE/ZceXasokmtHdeHakMDdvkU6n68vJL+4gmGdW9AsPZkFW/bSNTsz4v9ls4xkmmUkM/n602jX7OjSIMM6t2B45xbBK+ufuHJQHXtUufGsbrRvkX5E/29pyYm8e8toOtaStmnXLI0d+w+RlCB0b+38LVs1SeWxKwbSt13TYEoooKl7jUL75unBFoTPr4x9YjaZKYms/N043l2ykyEdm3P/pf244tn5APzrutNoW0PLJxBQQwdvxJIFiCi0quFCtEgXqDXLSCY9OZFDIeOfAzn7du4fvW+7LDw+5Q8frKZ3m6waz6Ii5VzrkpKUEKwsmqaHn3mH5qdjIadJKsM6t2DX/kPsPOw6i9AO31hrFnLcJeVefnBax1q2PnLJiQk8cWXd/RbHSyCNM2FER7KbpDJ+QDuem7ORW1/7hrJKX7BjOlY6tEgPDl39wWkdGdmtFQu27A3re4gkdODAkUpOTOC/Pz2DrzftISUp4YimkUhMEL416JQjfs8hHWsfjtqueTrk7aNH6yZhKbGrRkQ+IbhiWAcWbd3Pby/pyzX//JqB7ZuzcMtetu4t42Clj7JKLyt3HOCms7txaqcWTLpuOHsPejinT+2f27o/jCepliHPx5MFiCiUuqNhHgkZvlabx747kG17y7hmVBcGP/QRc9cVIuLkrCH8i/PP64aHXbkZqmlaMjec2ZXTu1bvMI5Gs/Rk/nXdaVw/eSEQ+0o6IUF466dn4PX5+XBlPp1aZvDYzNVs3VvGj2q43iEWQiuTbw8+hctjNEa8vqQmJfLNfRcEr5od2KEZ15/RlUnznNRE6LUNsRDayTuia0tO79qS1lmpwZFusXR6jIZvHo0MN+c/rHN0nf9N05J5ZoJzrdHMn41BBB6YtjLYh/XJ6gK8fmV4Z+dzPLdP9dFrkdSVtjueLEBEobCkghFdW9aYOjjcZUOqKqSkBMHrV+66qE8wEDRLT2bWz8dw4JCnxlEtAfcdZYdqQKzGR9cmKTEhONzx1RtH1vv7A7xz8xk0z0gJjmY52R3eWj29W8tggMhpEtsWROhoqOGdWyAinN8vusqsIQmkaEP7x6IVuMjx1+P7UlRawfTlu/nLrHVkpSUF+wVPRBYgolBUUkHfU45uzPG7t4wmMUGqjcDoGWGkRCwE+kgC+dDG4kiHeJ5sQtM7sW5B9GjdhP/+ZBRllT6S6jFVeKL58VnduKBfm4ijnKKVnpLIHef3Yvry3WwqOsi1ozrXy2iko9W4ao2jVFhSwdlHmec9mn6E423Or8aSkWJ/6oYkJyuVzq0yyNtTFkxdxtLwekgnnehSkhKOKTgE9MhpErxe58dnHduoulizWqMOxeUeSiq8tGla9yiiE9XRjp4xJ7ZhnVuQt6csbGilOfElJAjTbj2TnfsP1TmsPN4sQNTC4/Nz/7vOvYr6tK2flJAx0frR6K50y848oVMUJrK0ZGemgxOdBYhazFyxm3fdmVb7nxL/VJExoQa0b3ZCpDBNw9V4e5yisDXktpexHmtujDEnGgsQtViXX0JKYgIf3zkm3kUxxph6ZwGiFuvySzmjRyt6tLb+B2NM42MBogaqSt6eg9UmzTLGmMbCAkQNCksrKKv0hc1QaowxjYkFiBpsczuoj8cMqMYYczKyAFGDwA1AOp/gF7IYY0ysWICowQ73Vprt6+G2fsYYcyKyAFGDwtIKmqUnV7sVojHGNBYWIGpQVFpBdoxnyTTGmBOZBYgaFJVU1sssmcYYc6KyAFGDotIKsm16DWNMI2YBogaFpRUxv1OXMcacyCxARFDu8VFS7rU+CGNMo2YBIoI9BysBrA/CGNOoWYCIoKikArAAYYxp3GIWIERkkogUiMiKGtb/n4gsc3/mi8jgkHXjRGStiGwQkXtiVcaaFJW6AcI6qY0xjVgsWxCTgXG1rN8MnK2qg4DfAy8CiEgi8HdgPNAPmCAi/WJYzmqCAcL6IIwxjVjMAoSqzgX21rJ+vqruc59+BXRwH48ANqjqJlWtBF4HLotVOSMpKrU+CGOMOVH6IG4AZriP2wPbQtZtd5dFJCITRSRXRHILCwuPS2EKSyrISk2ym8EbYxq1OgOEiIwWkUz38f8TkSdFpPPxKoCInIMTIO4OLIqwmda0v6q+qKrDVXV4Tk7OcSmTXSRnjDHRtSCeA8rcTuS7gDxgyvF4cxEZBLwEXKaqe9zF24GOIZt1AHYej/eL1v4yDy0ykuvzLY0x5oQTTYDwqqri9AM8pVtnSmMAABW4SURBVKpPAcd8k2YR6QS8DVyjqutCVi0EeopIVxFJAa4Cph3r+x2J/YcqaZ5hHdTGmMYtKYptSkTk18A1wFnuKKM6T69FZCowFsgWke3AA4H9VPV54H6gFfCsiIATiIarqldEbgU+BBKBSaq68oiP7BgcOOShV+tjjoHGGHNSiyZA/AC4GviRqu52z/z/VNdOqjqhjvU3AjfWsG46MD2KssXE/jIPTdMtxWSMadzqTDGp6m7gLSDQa1sEvBPLQsWT1+enpNxLc+uDMMY0ctGMYvox8F/gBXdRe+DdWBYqnorLvQA0sxaEMaaRi6aT+hZgNFAMoKrrgdaxLFQ8HTjkAbAWhDGm0YsmQFS4VzQDICJJ1HJdwsluf5lzqM3TbRSTMaZxiyZAzBGR3wDpInIB8CbwXmyLFT/73RaEdVIbYxq7aALEPUAhsBy4CWd00W9jWah4OlTpAyAz1abZMMY0btEMc03HuRbhHxCcbTUdKItlweKl3OMEiLQkCxDGmMYtmhbEJzgBISAd+Dg2xYm/co8fwCbqM8Y0etEEiDRVLQ08cR9nxK5I8RVsQSSfKBPdGmNMfERTCx4UkVMDT0RkGHAodkWKr0PBAGEtCGNM4xZNH8TPgDdFJDCjajuc6TcapAo3QKQmWQvCGNO41Rog3A7ps4A+QG+cezWsUVVPPZQtLsq9flKTEnAnEDTGmEar1tNkVfXh3KvBo6orVHV5Qw4O4PRBWHrJGGOiSzHNE5G/AW8ABwMLVXVxzEoVR06AsPSSMcZEEyDOcH//LmSZAuce/+LEX7nHby0IY4whigChqufUR0FOFOUen10kZ4wxRBEgROT+SMtV9XeRlp/syr1+0lIsQBhjTDQppoMhj9OAbwGrY1Oc+HNaENYHYYwx0aSY/hz6XESeAKbFrERxVuHx0TzDpvo2xpijOVXOALod74KcKJxOamtBGGNMNH0Qy6m6QVAikEP4iKYGpdxr10EYYwxE1wfxrZDHXiBfVb0xKk/c2SgmY4xx1JlLUdU8oDlwKXA50C/WhYqnsgof6TaKyRhj6g4QIvIz4FWgtfvzqojcFuuCxYOqcrDSS5PUaBpWxhjTsEVTE94AnK6qBwFE5HHgS+CZWBYsHso9fvwKGXa7UWOMiWoUkwC+kOc+d1mDU1rhdK1YC8IYY6JrQfwL+FpE3sEJDJcB/4xpqeKkrNIJEJkpFiCMMSaaC+WeFJHZwJk4AeJ6Vf0m1gWLh0ALItNSTMYYE9V1EN2Blaq6WETGAmeJyGZV3R/z0tWzgxVOJi3TUkzGGBNVH8RbgE9EegAvAV2B12Jaqjg5GEgxWYAwxpioAoTfvTDuCuApVf05zn2pG5yDFdYHYYwxAdEECI+ITACuBd53lyXXtZOITBKRAhFZUcP6PiLypYhUiMgvD1u3RUSWi8gSEcmNoozHxUHrgzDGmKBoAsT1wCjgYVXdLCJdgVei2G8yMK6W9XuB24Enalh/jqoOUdXhUbzXcRHog7BhrsYYE91UG6uAu4HF7vPNqvpYFPvNxQkCNa0vUNWFgCf64sZWoAWRYSkmY4yJaqqNS4ElwEz3+RARifX9IBT4SEQWicjEOso3UURyRSS3sLDwmN60zOMjKUFIsRsGGWNMVCmmB4ERwH4AVV2CM5Iplkar6qnAeOAWERlT04aq+qKqDlfV4Tk5Ocf0ppVeP6kWHIwxBoguQHhV9cBhyzTilseJqu50fxcA7+AEqJir9Pqt9WCMMa5oasMVInI1kCgiPUXkGWB+rAokIpkikhV4DFwIRBwJdbxZgDDGmCrR9MbeBtwLVOBcIPch8Ie6dhKRqcBYIFtEtgMP4A6PVdXnRaQtkAs0BfwicgfOvSaygXdEJFC+11R15pEd1tGp9FmAMMaYgFoDhIgkAtNU9XycIBE1VZ1Qx/rdQIcIq4qBwUfyXsdLpddPSqIFCGOMgTpSTKrqA8pEpFk9lSeuKrx+Uux2o8YYA0SXYioHlovILOBgYKGq3h6zUsWJpZiMMaZKNAHiA/enwav0+ki1FJMxxgDR3Q/i5fooyImg0uu3q6iNMcZlp8shLMVkjDFVrDYMYaOYjDGmSjRzMV0ZzbKGwC6UM8aYKtHUhr+OctlJzwKEMcZUqbFHVkTGAxcD7UXk6ZBVTQFvrAsWD9YHYYwxVWobsrMTZyqMbwOLQpaXAD+PZaHipcL6IIwxJqjGAKGqS4GlIvKau10nVV1bbyWLA4/Ppvs2xpiAaGrDcdT/DYPiwvogjDGmytHeMKhL7IoUH16fH79iKSZjjHEd7Q2DGpxKnx/AWhDGGOOKZl6JsBsGAbcTwxsGxUul1wKEMcaEiqY2vA3oT9UNg4qBn8WyUPFgAcIYY8JFUxtOUNV7VfU09+de4KFYF6y+VQQChPVBGGMMEF2K6XsiUq6qrwKIyN+BtNgWq/55rA/CGGPCRBMgrgCmiYgfGA/sVdVbYlus+ufxKQDJ1oIwxhig9qk2WoY8vRF4F5gH/E5EWqrq3lgXrj4FWhAWIIwxxlFbC2IRoCHPBbjE/VGgWwzLVe8CASIpUeJcEmOMOTHUNtVGVxFJAEap6rx6LFNcBFJM1kltjDGOWmtDVfUDT9RTWeLKaykmY4wJE01t+JGIfFdEGnTupdJSTMYYEyaaUUx3ApmAV0TKcfoiVFWbxrRk9cxSTMYYE67OAKGqWfVRkHizUUzGGBMumhYEItIC6EnIBXKqOjdWhYoHG8VkjDHh6gwQInIjztxLHXDuCzES+BI4N7ZFq1+WYjLGmHDR1IY/A04D8lT1HGAoUBjTUsWBpZiMMSZcNLVhuaqWA4hIqqquAXrHtlj1r2qYq6WYjDEGouuD2C4izXGm2pglIvuAnbEtVv2rdFNMSdaCMMYYIIoWhKperqr7VfVB4D7gn8B36tpPRCaJSIGIrKhhfR8R+VJEKkTkl4etGycia0Vkg4jcE92hHJvgbK4WIIwxBoguxYSItBCRQUAJsB0YEMVuk4Fxtazfi3N3urArtUUkEfg7zsyx/YAJItIvmnIeC4/XUkzGGBMqmlFMvweuAzYBfnexUscoJlWdKyJdallfABSIyCWHrRoBbFDVTe77vw5cBqyqq6zHwuN3UkyJCRYgjDEGouuD+D7QXVUrY10YV3tgW8jz7cDpNW0sIhOBiQCdOnU66jf1+PykJCbQwGcUMcaYqEWTYloBNI91QUJEqqE1wjJnheqLqjpcVYfn5OQc9Zt6vH5LLxljTIhoWhCPAt+4nc0VgYWq+u0YlWk70DHkeQfqYdSUx+e3EUzGGBMimgDxMvA4sJyqPohYWgj0FJGuwA7gKuDqWL+px692kZwxxoSIJkAUqerTR/rCIjIVGAtki8h24AEgGUBVnxeRtkAu0BTwi8gdQD9VLRaRW4EPgURgkqquPNL3P1Ier58USzEZY0xQNAFikYg8CkwjPMW0uLadVHVCHet346SPIq2bDkyPomzHjaWYjDEmXDQBYqj7e2TIsjqHuZ5snBSTtSCMMSYgmvtBnFMfBYk3ZxSTtSCMMSbAakSXx+cnJck+DmOMCbAa0eXxKUl2FbUxxgRZgHBZJ7UxxoSL9pajZwBdQrdX1SkxKlNceP1KWrIFCGOMCYhmsr5/A91xbjfqcxcr0OACRFKCBQhjjAmIpgUxHOcCthrnQ2oIvD6/9UEYY0yIaCfraxvrgsSb16ck2XUQxhgTFE0LIhtYJSILqJ/J+uLC67dOamOMCRVNgHgw1oU4ETh9ENaCMMaYgGiupJ5THwWJN6/POqmNMSZUnTWiiIwUkYUiUioilSLiE5Hi+ihcffL67YZBxhgTKppT5r8BE4D1QDpwo7usQfH61O5HbYwxIaK6UE5VN4hIoqr6gH+JyPwYl6veeXw2WZ8xxoSKJkCUiUgKsERE/gjsAjJjW6z65/NbC8IYY0JFc8p8jbvdrcBBnPtFfzeWhYoHj9+ugzDGmFDRjGLKE5F0oJ2qPlQPZYoLr89Pso1iMsaYoGhGMV2KMw/TTPf5EBGZFuuC1Se/X/ErlmIyxpgQ0ZwyPwiMAPYDqOoSnJldGwyv35lmyoa5GmNMlWgChFdVD8S8JHHk9fsBbKoNY4wJEc0ophUicjWQKCI9gduBBjXMNdCCsKk2jDGmSjSnzLcB/XEm6psKFAN3xLJQ9c3rswBhjDGHi2YUUxlwr/vTIHl9lmIyxpjD1Rgg6hqp1JCm+7YUkzHGVFdbC2IUsA0nrfQ10GBrz2CKyVoQxhgTVFuAaAtcgDNR39XAB8BUVV1ZHwWrTx53FJMNczXGmCo1njKrqk9VZ6rqD4GRwAZgtojcVm+lqyc+N8VkF8oZY0yVWjupRSQVuASnFdEFeBp4O/bFql+eQCe1TbVhjDFBtXVSvwwMAGYAD6nqinorVT3z2ZXUxhhTTW0tiGtwZm/tBdwuEqw8BVBVbRrjstUbj89STMYYc7gaA4SqHlO+RUQmAd8CClR1QIT1AjwFXAyUAdep6mJ33RagBPDhTPUx/FjKUpfAdRB2wyBjjKkSyxpxMjCulvXjgZ7uz0TgucPWn6OqQ2IdHKAqxWTXQRhjTJWYBQhVnQvsrWWTy4Ap6vgKaC4i7WJVntp4AgHC+iCMMSYonjmV9jgX4gVsd5cBKPCRiCwSkYm1vYiITBSRXBHJLSwsPKqCeG0UkzHGVBPPGjHS6bq6v0er6qk4aahbRGRMTS+iqi+q6nBVHZ6Tk3NUBfFaC8IYY6qJZ4DYjnN/64AOwE4AVQ38LgDewblhUcxUzeZqLQhjjAmIZ404DbhWHCOBA6q6S0QyRSQLQEQygQuBmF6DUXXDIGtBGGNMQDQ3DDoqIjIVGAtki8h24AEgGUBVnwem4wxx3YAzzPV6d9c2wDvudRdJwGuqOjNW5YSqFkSytSCMMSYoZgFCVSfUsV6BWyIs3wQMjlW5Igm0IBKtBWGMMUF2ykzVldTJdh2EMcYEWYAg5EI5u5LaGGOCrEakajZXm4vJGGOqWICg6joIm83VGGOqWIAgdC4m+ziMMSbAakRCbxhkLQhjjAmwAIFzHUSCQIIFCGOMCbIAgdMHYSOYjDEmnNWKOLO5WnrJGGPCWYDAbUFYgDDGmDAWIHCm2rDbjRpjTDirFXE6qe0iOWOMCWcBAmcuJmtBGGNMOKsVAZ/fby0IY4w5jAUIwONXu1mQMcYcxgIEzjBXu1mQMcaEs1oRZy4mSzEZY0w4CxAEOqktQBhjTCgLEDjXQdhUG8YYE85qRew6CGOMicQCBM5UG5ZiMsaYcBYgCEzWZx+FMcaEsloRm6zPGGMisQCB0wdhF8oZY0w4CxCAx0YxGWNMNVYr4lwoZykmY4wJZwECN8VkndTGGBPGakUCNwyyFoQxxoSyAIFdKGeMMZFYgAA8PrvlqDHGHM5qRayT2hhjIolZgBCRSSJSICIralgvIvK0iGwQkWUicmrIunEistZdd0+syhhwYf+29DulaazfxhhjTiqxbEFMBsbVsn480NP9mQg8ByAiicDf3fX9gAki0i+G5eQvPxjCFad2iOVbGGPMSSdmAUJV5wJ7a9nkMmCKOr4CmotIO2AEsEFVN6lqJfC6u60xxph6FM8+iPbAtpDn291lNS2PSEQmikiuiOQWFhbGpKDGGNMYxTNAROoV1lqWR6SqL6rqcFUdnpOTc9wKZ4wxjV1SHN97O9Ax5HkHYCeQUsNyY4wx9SieLYhpwLXuaKaRwAFV3QUsBHqKSFcRSQGucrc1xhhTj2LWghCRqcBYIFtEtgMPAMkAqvo8MB24GNgAlAHXu+u8InIr8CGQCExS1ZWxKqcxxpjIYhYgVHVCHesVuKWGddNxAogxxpg4sSupjTHGRCTOiXzDICKFQN5R7p4NFB3H4pwM7JgbBzvmxuFoj7mzqkYcAtqgAsSxEJFcVR0e73LUJzvmxsGOuXGIxTFbiskYY0xEFiCMMcZEZAGiyovxLkAc2DE3DnbMjcNxP2brgzDGGBORtSCMMcZEZAHCGGNMRI0+QNT33evqS6Q7+olISxGZJSLr3d8tQtb92v0M1orIRfEp9bERkY4i8pmIrBaRlSLyM3d5gz1uEUkTkQUistQ95ofc5Q32mANEJFFEvhGR993nDfqYRWSLiCwXkSUikusui+0xq2qj/cGZ62kj0A1nFtmlQL94l+s4HdsY4FRgRciyPwL3uI/vAR53H/dzjz0V6Op+JonxPoajOOZ2wKnu4yxgnXtsDfa4cabHb+I+Tga+BkY25GMOOfY7gdeA993nDfqYgS1A9mHLYnrMjb0F0WDvXqeR7+h3GfCy+/hl4Dshy19X1QpV3YwzgeKIeinocaSqu1R1sfu4BFiNc7OpBnvc6ih1nya7P0oDPmYAEekAXAK8FLK4QR9zDWJ6zI09QBzR3esagDbqTKmO+7u1u7zBfQ4i0gUYinNG3aCP2021LAEKgFmq2uCPGfgrcBfgD1nW0I9ZgY9EZJGITHSXxfSY43nDoBPBEd29rgFrUJ+DiDQB3gLuUNVikUiH52waYdlJd9yq6gOGiEhz4B0RGVDL5if9MYvIt4ACVV0kImOj2SXCspPqmF2jVXWniLQGZonImlq2PS7H3NhbEDXd1a6hyheRdgDu7wJ3eYP5HEQkGSc4vKqqb7uLG/xxA6jqfmA2MI6GfcyjgW+LyBactPC5IvIKDfuYUdWd7u8C4B2clFFMj7mxB4jGdve6acAP3cc/BP4XsvwqEUkVka5AT2BBHMp3TMRpKvwTWK2qT4asarDHLSI5bssBEUkHzgfW0ICPWVV/raodVLULznf2U1X9fzTgYxaRTBHJCjwGLgRWEOtjjnfPfLx/cO5qtw6nl//eeJfnOB7XVGAX4ME5m7gBaAV8Aqx3f7cM2f5e9zNYC4yPd/mP8pjPxGlGLwOWuD8XN+TjBgYB37jHvAK4313eYI/5sOMfS9UopgZ7zDgjLZe6PysDdVWsj9mm2jDGGBNRY08xGWOMqYEFCGOMMRFZgDDGGBORBQhjjDERWYAwxhgTkQUIY46CiLRyZ9VcIiK7RWSH+7hURJ6Nd/mMOR5smKsxx0hEHgRKVfWJeJfFmOPJWhDGHEciMjbk/gQPisjLIvKRO5f/FSLyR3dO/5nutCCIyDARmeNOwvZhYOoEY+LNAoQxsdUdZ1rqy4BXgM9UdSBwCLjEDRLPAN9T1WHAJODheBXWmFCNfTZXY2Jthqp6RGQ5zg2qZrrLlwNdgN7AAJzZOXG32RWHchpTjQUIY2KrAkBV/SLi0apOPz/O90+Alao6Kl4FNKYmlmIyJr7WAjkiMgqc6cpFpH+cy2QMYAHCmLhS51a33wMeF5GlODPQnhHfUhnjsGGuxhhjIrIWhDHGmIgsQBhjjInIAoQxxpiILEAYY4yJyAKEMcaYiCxAGGOMicgChDHGmIj+P8aXUxckhF51AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -324,9 +323,9 @@ } ], "source": [ - "plt.plot(np.mean(KinkyExample.history['mNrmNow'],axis=1))\n", - "plt.xlabel('Time')\n", - "plt.ylabel('Mean market resources')\n", + "plt.plot(np.mean(KinkyExample.history[\"mNrmNow\"], axis=1))\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Mean market resources\")\n", "plt.show()" ] }, @@ -344,7 +343,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5gc1Znv8e/bE5VGSGiUwygiJJmkQRhMEAZMMCvwksHG2BicMLbxYsPdXYzZ3Wtsr+1rMDbp+hK8BgswIIwwORqBckASiiiM0iin0YTufu8fXSOa8YSWNDXVM/37PE8/XV11qvqdmp5+55yqc465OyIikrtiUQcgIiLRUiIQEclxSgQiIjlOiUBEJMcpEYiI5DglAhGRHBdaIjCzP5hZpZl90MR2M7O7zGy5mc03s+PCikVERJqWH+KxHwJ+CzzSxPZzgZHB4wTg98Fzs3r16uVlZWWtE6GISI6YNWvWFncvbWxbaInA3d8ys7JmilwAPOKpHm3vmdlhZtbP3Tc0d9yysjJmzpzZipGKiLSsLpEknnAS7iSSjgfPCXeSSYJnJxmsTzq4Ow64Q9Idd3CC52C5Ybnm9hle2pW+3YsPKn4zW93UtjBrBC0ZAKxNe10RrPuHRGBm1wPXAwwePLhNghOR7JNMOntq4+ypjrOnJs7u4Dn1um7/693Vcapq49TGnXgy9QVel0imvsyTvv9LvS7pxOvXJ5y6/WVT+9XFk/vLJLNgEIb/vHAcX/z0kFY/bpSJwBpZ1+ipdvf7gfsBysvLs+DXISKHorouwc59dWzbW8vGXdWsqNzDvtoEu2vi7NpXx766BHtrEuzaV8f2qtqPv/Br4hkdv0thHp2L8inMi5GfZ+THjIK8GAXB64JYjML8GF3yYhTkGfmxYH3967wYBbHUc36eUZgXC44VIy8GMTNiZuTFjFjMyDPbvz4vltpmxiefATOw/ctGzIJ1GDQoV7+cvn5ory6h/D6iTAQVwKC01wOB9RHFIiKtzN3ZureW9Tv2sXTTHhat38WiDTtZvGE3O/fVNbpPcUGMbsUFdC7Mo1NBHt07FVDWqws9OxfStTifrkX5dAue0193Ky7Yv65LYT55scb+z5SmRJkIpgA3mNnjpC4S72zp+oCIZKdE0lmzrYq5a7cz/aPtvLtiC5t2VVNdl9xfprggxui+JZz3qX4M7NGJ7p0K6NG5kNJuRQzs0YleXYsozNcd7VEILRGY2WPARKCXmVUAPwYKANz9XmAqcB6wHKgCvhJWLCLSetyddTv2saBiJ/PX7WTOmu3MWbODmnjqS79bcT5HDezO8WU9Gdu/hP6HdWJ4aReG9uqq/9SzVJh3DV3RwnYHvh3W+4tI69lTE+etpZt5dXElby7dzJY9NQDkx4zR/bpx5QmDObJfCWP7lzC6b4m+8NuZKJuGRCSLVe6qZsq89by+pJLpH22jLuF071TAqaNKmVDWg6MGHsYRfbtRXJAXdahyiJQIRGS/XdV1vLRwE8/OXce7K7aSSDoje3flq58Zyumje1M+pAf5eWrH72iUCERyXG08yTvLN/PkrApeXrSJuoQz4LBOXH/qMC4eP5DhpV2jDlFCpkQgkqP21MSZPGMtv3p5KXtq4nQrzufqE8s471N9OW5wD8zUzp8rlAhEckwi6byyeBM/fnYhG3dVM2FoT646YTDnjOtLUb7a+3OREoFIjqiuSzB55loeeHsla7ftY1ivLjz5jRMpL+sZdWgSMSUCkQ5uT02cu19bxtOz11G5u4bxQ3pwyzlH8rmxfSjQhV9BiUCkw3J3Xlq0iZ9OXcza7fs4bVQp150yjE8P66n2f/kEJQKRDmjaiq386uUlzFi1neGlXXj0qxM4aUSvqMOSLKVEINKB1MaT/PSFxfy/v6+iT0kR/3HhOK44fpDu/ZdmKRGIdBBvL9vMfz2/mA837ubLJw7hh+eMpkuR/sSlZfqUiLRzO6vquOOvi3hqdgX9uxfzwNXlnDWmT9RhSTuiRCDSjr26eBM/emoB2/bW8K2Jw/numSPVF0AOmBKBSDu0rzbB/566mEffW83ovt146CvHM25A96jDknZKiUCknVm0fhfffXwOyyr3cN0pQ/mXs49QLUAOiRKBSDvy6uJNfPtPsykpLuDRaydwysjSqEOSDkCJQKQdiCeS/PSFD/nD3z9ibP8S/nDN8fTuVhx1WNJBKBGIZLlk0rnjr4t4ZNpqrpgwmH8//0g6F+pPV1qPPk0iWcz94yRwzUll3D5pbNQhSQekRCCSpZJJ51+emMdf5qzj2pOH8m+fPzLqkKSDUiIQyUL7ahPc+pf5PDN3Pd84bTg/PPsIDRQnoVEiEMky8USS7/15Di8t2sRNZ43iO58doSQgoVIiEMkiyaTzwyfn8+LCTdx2/hi+evLQqEOSHKAhCUWyhLtz+3ML+cucdfzgrFFKAtJmlAhEssRvXl3GI9NW8/VTh3HDZ0dEHY7kECUCkSzwxMy1/J9XlnHRcQO55dzRuiYgbUqJQCRi01Zs5da/LOCUkb346T9/SklA2pwSgUiE5lfs4PpHZlLWqwv3XHUchfn6k5S2p0+dSERWbdnLVQ++T9fifB7+6gRKiguiDklylBKBSASqauN8/dFZ5MWMyV8/kQGHdYo6JMlhSgQibczd+dFTC1hWuZu7rziWQT07Rx2S5DglApE29n/f+Yjn5q3n5rNHaz4ByQpKBCJtaNqKrfz0hQ85d1xfvnHasKjDEQGUCETazPod+7jhT7MpO7wzv7jkaN0mKlkj1ERgZueY2RIzW25mtzSyfbCZvW5mc8xsvpmdF2Y8IlGprkvwzT/Ooiae5L4vldO1SMN8SfYILRGYWR5wD3AuMAa4wszGNCj2b8Bkdz8WuBz4XVjxiETpJ88tZF7FTn556dGM6N016nBEPiHMGsEEYLm7r3T3WuBx4IIGZRwoCZa7A+tDjEckEpNnrOWx6Wu54fQRnD22b9ThiPyDMBPBAGBt2uuKYF2624EvmlkFMBX4TmMHMrPrzWymmc3cvHlzGLGKhGLttir+a+piThjak++fNSrqcEQaFWYiaOxKmDd4fQXwkLsPBM4DHjWzf4jJ3e9393J3Ly8t1e120j7EE0m++/gcku787KKjyIvp4rBkpzATQQUwKO31QP6x6edaYDKAu08DioFeIcYk0ibcne9PnsfsNTv4zwvHUdarS9QhiTQpzEQwAxhpZkPNrJDUxeApDcqsAc4AMLMjSSUCtf1Iu/f6kkqem7eem84axQXHNGwRFckuoSUCd48DNwAvAotJ3R200MzuMLNJQbEfANeZ2TzgMeAad2/YfCTSrsQTSX469UMG9+zMN04bHnU4Ii0K9WZmd59K6iJw+rrb0pYXAZ8JMwaRtvaLF5ewrHIP935Rw0pL+6BPqUgrenXxJu57ayVXnTCYc8b1izockYxkVCMws5OAsvTy7v5ISDGJtEvrduzjpsnzGNOvhH8/v2HfSZHs1WIiMLNHgeHAXCARrHZAiUAkUBNPcONjc0gknXuuOo7igryoQxLJWCY1gnJgjC7iijTt539bwqzV2/nN5ccwVLeKSjuTyTWCDwD1ixdpwvLK3fzh7x9xxYRBulVU2qVMagS9gEVmNh2oqV/p7pOa3kUkd9z5whI6F+Rx89mjow5F5KBkkghuDzsIkfZq5qptvLJ4EzedNYqeXQqjDkfkoLSYCNz9TTPrAxwfrJru7pXhhiWS/fbVJvjRU/Pp172Yr50yNOpwRA5ai9cIzOxSYDpwCXAp8L6ZXRx2YCLZ7o6/LmTF5r38/OKj6FyoiWak/crk0/uvwPH1tQAzKwVeAZ4MMzCRbPbu8i08Nn0t1586TBPQS7uXyV1DsQZNQVsz3E+kw/rZ3z5kYI9O3KQ5BqQDyKRG8Dcze5HUoHAAl9Fg/CCRXDL9o23Mq9jJ7f80Rh3HpEPI5GLxzWZ2EanB4Qy4392fDj0ykSzk7vzsbx/Sp6SIS48f1PIOIu1ARle43P0p4KmQYxHJem8s2cys1dv5jwvH6QKxdBhNfpLN7B13P9nMdvPJKSYNcHcvaWJXkQ7J3bnrtWX0717MZeWqDUjH0WQicPeTg+dubReOSPZ6avY65qzZwc8u+pTmGZAOJZN+BI9msk6kI6vcVc0dzy2kfEgPLhmv2oB0LJn8WzM2/YWZ5QPjwwlHJPskks4PnphHTTzJzy8+iljMog5JpFU1mQjM7Nbg+sBRZrYreOwGNgHPtlmEIhH70/Q1vL1sCz+ZNJZhpV2jDkek1TWZCNz9p8H1gV+4e0nw6Obuh7v7rW0Yo0hk9tUm+PXLS5kwtCeX6XZR6aAyuf/tBTM7teFKd38rhHhEsspD765i295afnTOEZipSUg6pkwSwc1py8XABGAW8NlQIhLJIos37GJwz86MH9Iz6lBEQpNJz+J/Sn9tZoOAn4cWkUgWqdhepXkGpMM7mJuhK4BxrR2ISLZZULGT2Wt28LmxfaIORSRULdYIzOxuPu5ZHAOOAeaFGZRI1BJJ5389vYCeXQq5asKQqMMRCVUm1whmpi3Hgcfc/e8hxSOSFR56dxUL1u3k7iuOpXvngqjDEQlVJtcIHjazQmA0qZrBktCjEonQ3po4v39jBSeP6MX5R/WLOhyR0GUyxMR5wArgLuC3wHIzOzfswESi8vC0VWzZU8P3zhypW0YlJ2TSNPQr4HR3Xw5gZsOB54EXwgxMJAqVu6u5782VTDyilPIy3TIquSGTu4Yq65NAYCVQ2VRhkfbsZy8soao2zr99/sioQxFpM83NR/DPweJCM5sKTCZ1jeASYEYbxCbSpip3V/Ps3HV88dNDGNFbo69L7miuaSi9I9km4LRgeTPQI7SIRCLyq5eWknTnSyfqdlHJLc1NTPOVtgxEJErvLNvC4zPW8vXThjFcI4xKjmmuaeiH7v7zBh3K9nP3G1s6uJmdA/wGyAMedPc7GylzKXB78B7z3P3KzMMXOXSJpPObV5fSu1sRPzjriKjDEWlzzTUNLQ6eZzZTpklmlgfcA5xFaliKGWY2xd0XpZUZCdwKfMbdt5tZ74N5L5FD8cTMtcxYtZ3/+sI4TUEpOam5pqHngi/zce5+c1PlmjEBWO7uKwHM7HHgAmBRWpnrgHvcfXvwnrobSdrU3po4v3x5KeVDenDlhMFRhyMSiWb//XH3BAc/LeUAYG3a64pgXbpRwCgz+7uZvRc0JYm0mcemr2Hz7hpuPe9IdR6TnJVJh7I5ZjYFeALYW7/S3f/Swn6N/VU1vNaQD4wEJgIDgbfNbJy77/jEgcyuB64HGDxY/7VJ66iuS/DA2yuZMLQn44foRjjJXZk0iPYEtpKaiOafgsf5GexXAaTP7TcQWN9ImWfdvc7dPyI1jtHIhgdy9/vdvdzdy0tLSzN4a5GW/fG91WzaVcN3z/iHj5xITsmkRvBgw9FGzewzGew3AxhpZkOBdcDlQMM7gp4BrgAeMrNepJqKVmZwbJFDsmlXNb9+eSkTjyjlpOGHRx2OSKQyqRHcneG6T3D3OHAD8CKpO5Amu/tCM7vDzCYFxV4EtprZIuB14GZ335pZ6CIH77+eX0xd0vnJpLG6NiA5r7l+BCcCJwGlZnZT2qYSUv0CWuTuU4GpDdbdlrbswE3BQ6RNvLtiC1PmrefGM0Yy5PAuUYcjErnmmoYKga5BmfSBV3YBF4cZlEhY6hJJbnt2IQN7dOJbE4dHHY5IVmiuH8GbwJtm9pC7rwYwsxjQ1d13tVWAIq3pkWmrWV65hwevLqe4IKOKrUiHl8k1gp+aWYmZdSHVGWyJmR1MBzORSLk7D737EScM7cmZYzQhvUi9TBLBmKAGcCGp9v7BwJdCjUokBC8u3Mjabfu4tHxQy4VFckgmiaDAzApIJYJn3b2ORgahE8lm1XUJfvLcIkb37cb5R2seYpF0mSSC+4BVQBfgLTMbQuqCsUi78fj0NWzYWc1t54+hKF/XBkTStdihzN3vIjVxfb3VZnZ6eCGJtK6aeILfvbGCCWU9OVGdx0T+QXP9CL7o7n9s0Icg3a9CikmkVT06bTWVu2v41aXHqPOYSCOaqxHU97TR5K3Sbu2rTXDvmys4afjhnDyyV9ThiGSl5voR3Bc8/6TtwhFpXU/NrmDLnlp+/8VRUYcikrWaaxq6q6ltkNlUlSJRcncen7GGI/p0o1zDTIs0qbm7hmYFj2LgOGBZ8DgGSIQfmsih+fvyrXywbhfXfKZM1wZEmtFc09DDAGZ2DXB60H8AM7sXeKlNohM5BPe+uYLSbkV84diGE+OJSLpM+hH055MXjLsG60Sy1oKKnbyzfAtf/cxQjSkk0oJMJqa5k9R0la8Hr08Dbg8tIpFWcO9bK+hWlM9Vn9bUpiItyaRD2f8zsxeAE4JVt7j7xnDDEjl4Szbu5m8fbORrJw+lpLgg6nBEsl4mNQKCL/5nQ45FpFX876mL6VSQx9dOGRZ1KCLtQibXCETajfkVO3hz6Wa+cdowSrsVRR2OSLugRCAdygNvf0TXonyuPqks6lBE2o2MEoGZnWxmXwmWS81saLhhiRy4LXtq+NsHG7ikfKCuDYgcgBYTgZn9GPgRcGuwqgD4Y5hBiRyMJ2ZWUJdwrjpBdwqJHIhMagRfACYBewHcfT0aiE6yTDLpPDZ9DROG9mREb308RQ5EJomg1t2dYFayYO5ikawyY9U21myr4vLjNQ2lyIHKJBFMNrP7gMPM7DrgFeCBcMMSOTCbdtcAcNTA7hFHItL+ZNKh7L/N7CxS01MeAdzm7i+HHpnIAfhg3U7MoGcX3TIqcqBaTARm9n3gCX35S7aqrkvw5KwKPjemDz27FEYdjki7k0nTUAnwopm9bWbfNrM+YQclciAen76GbXtr+fKJZVGHItIutZgI3P0n7j4W+DapUUffNLNXQo9MJAPxRJIH3v6I8UN6cNIITUUpcjAOpGdxJbAR2Ar0DicckQPzwgcbWbdjH18/VeMKiRysTDqUfdPM3gBeBXoB17n7UWEHJtKSeCLJf7+0hBG9u3LmkWqxFDlYmYw+OgT4nrvPDTsYkQMxZd56Vm+t4v4vjScW01SUIgerucnrS9x9F/Dz4HXP9O3uvi3k2ESalEg697y+nNF9u6k2IHKImqsR/Ak4n9QE9g6k/8vlgBplJTIvfLCBFZv38tsrj1VtQOQQNTd5/fnBs0Yalazi7vzu9RUML+3CueP6RR2OSLuXycXiVzNZ18S+55jZEjNbbma3NFPuYjNzMyvP5LiS295YuplFG3Zx3SnDyFNtQOSQNXeNoBjoDPQysx583DRUQqo/QbPMLA+4BzgLqABmmNkUd1/UoFw34Ebg/YP6CSTnPPzuKvqWFHPR+IFRhyLSITRXI/g6qesDo4Pn+sezpL7gWzIBWO7uK929FngcuKCRcv9B6oJ09QHELTmqYnsVby7dzKXHD6IgTxPsibSGJv+S3P03wfWBf3H3Ye4+NHgc7e6/zeDYA4C1aa8rgnX7mdmxwCB3/2tzBzKz681sppnN3Lx5cwZvLR3Vn2ekPlKXabhpkVaTyeijd5vZOGAMUJy2/pEWdm2s8db3bzSLAb8GrskghvuB+wHKy8u9heLSQe2tifPH91Zz+hG9GXBYp6jDEekwMhl99MfARFKJYCpwLvAO0FIiqADS/20bCKxPe90NGAe8YWYAfYEpZjbJ3WdmGL/kkCdnVbC9qo5vThwedSgiHUomjawXA2cAG939K8DRQCaDvs8ARprZUDMrBC4HptRvdPed7t7L3cvcvQx4D1ASkEZV1yX4/RsrOL6sB+VDekQdjkiHkkki2OfuSSBuZiWkBp9rsTOZu8eBG4AXgcXAZHdfaGZ3mNmkQwlacs/kmWvZuKua7505iqAGKSKtJJOxhmaa2WGkpqecBewBpmdycHefSqo5KX3dbU2UnZjJMSX3VNcl+N3rqdrAScMPjzockQ4nk4vF3woW7zWzvwEl7j4/3LBEPvb0nHVs3FXNLy89WrUBkRA016HsuOa2ufvscEIS+aTXPqxkwGGdVBsQCUlzNYJfNrPNgc+2ciwijZq2YivnH9VPtQGRkDQ36NzpbRmISGO27a1lT01c/QZEQpRJP4KrG1ufQYcykUM2eWaqJ/HZ4/pGHIlIx5XJXUPHpy0Xk+pTMJuWO5SJHJJE0vmf91dzwtCejOrTLepwRDqsTO4a+k76azPrDjwaWkQigdc/rGTttn388OzRUYci0qEdzPCNVcDI1g5EJJ27c/fry+lTUsQ5ahYSCVUm1wie4+PB4mKkxhyaHGZQIi8t2sS8tTv42UWf0nDTIiHL5BrBf6ctx4HV7l4RUjwiAPzujRUM7dWFi47T5DMiYcvkGsGbAME4Q/nBck933xZybJKjPty4i3lrd3Db+WPIV21AJHSZNA1dT2oWsX1AktQ8A04GA8+JHIx7Xl9BYX6MLxw7oOXCInLIMmkauhkY6+5bwg5GZO22Kp6fv55rTx5Kjy6FUYcjkhMyqXevIHWnkEjo7ntrBXkx46snD406FJGckUmN4FbgXTN7H6ipX+nuN4YWleSkVVv28vj0tVx6/CD6ddeQEiJtJZNEcB/wGrCA1DUCkVZXXZfgO4/NoVNhHt/57IiowxHJKZkkgri73xR6JJLT7n5tGQvW7eSBq8tVGxBpY5lcI3jdzK43s35m1rP+EXpkkjO2763l/rdWcsEx/TlrTJ+owxHJOZnUCK4Mnm9NW6fbR6XVPL9gA3UJ51pdIBaJRCYdyvTXKaFas62KwvwY4/p3jzoUkZyk+QgkcnPWbGdIz87EYpqBTCQKmo9AIjVr9XZmrNrOv58/JupQRHKW5iOQSL20aCMFecZlxw+KOhSRnKX5CCRSCyp2MqZ/d7oWZVI5FZEwaD4CidTa7VUcN7hH1GGI5DTNRyCRqYknWL+jmguP6Rx1KCI5rclEYGYjgD718xGkrT/FzIrcfUXo0UmHtnprFYmkM6y0S9ShiOS05q4R/B9gdyPr9wXbRA7JU7MrMENNQyIRay4RlLn7/IYr3X0mUBZaRJITKndX8/C7q7jwmAEMOVw1ApEoNZcIipvZplHB5JD88sWlJJKukUZFskBziWCGmV3XcKWZXQvMCi8k6ejWbK3iydkVXHXCEIaVdo06HJGc19xdQ98Dnjazq/j4i78cKAS+EHZg0nH9+pWl5MWMb04cHnUoIkIzicDdNwEnmdnpwLhg9fPu/lqbRCYd0htLKnl6zjq+ffpw+pQ01/ooIm0lkyEmXgdeb4NYpIPbua+OW55awMjeXfnOZ9U5XSRbHMwQExkzs3PMbImZLTezWxrZfpOZLTKz+Wb2qpkNCTMeidaDb69k465q/vuSoykuyIs6HBEJhJYIzCwPuAc4l9SwFFeYWcMhJucA5e5+FPAk8POw4pFobdlTw31vruT8o/px9KDDog5HRNKEWSOYACx395XuXgs8DlyQXsDdX3f3quDle8DAEOORCM1ctY3aRJJrTiqLOhQRaSDMRDAAWJv2uiJY15RrgRca2xDMmTzTzGZu3ry5FUOUtrJw/S4A+h2mLigi2SbMRNDYdFPeyDrM7Iukbk39RWPb3f1+dy939/LS0tJWDFHayquLKzlqYHcGKBGIZJ0wB4GvANJnGxkIrG9YyMzOBP4VOM3da0KMRyIUTyYZcrg6j4lkozBrBDOAkWY21MwKgcuBKekFzOxY4D5gkrtXhhiLRCzpEDPNSSySjUJLBO4eB24AXgQWA5PdfaGZ3WFmk4JivwC6Ak+Y2Vwzm9LE4aSdSyYd5QGR7BTq/IDuPhWY2mDdbWnLZ4b5/pI9ku7kxZQJRLJRqB3KROqpaUgkeykRSJtIupqGRLKVEoG0CVeNQCRrKRFIm0gkHV0iEMlOSgTSJnSxWCR7KRFIm0g6mJqGRLKSEoG0iXgyqaYhkSylRCChe2nhRnZU1TGkZ5eoQxGRRigRSKiWbtrND56Yx9j+JXzpRM07JJKNlAgkNIs37OKqB9+nuCCP+740XrOSiWQpJQIJxeqte7n6D9PJM+N/vnYCA3t0jjokEWmCEoG0uq17avjawzOpSyR59NoJjOrTLeqQRKQZoQ46J7mnclc1Vz74Pmu2VfHQV45npJKASNZTIpBWs6cmzuUPvMfGndXc/6XxnDS8V9QhiUgGlAikVdTEE9zwp9ms3lrFo9dOUBIQaUeUCOSQ1cQTXPfILN5aupn/vHCckoBIO6NEIIekYnsVNz42h9lrdnDnP3+KyycMjjokETlASgRy0Cq2V/H5u94hkXTuuuJYJh3dP+qQROQgKBHIQXtmzjp27qvjuRtO5lMDu0cdjogcJPUjkIPy/sqt/GXOOvqUFCkJiLRzqhHIAancVc3/evoDXlm8iZLifH7/xfFRhyQih0iJQDJSG09y92vLuO/NlTjOjWeM5FsTh2v8IJEOQIlAmuXuvPZhJXe9tpx5a3dwwTH9+e4ZIxlW2jXq0ESklSgRSJPWbqvizhc+5PkFG8iLGfdceRyfP6pf1GGJSCtTIpBPqK5L8M6yLfx55lpeWbyJmBk3n30E1548VM1AIh2UEoGQTDrvfbSVKXPX88zcdVTXJenRuYAbTh/B5RMGM+CwTlGHKCIhUiLIYTuqanlyVgX/8/4aPtqyl6L8GBcc05/PjenLaUeUUpCnu4tFcoESQY7ZvreWZ+au44UPNjJ3zQ5qE0nGD+nBjWeM4HNj+tKlSB8JkVyjv/ocULm7mjc+3MxLizbx1rLN1MaTjO7bjas+PZiLxw9kbH91CBPJZUoEHdS+2gQvfLCBx2esZfpH2wDo372YKycM5pJyffmLyMeUCDqIukSS+RU7eWvpZl5etIlVW/dSVZug7PDO3HTWKM48sg9H9uuGmUUdqohkGSWCdmpXdR0fVOxk2sqtzF6znTlrdlBVmwBg3IASzh7bl8uOH8QJQ3vqy19EmqVE0E7sqKplycbd/HnmWt5fuY11O/YBEDMY07+Ei8cP5NPDDueEoT05vGtRxNGKSHsSaiIws3OA3wB5wIPufmeD7UXAI8B4YCtwmbuvCjOm9uTRaav46/wNrNi8hy17agEoLohx5pF9uOrTgxndtxvHl/WkW3FBtBPcsSoAAAmeSURBVIGKSLsWWiIwszzgHuAsoAKYYWZT3H1RWrFrge3uPsLMLgd+BlwWVkzZIp5IsqcmzubdNWzaVUPl7mo27aph8+4aNu+pYfPuajbsrGb11ioO71LIGUf2ZkTvrozo3ZWjBh5GL/3HLyKtKMwawQRgubuvBDCzx4ELgPREcAFwe7D8JPBbMzN399YOZl9tgj01cZLuJJJpD3eSwXMi6SST7F+uf+zfJygbTzo18STVtQmq4wn21SaorkvuX95TE6eqNs6emgRVNfHgdYK9wXJNPNlojF2L8unVtZDSbkWM7V/C6Uf05lsTh9O7pLi1T4eIyH5hJoIBwNq01xXACU2Vcfe4me0EDge2tHYwD09bxZ0vfNjah/2EgjyjuCCPrkX5dCnKp0thHl2K8hnYuTNdi/LoXJSf2laYT5eiPEq7FdGnpJg+JcX07lakzlwiEokwv3kau1Wl4X/6mZTBzK4HrgcYPPjgJkc/eUQv/uOCscRiRp4ZsZiRHzPyYkbMPvmcF4O8WCwoB3n124N982JGYX6MzoV5dCrIozh45MV0d46ItD9hJoIKYFDa64HA+ibKVJhZPtAd2NbwQO5+P3A/QHl5+UE1G40b0J1xA9SJSkSkoTATwQxgpJkNBdYBlwNXNigzBfgyMA24GHitpesDs2bN2mJmq0OIN0y9CKG5qx3SedA5qKfz0PbnYEhTG0JLBEGb/w3Ai6RuH/2Duy80szuAme4+Bfi/wKNmtpxUTeDyDI5bGlbMYTGzme5eHnUcUdN50Dmop/OQXecg1KuT7j4VmNpg3W1py9XAJWHGICIizdOA8yIiOU6JoG3cH3UAWULnQeegns5DFp0DC6HvloiItCOqEYiI5DglAhGRHKdEEAIz62lmL5vZsuC5RxPlEmY2N3hMaes4w2Jm55jZEjNbbma3NLK9yMz+HGx/38zK2j7KcGVwDq4xs81pv/+vRRFnmMzsD2ZWaWYfNLHdzOyu4BzNN7Pj2jrGsGVwDiaa2c60z8FtjZULmxJBOG4BXnX3kcCrwevG7HP3Y4LHpLYLLzxpo86eC4wBrjCzMQ2K7R91Fvg1qVFnO4wMzwHAn9N+/w+2aZBt4yHgnGa2nwuMDB7XA79vg5ja2kM0fw4A3k77HNzRBjH9AyWCcFwAPBwsPwxcGGEsbW3/qLPuXgvUjzqbLv38PAmcYR1rGrVMzkGH5+5v0ciQMWkuAB7xlPeAw8ysX9tE1zYyOAdZQYkgHH3cfQNA8Ny7iXLFZjbTzN4zs46SLBobdXZAU2XcPQ7UjzrbUWRyDgAuCppEnjSzQY1s7+gyPU8d3YlmNs/MXjCzsVEEoHGPD5KZvQL0bWTTvx7AYQa7+3ozGwa8ZmYL3H1F60QYmVYbdbYdy+Tnew54zN1rzOwbpGpInw09suzS0T8HmZgNDHH3PWZ2HvAMqaayNqVEcJDc/cymtpnZJjPr5+4bgqpuZRPHWB88rzSzN4BjgfaeCFpt1Nl2rMVz4O5b014+QAe7TpKhTD4rHZq770pbnmpmvzOzXu7epgPyqWkoHPWjqhI8P9uwgJn1COZsxsx6AZ/hk7O3tVf7R501s0JSAwk2vCMq/fxkNOpsO9PiOWjQFj4JWNyG8WWLKcDVwd1DnwZ21jep5goz61t/fczMJpD6Tt7a/F6tTzWCcNwJTDaza4E1BAPrmVk58A13/xpwJHCfmSVJ/fLvbDCfc7sU1qiz7UmG5+BGM5sExEmdg2siCzgkZvYYMBHoZWYVwI+BAgB3v5fUgJTnAcuBKuAr0UQangzOwcXAN80sDuwDLo/inyINMSEikuPUNCQikuOUCEREcpwSgYhIjlMiEBHJcUoEIiI5TolAItdgFNa5jY3W2cL+q4K+GJmWLzKzV4L3uuzAI27x+HeYWZMdDhspP9HM/tracbTwnhc2MRCe5CD1I5BssM/dj2nD9zsWKAjjPc0sz90jGUr4AF0I/JWO0YlRDpFqBJK1gv/0f2Jms81sgZmNDtYfbmYvmdkcM7uPxsesqZ8X4plgYLf3zOwoM+sN/BE4JqgRDG+wz0Qze8vMnjazRWZ2r5nFgm2fM7NpQTxPmFnXtDhvM7N3gEvM7CEzuzjYdkYQ54JgbPr63uTnmNmHwT7/3ET8ZWb2dvB+s83spGB9vyDGuWb2gZmdYmZ5wft+ELzX94Oyw83sb2Y2KzjW6OA4k4Bf1J8DM7sx+Hnnm9njh/irk/bG3fXQI9IHkADmpj0uC9avAr4TLH8LeDBYvgu4LVj+PKmByno1cty7gR8Hy58F5gbLE4G/NhHLRKAaGEaqV/DLpHp/9gLeAroE5X6UFsMq4Idpx3go2KeY1Oiao4L1jwDfS1s/klQSm9xYPEBnoDhYHkmqVzLAD4B/DZbzgG7AeODltH0PC55fBUYGyyeQGs5jf4xp5dcDRen76pE7DzUNSTZormnoL8HzLD7+z/nU+mV3f97Mtjex78nARUG514KaRPcM4pnu7ith/xABJ5NKDmOAvwdDwxQC09L2+XMjxzkC+MjdlwavHwa+DbwRrF8WvMcfSU3M0lAB8FszO4ZUshwVrJ8B/MHMCoBn3H2uma0EhpnZ3cDzwEtBjeUk4An7eLqHoiZ+5vnA/5jZM6RGwJQcoqYhyXY1wXOCT17T+oexUczs22kXnPuTwTDHZnZC2j6TGisTvDZS/3HXzyQ1xt2vTSuzt5H3am6ynUzGdvk+sAk4GignlXzw1GQnpwLrSI3ZdLW7bw/KvUEq2TxI6u97R1rMx7j7kU281+dJzao2HphlqVFhJUcoEUh79BZwFYCZnQv0AHD3e9K+8NY3KDcR2OJpw/4G+7yftk/9CKETLDVyaAy4DHgHeA/4jJmNCI7X2cxG0bwPgbL6fYAvAW8G64emXZ+4oon9uwMb3D0Z7JsXvPcQoNLdHyA1gN9xwV1TMXd/Cvh34LjgZ/3IzOoHPTQzOzo49m5STUoEP+cgd38d+CFwGNC1hZ9NOhAlAskGneyTt4/e2UL5nwCnmtls4HOkRnhtzO1AuZnNJzUi7JebKNfQtKD8B8BHwNPuvpnUCKGPBcd7Dxjd3EHcvZrUiJpPmNkCIAncG6y/Hng+uFi8uolD/A74spm9R6pZqL7WMRGYa2ZzSDV9/YbUzF5vmNlcUu3/twZlrwKuNbN5wEI+njLzceDm4BgjgT8GMc4Bfu3uO1o6SdJxaPRRkTRBzeFf3P38qGMRaSuqEYiI5DjVCEREcpxqBCIiOU6JQEQkxykRiIjkOCUCEZEcp0QgIpLj/j/gccyWo/tR3wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd5xcdbnH8c+zPWU3bdPbJiQECJAAIaEqiGBAMaIgTZpI5Ap4Fa8XLFdFveq1IFI0RMQASgAFBAQMPZQIaaSQQJJNSCfZ9LbZNvPcP+aETJYtk2TPnp2Z7/v1mtfMKXPmO5nsPHPK7/czd0dERLJXTtQBREQkWioEIiJZToVARCTLqRCIiGQ5FQIRkSynQiAikuVCKwRmdq+ZVZjZO40sNzO73czKzWyemR0bVhYREWlcXojbngTcCdzfyPKzgaHBbQzwh+C+SaWlpV5WVtYyCUVEssSsWbM2unv3hpaFVgjc/VUzK2tilXHA/Z5o0fammXU2s97u/kFT2y0rK2PmzJktmFREsoG7Uxtz4u64Q9w9uCWWxZPm7V2eWJY8nVietH6cD5/jePBa4Emvu/cx0OA6ifX2LN3TztfZu5IDfTu3o6y0wwG9fzNb0diyMPcImtMXWJU0vTqY95FCYGbjgfEAAwYMaJVwItJyqutibK2sZWtlLVsqa1i3rYrdtTFq6uLUxuJUB/c1Sfc1sTg1dU5NLE7th9N77/c8JxZ36uJxYjEn5h5M+4fTdfHEvFg8/XtRuPbjh3Dz2Ye1+HajLATWwLwGPyl3nwhMBBg1alT6f5oiaS4ed7ZU1lCxo5r126uo2FFNxYf31WzdXcP23XVs213Ltt217KyuS2m7eTlGQV4O+bk5FOTlUJB0n59nifvcHIqL8ijNy6Ugz8jLySEvx8jJMfJyjNyk277zc8jPMXJzjRwzcgxyzLCkxzlGMG2Ysc/03vX3rLt3fbPEF1qOJb7WzILbnq852/uFZ2ZJj/euY0nr0Mj8Pp3bHczH1vi/eyhbTc1qoH/SdD9gbURZRCSJu7OkYifvb9zFqs2VrNhUuc8X/oad1dTGPvqbrFO7fLoXF9KlfT59OhdxWO9iSoryKe1YQOf2BXRun0+X9gV061hAp3b5wRd88IWfm0NOTkO/DyVsURaCJ4HrzewhEieJtzV3fkBEwrF+exVzV21l3uptzF29lflrtrG1svbD5cWFefTp3I4eJYUM7t6NniVF9Cgu3Oe+e3EhRfm5Eb4LOVChFQIzmwycBpSa2Wrgh0A+gLtPAJ4BzgHKgUrgqrCyiMi+1mzdzbTyjUxbuok3l23ig21VAOTmGIf2LGbs8F4cM6AzR/TuRN8u7ejSPh8z/VrPVGFeNXRxM8sduC6s1xeRvVZvqeTl9yqYuWILc1dtZfmmSgBKOxYwZnA3jhvQhRH9O3FE7060K9Cv+mwT5aEhEQnR0g07mfzWSqYsXMeqzbsB6FVSxJF9S7jsxDJOHtKNYT2L9UtfVAhEMkk87rz5/ibum7acKQvWk59rnDq0O1ecWMYpQ0v1xS8NUiEQyQDVdTEenbWGCVOXsnJzJSVFeXz9E0O4/KQySjsWRh1P2jgVApE0tq2ylr+8tYJJ05azYUc1I/p35sYzD2Xskb10BY+kTIVAJA3tqKrlT6+/zx9fXcaumhinDi3l1i+O4JQhpTr0I/tNhUAkjcTizlNz13Lr84tZubmSTw3vydfPGMrwPp2ijiZpTIVAJA24OzNXbOGnT7/L3FVbGdy9Aw9+ZQwnDSmNOppkABUCkTZu+cZdXPfgbBas3U5pxwJuu3Ak40b20SEgaTEqBCJtVFVtjN++sJg/v7Gcdvm5/O95R3LeMX1pX6A/W2lZ+h8l0gat317FjY/M4Y3yTXxuZB++ddYw+ndtH3UsyVAqBCJtSE1dnHteX8bEV5dRVRvjJ587kstOGBh1LMlwKgQibcTqLZVcPWkmi9bv4PRh3fnuOYcztGdx1LEkC6gQiLQBry/ZyDcenkN1XYw/XTGKMw7vGXUkySIqBCIRqovFueWphTzw5goGlXbgocvHMKSH9gKkdakQiESksqaOa+6fyRvlm7jm1EF866xh6hZCIqFCIBKBXdV1fOlPbzF31VZ+dt5RXDJmQNSRJIupEIi0so07q/nqA7OYt3obd11yLGcf1TvqSJLlVAhEWtHslVv46gOz2LKrhjsuPkZFQNoEFQKRVvLSe+v52l9n0724kCeuP1kdxUmboUIg0gpefHc94x+YxeG9i/nzlaPpXqzBYqTtUCEQCdnbK7fw9clvM7RHRyZfcwLFRflRRxLZR07UAUQyWXnFDq64dzrdOhZy/5dHqwhIm6RCIBKSulicbz48l/zcHP76lTH0KCmKOpJIg3RoSCQE7s5Pn36X+WsSl4iq51Bpy7RHIBKCf8xZw6Rpy7nshIF8+mhdIiptmwqBSAubuXwzNz06n2MGdOaH5x4RdRyRZqkQiLSgNVt3c+1fZtO7UxF/uuJ48nL1JyZtn84RiLSQWNy58eE5VNXGmHzNGLp2KIg6kkhK9HNFpIXc9XI5b72/mR+ce4QGlJG0okIg0gLeWbON219cwriRfbjguH5RxxHZLyoEIgepqjbGNx6eQ2nHQn507nDMLOpIIvtF5whEDtJvnltEecVO7v/yaLrovICkIe0RiByEGcs3c8/r73PpmAF87NDuUccROSAqBCIHaGtlDTc+Mod+Xdrx3XMOjzqOyAELtRCY2VgzW2Rm5WZ2cwPLO5nZU2Y218wWmNlVYeYRaSl1sTj/+dAcPthaxe8uOoYOhTrKKukrtEJgZrnAXcDZwBHAxWZWv5nldcBCdx8BnAb8xsx0kFXavD+8spSpizdwy7jhHDugS9RxRA5KmHsEo4Fyd1/m7jXAQ8C4eus4UGyJyyw6ApuBuhAziRy0qYs3cOsLizl3RB8uHTMw6jgiBy3MQtAXWJU0vTqYl+xO4HBgLTAf+E93j9ffkJmNN7OZZjZzw4YNYeUVadaarbv5+uS3OaxXCf/3haOijiPSIsIsBA1dTO31pj8FzAH6ACOBO82s5CNPcp/o7qPcfVT37royQ6LzP/94h1jcuePikbQv0HkByQxhFoLVQP+k6X4kfvknuwp4zBPKgfeBw0LMJHLAXli4npfeq+Brpx/CkB7qQkIyR5iFYAYw1MwGBSeALwKerLfOSuAMADPrCQwDloWYSeSALFi7jRsmv81hvYq5+pRBUccRaVGh7du6e52ZXQ9MAXKBe919gZldGyyfAPwEmGRm80kcSrrJ3TeGlUnkQNTUxfmvv82jQ2Ee9189msK83KgjibSoUA9yuvszwDP15k1IerwWOCvMDCIHa8LUpbz7wXYmXnYcPYo17rBkHrUsFmnC2q27uevlcj59dG/OGt4r6jgioUhpj8DMTgLKktd39/tDyiTSZvx6yiIAbh6raxgkczVbCMzsAeAQEpd5xoLZDqgQSEZbsHYbj89Zw/iPDaZ/1/ZRxxEJTSp7BKOAI9y9fhsAkYx263OLKSnK52unDYk6ikioUjlH8A6gg6OSVWat2MKL71Uw/mOD6dQuP+o4IqFKZY+gFFhoZtOB6j0z3f2zoaUSiZC789vnF9OtQwFXnVwWdRyR0KVSCH4UdgiRtuSZ+et4vXwj3//04epGQrJCs//L3X1q0Or3+GDWdHevCDeWSDSq62L85rlFDOtZzJUnlUUdR6RVNHuOwMy+CEwHLgC+CLxlZueHHUwkCj9/5j2WbdzFTWcPIy9XzWwkO6Sy3/s94Pg9ewFm1h14Afh7mMFEWtucVVu5/9/LuXTMAD5xWM+o44i0mlR+8uTUOxS0KcXniaQNd+dnT79Lt46F3HS2Go9Jdkllj+BfZjYFmBxMX0i9/oNE0t3r5RuZvnwzPx43nJIiXS4q2SWVk8XfNrMvACeT6CF0ors/HnoykVbi7vz6ucX07dyOC4/v3/wTRDJMStfGufujwKMhZxGJxIvvVjB31VZ+8fmj1MW0ZKVGC4GZve7up5jZDvYdYtIAd/ePDCkpkm7icefW5xczsFt7vnBcv6jjiESi0ULg7qcE9xqTTzLWY2+vYeEH27n1iyPI1+WikqVSaUfwQCrzRNJNdV2MW59bxIh+nTjvmL5RxxGJTCo/gYYnT5hZHnBcOHFEWs8Tc9aydlsV3zprGGYWdRyRyDRaCMzsO8H5gaPNbHtw2wGsB55otYQiIaiNxZnwylKG9ujIqUNLo44jEqlGC4G7/zw4P/Ardy8JbsXu3s3dv9OKGUVa3INvrUx0JTH2MO0NSNZL5fLRZ83sY/VnuvurIeQRCV11XYy7Xi5n9KCunHF4j6jjiEQulULw7aTHRcBoYBbwiVASiYTsvmnLqdhRzW++OEJ7AyKk1rL43ORpM+sP/DK0RCIhqovFmfTGck4Y3JVThujcgAgcWOdxq4EjWzqISGv4YFsVa7dV8emj+2hvQCTQ7B6Bmd3B3pbFOcBIYG6YoUTCsnJzJQC9S4oiTiLSdqRyjmBm0uM6YLK7vxFSHpFQ/fG1ZXTtUMCJh3SLOopIm5HKOYL7zKwAOIzEnsGi0FOJhGDOqq28smgD/z12GB0KNRaxyB6pHBo6B7gbWEqiw7lBZvZVd3827HAiLWXPwDNd2udz+YllUccRaVNS+Vl0K3C6u5cDmNkhwNOACoGkjZfeq2D68s3873lH0lF7AyL7SOWqoYo9RSCwDKhobGWRtiYWd+58uZyeJYVcOEoDz4jU19R4BJ8PHi4ws2eAR0icI7gAmNEK2URaxKRpy3l75VZ+e+EI8tTVtMhHNLWPnNyQbD3w8eDxBqBLaIlEWtD67VXc+twiThvWnc+NVFfTIg1pamCaq1oziEgYfj1lEdV1cW757HA1IBNpRFOHhv7b3X9Zr0HZh9z9681t3MzGAr8DcoF73P0XDaxzGnAbkA9sdPeP119H5EBUbK/isbfXcPmJAxnYrUPUcUTarKYODb0b3M9sYp1GmVkucBdwJoluKWaY2ZPuvjBpnc7A74Gx7r7SzNQVpLSYB95cQdxdl4uKNKOpQ0NPBV/mR7r7txtbrwmjgXJ3XwZgZg8B44CFSetcAjzm7iuD19TVSNIiamNxHpm5itOH9WBQqfYGRJrS5CUU7h7jwIel7AusSppeHcxLdijQxcxeMbNZZnb5Ab6WyD4en72G9duruXj0gKijiLR5qbSsedvMngT+BuzaM9PdH2vmeQ2dmat/rmHP+MdnAO2Af5vZm+6+eJ8NmY0HxgMMGKA/bGlaLO78YepSju7XiU9q4BmRZqVSCLoCm9h3IBoHmisEq4Hk1jv9gLUNrLPR3XcBu8zsVWAEsE8hcPeJwESAUaNGfeTEtUiyKQvW8f7GXfz+0mN1pZBIClIpBPfU723UzE5O4XkzgKFmNghYA1xE4pxAsieAO80sDygAxgC/TWHbIg1ydyZMXcqg0g58anivqOOIpIVUmlnekeK8fbh7HXA9MIXEFUiPuPsCM7vWzK4N1nkX+BcwD5hOoui8k2p4kfr+vXQT81Zv45pTB5Obo70BkVQ01Y7gROAkoLuZ3Zi0qIREu4BmufszwDP15k2oN/0r4FepBhZpjLvz+1eW0r24kM8fq1bEIqlqao+gAOhIolgUJ922A+eHH01k/7z0XgWvl29k/KmDKcpP6beKiNB0O4KpwFQzm+TuKwDMLAfo6O7bWyugSKrueKmcgd3ac+XJZVFHEUkrqZwj+LmZlZhZBxKNwRaZ2YE0MBMJzawVm5mzaitXnVRGvnoYFdkvqfzFHBHsAXyOxPH+AcBloaYS2U8P/HsFxYV5XKDxBkT2WyqFIN/M8kkUgifcvZYGOqETicp767bz5Ny1nD+qn8YiFjkAqRSCu4HlQAfgVTMbSOKEsUibMHHqMgrycvjPM4ZGHUUkLTVbCNz9dnfv6+7neMIK4PRWyCbSrNVbKnli7louHTOQzu0Loo4jkpaaakfwJXf/S702BMluDSmTSMr+9Pr7GHD1KYOijiKStpo6oLqn797i1ggisr+qamM8/vYaxh7Ziz6d20UdRyRtNdWO4O7g/pbWiyOSusnTV7K1spZL1NW0yEFp6tDQ7U09MZWhKkXCsrsmxt1TlzF6UFdOGlIadRyRtNbUyeJZwa0IOBZYEtxGArHwo4k07sHpK1m3vYobzzw06igiaa+pQ0P3AZjZlcDpQfsBzGwC8FyrpBNpQG0szt1TlzJmUFdOGNwt6jgiaS+VdgR92PeEccdgnkgk3lq2mYod1XxZVwqJtIhUmmH+gsRwlS8H0x8HfhRaIpFm/GPOGjoU5PLxQ7tHHUUkIzRbCNz9z2b2LInRwwBudvd14cYSadj2qlqenvcB40b2UVfTIi0kpY5Zgi/+J0LOItKsh6evYndtjIt1yahIi1F/vZI26mJxJk1bzuhBXRnRv3PUcUQyhgqBpI3nF65nzdbdfPlknSQWaUkpFQIzO8XMrgoedzcz/SVKq3toxip6lhRy5hE9o44iklGaLQRm9kPgJuA7wax84C9hhhKpb/bKLUxdvIHLTywjN8eijiOSUVLZIzgP+CywC8Dd16KO6KSVTZy6jE7t8rnypLKoo4hknFQKQY27O8GoZMHYxSKtZsWmXUxZuI5LxwzQCGQiIUilEDxiZncDnc3sGuAF4I/hxhLZ689vLCcvx7hCewMioUilQdmvzexMEsNTDgN+4O7Ph55MBNhZXcdDM1Zy7og+9CwpijqOSEZqthCY2TeBv+nLX6JQsb2Kqto4pw5VV9MiYUnl0FAJMMXMXjOz68xM1+5Jq1m1ZTcA7Qt0bkAkLKkMXn+Luw8HriPR6+hUM3sh9GSS9eJx5w+vlNOlfT7Hl3WNOo5IxtqflsUVwDpgE9AjnDgie/1jzhreXLaZ//rUMLp2KIg6jkjGSqVB2X+Y2SvAi0ApcI27Hx12MMlu8bjz+1eWclivYi4+Xh3MiYQplQOvA4FvuPucsMOI7DFlwTrKK3Zy+8XHkKOWxCKhamrw+hJ33w78Mpje5yCtu28OOZtkKXfnzpfLGVTagU8f1TvqOCIZr6k9ggeBz5AYwN6B5J9lDgwOMZdksVeXbGTB2u388gtHq18hkVbQ1OD1nwnu1dOotKo7X1pCz5JCPndM36ijiGSFVE4Wv5jKvEaeO9bMFplZuZnd3MR6x5tZzMzOT2W7krkWrN3GjOVb+PLJgyjI03AZIq2hqXMERUB7oNTMurD30FAJifYETTKzXOAu4ExgNTDDzJ5094UNrPd/wJQDegeSUf746jI6FuZxka4UEmk1TZ0j+CrwDRJf+rPYWwi2k/iCb85ooNzdlwGY2UPAOGBhvfVuAB4Fjk89tmSiqtoYzy1cz7iRfenUPj/qOCJZo6lzBL8DfmdmN7j7HQew7b7AqqTp1cCY5BXMrC+J8Q4+QROFwMzGA+MBBgzQL8VM9c95H1BZE+PcEbpSSKQ1pdL76B1mdiRwBFCUNP/+Zp7a0OUeXm/6NuAmd4+ZNX51iLtPBCYCjBo1qv42JAO4O/dNW87QHh05cXC3qOOIZJVUeh/9IXAaiULwDHA28DrQXCFYDfRPmu4HrK23zijgoaAIlALnmFmdu/8jlfCSOWav3ML8Ndv46eeOpKkfBSLS8lK5LON84AxgnbtfBYwAClN43gxgqJkNMrMC4CLgyeQV3H2Qu5e5exnwd+BrKgLZadK0FRQX5XGeLhkVaXWpdDGx293jZlZnZiUkOp9rtjGZu9eZ2fUkrgbKBe519wVmdm2wfMLBBJfMsX57Fc/O/4ArTirTUJQiEUjlr26mmXUmMTzlLGAnMD2Vjbv7MyQOJyXPa7AAuPuVqWxTMs9D01dRF3cuO2Fg1FFEslIqJ4u/FjycYGb/AkrcfV64sSRbVNXGuO/fyzltWHfKSjtEHUckKzXVoOzYppa5++xwIkk2eeHd9WzeVcOXT1ZPJiJRaWqP4DdNLHMS1/6LHJRHZ62mT6ciTh6iMYlFotJUg7LTWzOIZB93Z9aKLXxmRB/1MioSoVTaEVze0PwUGpSJNGnjzhq2V9VxSPeOUUcRyWqpXDWU3PVDEYk2BbNpvkGZSJOemLMGgJH9O0WcRCS7pXLV0A3J02bWCXggtESSFapqY9z96jJOOqQbxw3s2vwTRCQ0B9LheyUwtKWDSHZ5eMYqNuyo5oZP6L+SSNRSOUfwFHs7i8sh0efQI2GGksxWG4vzh1eWcnxZF04YrL0Bkailco7g10mP64AV7r46pDySBV58t4J126vUwZxIG5HKOYKpAEE/Q3nB467uvjnkbJKhJk9fSe9ORZw2rHvUUUSE1A4NjQd+AuwG4iTGGXBS6HhOpL4Ptu3m1SUbuOH0IeTlakxikbYglUND3waGu/vGsMNI5rv39fcx4IJR/ZtdV0RaRyo/yZaSuFJI5KCs3FTJn99YzmeO7kP/ru2jjiMigVT2CL4DTDOzt4DqPTPd/euhpZKM9IMn3yHHjO+ec3jUUUQkSSqF4G7gJWA+iXMEIvvt5fcqeGXRBm4aexi9OhU1/wQRaTWpFII6d78x9CSSsTbtrOZbf5vL0B4duerksqjjiEg9qZwjeNnMxptZbzPruucWejLJGJOmLWdLZQ13XnIsRfm5UccRkXpS2SO4JLj/TtI8XT4qKXF3Jk9fyRmH9WRYr+Ko44hIA1JpUKaho+SAba2sZePOGsYM0k6kSFul8QgkVDOWJxqgH91PXU2LtFUaj0BC9a931lFcmMfIAZ2jjiIijdB4BBKaeNx54d31fOrIXhTm6SSxSFul8QgkNCs2V7K9qo7jy7pEHUVEmqDxCCQ05RU7ATi0p64WEmnLNB6BhGbDjkSPJGpJLNK2NVoIzGwI0HPPeARJ8081s0J3Xxp6Oklr72/ciRl061AYdRQRaUJT5whuA3Y0MH93sEykUdsqa/nrWyv55OE9KcjTuAMibVlTf6Fl7j6v/kx3nwmUhZZIMsLfZ6+msibGNz95aNRRRKQZTRWCpg7stmvpIJI53J2/zVzFkX1LOKJPSdRxRKQZTRWCGWZ2Tf2ZZnY1MCu8SJLunn1nHe+t28EVJ5ZFHUVEUtDUVUPfAB43s0vZ+8U/CigAzgs7mKSn6roYP3/2XYb1LObzx/aLOo6IpKDRQuDu64GTzOx04Mhg9tPu/lKrJJO0dP+0FazavJsHrh5Nbo5FHUdEUpBKFxMvAy+3QhZJc1t21fC7F5dw2rDunDq0e9RxRCRFoV7XZ2ZjzWyRmZWb2c0NLL/UzOYFt2lmNiLMPBKuW59fTGVNncYkFkkzoRUCM8sF7gLOJtEtxcVmdkS91d4HPu7uRwM/ASaGlUfCtWLTLh6cvpIvnTBQXUqIpJkw9whGA+Xuvszda4CHgHHJK7j7NHffEky+CejsYpp6a9lmYnHnypPKoo4iIvspzELQF1iVNL06mNeYq4FnG1oQjJk808xmbtiwoQUjSktZtD7RCL1nifoVEkk3YRaChi4Z8QbmEVyZdDVwU0PL3X2iu49y91Hdu+skZFs0dfEGTh7SjQ6FqfRjKCJtSZh/tauB/knT/YC19Vcys6OBe4Cz3X1TiHkkRHWxuDqXE0lTYe4RzACGmtkgMysALgKeTF7BzAYAjwGXufviELNIyOKO2g2IpKnQ9gjcvc7MrgemALnAve6+wMyuDZZPAH4AdAN+b2YAde4+KqxMEp64O6Y6IJKWQj2g6+7PAM/Umzch6fFXgK+EmUFaRzzu5KgSiKQldRQvLSLukKtCIJKWVAikRcTcydH/JpG0pD9daRHujmmPQCQtqRBIi9ChIZH0pUIgLSIWd3T1qEh6UiGQFhHXoSGRtKVCIC0iHnc1KBNJUyoEctD+OW8tu2pi9OvSLuooInIAVAjkoJRX7OC7j83nmAGd+dIJA6OOIyIHQIVADth767Zz0cQ3KcjL5bYLR5Kfq/9OIulIf7lyQKYt3ch5d02jLu48NP4EBnbrEHUkETlA6jxe9tsLC9dz/eTZDOjanj9dcTz9u7aPOpKIHAQVAtkvL79XwTUPzOTwXiXcf/VoSjtqDAKRdKdCIClbtbmSGya/zRG9S3j4qyfSUaORiWQEnSOQlNTG4nzz4TkYMOFLx6kIiGQQ/TVLs7btruVbj8xl5oot3H7xMTonIJJhVAikSSs27eKyP01n1ZZK/uusQ/nsiD5RRxKRFqZCIE265amFrNxcyd+vPZFRZV2jjiMiIdA5AmnUzuo63l65hVOGlKoIiGQw7RHIR7g7D89Yxa+mLGJLZS1nDe8ZdSQRCZEKgeyjvGIntzy1gNeWbGTMoK788ezDOHZAl6hjiUiIVAgESHQj/fDMVfzwiQXk5xr/85kjuOqkMnLUtbRIxlMhEGYs38wPnljAux9s58TB3bjtopH0LCmKOpaItBIVgiwWjzsPTl/JT/65kJJ2+fz880dx4aj+2gsQyTIqBFloV3UdT8/7gAmvLmXZhl2cOrSU33xxBD2KtRcgko1UCLLI/NXbeODN5Tw97wN21cQY0qMjt104ks+O6KO9AJEspkKQ4dydV5ds5J7XlvHako10LMzjU8N7ccmYARw3sIsGnBcRFYJMtXzjLp6e/wFPzlnLovU76FlSyI1nHspVJ5dRXJQfdTwRaUNUCDLItt21PD57NY/OXsP8NdsAGDWwCz877yjOP64fBXlqSC4iH6VCkOZ2Vdfx3MJ1PLdgPS+9V0F1XZyj+nbi5rMPY+zwXpSVaghJEWmaCkEa2l0T47mF63hq7lpeXbyRmlicXiVFXDCqHxeOGsBR/TpFHVFE0ogKQZpYtbmS15Zs5PXyDUxdtIFdNTH6dCri/FH9GDu8F6cMKdWVPyJyQFQI2qh43Jm+fDP/nLeW15ZsZMWmSgB6lRRx7og+jBvZlzGDuurLX0QOWqiFwMzGAr8DcoF73P0X9ZZbsPwcoBK40t1nh5mprYrFnVcWVTBt6SZmrdjCkvU72FUTo31BLicO7saVJ5Vx6tBSDuneUZd8ikiLCq0QmFkucBdwJrAamGFmT7r7wqTVzgaGBrcxwB+C+4zi7lTWxNi4s5qNO6upqo1TVRv78H7R+h08MWcN67dXA3DC4K584bh+HKV79vkAAAjDSURBVNW3E+cc1ZsOGh9YREIU5jfMaKDc3ZcBmNlDwDgguRCMA+53dwfeNLPOZtbb3T9o6TDVdTF2VNURjzsxd2JxJx5n7+PgPvlxTV2cmlicmro4tbE41XXxfeZV18WprImxu6aOXTUxdtfE2FVdR2VNjJ3VdWzeVcPO6jp2VtVRE4s3mS8vxzjriJ7cdtFI2hfoi19EWk+Y3zh9gVVJ06v56K/9htbpC7R4IXh+4Xquf/Dtlt4sAEX5OXQszKN9QR7tC3JpX5BLcVEeA7q2p6RdHh0L8+ncPp9uHQroXlxIu/xcij685dC5fQGd2qmRl4hEI8xC0NCBbD+AdTCz8cB4gAEDBhxQmCP7dOLH44aTY0ZujpFrRk6OkZvDR+cF0wV5OYlbbs5HHwf37fJzdcJWRNJamIVgNdA/abofsPYA1sHdJwITAUaNGvWRQpGKstIOalwlItIASxyeD2HDZnnAYuAMYA0wA7jE3RckrfNp4HoSVw2NAW5399HNbHcDsCKU0C2rFNgYdYhWpvec+bLt/ULmvOeB7t69oQWh7RG4e52ZXQ9MIXH56L3uvsDMrg2WTwCeIVEEyklcPnpVCttt8I20NWY2091HRZ2jNek9Z75se7+QHe851MtT3P0ZEl/2yfMmJD124LowM4iISNPUHaWISJZTIQjPxKgDREDvOfNl2/uFLHjPoZ0sFhGR9KA9AhGRLKdCICKS5VQIWoiZdTWz581sSXDfpZH1lpvZfDObY2YzWzvnwTKzsWa2yMzKzezmBpabmd0eLJ9nZsdGkbMlpfCeTzOzbcFnOsfMfhBFzpZiZveaWYWZvdPI8kz8jJt7zxn1GdenQtBybgZedPehwIvBdGNOd/eR6XZtclKPsmcDRwAXm9kR9VZL7lF2PIkeZdNWiu8Z4LXgMx3p7j9u1ZAtbxIwtonlGfUZBybR9HuGzPqM96FC0HLGAfcFj+8DPhdhlrB82KOsu9cAe3qUTfZhj7Lu/ibQ2cx6t3bQFpTKe84o7v4qsLmJVTLtM07lPWc0FYKW03NP99nBfY9G1nPgOTObFXSml04a6y12f9dJJ6m+nxPNbK6ZPWtmw1snWmQy7TNOVcZ+xur4fj+Y2QtArwYWfW8/NnOyu681sx7A82b2XvBrJB20WI+yaSSV9zObRD8uO83sHOAfJA6bZKpM+4xTkdGfsfYI9oO7f9Ldj2zg9gSwfs/ucXBf0cg21gb3FcDjJA49pIsW61E2jTT7ftx9u7vvDB4/A+SbWWnrRWx1mfYZNyvTP2MVgpbzJHBF8PgK4In6K5hZBzMr3vMYOAto8CqFNmoGMNTMBplZAXARifed7Eng8uDKkhOAbWGMONeKmn3PZtYrGH8bMxtN4u9qU6snbT2Z9hk3K9M/Yx0aajm/AB4xs6uBlcAFAGbWB7jH3c8BegKPB/+f8oAH3f1fEeXdb2H1KNuWpfiezwf+w8zqgN3ARZ7GTfbNbDJwGlBqZquBHwL5kJmfMaT0njPqM65PXUyIiGQ5HRoSEclyKgQiIllOhUBEJMupEIiIZDkVAhGRLKdCIJEzs1hSr45zGurhs5nnL9/fxj1mNjnoOfOb+5c2pW1P28/1J5nZ+S2do5nX/G5rvp60bWpHIG3Bbncf2VovZma9gJPcfWALbzfX3WPuflJLbjck3wV+FnUIaRu0RyBtVvBL/xYzmx2M4XBYML+bmT1nZm+b2d003PcNZlZkZn8Onvu2mZ0eLHoO6BHsfZxa7zmTzGyCmb1mZovN7DPB/Fwz+5WZzQj2JL4azD/NzF42sweB+cG8ncG9Bc95J8hwYdL8O81soZk9TSMdFJrZNcHrzTWzR82sfTD/gmCbc83s1WDecDObHryneWY2NJj/paT5dwfv4xdAu2DeX4MW708H23tnT07JIu6um26R3oAYMCfpdmEwfzlwQ/D4ayRaaAPcDvwgePxpEh2elTaw3W8Bfw4eH0aixXcRUAa800iWScC/SPxIGkqiX50iEv3ufz9YpxCYCQwi0Rp1FzAoaRs7g/svAM+TaJHcM3j93sDnk+b3AbYC5zeQpVvS458m/VvMB/oGjzsH93cAlwaPC4B2wOHAU0B+MP/3wOXJGZNy/jFpulPU/yd0a92bDg1JW9DUoaHHgvtZJL5AAT6257G7P21mWxp57ikkviBx9/fMbAVwKLC9mTyPuHscWGJmy0gUkbOAo5OO5XciUShqgOnu/n4jrz/Z3WMkOiWcChwf5N8zf62ZvdRIjiPN7KdAZ6AjiW4uAN4AJpnZI+z99/k38D0z6wc85u5LzOwM4DhgRtCtSTsa7gxxPvBrM/s/4J/u/loz/z6SYXRoSNq66uA+xr7ntD7SN4qZXZd0wrkPjRwyqvec/93znCa27cG2bvC9I1QNcvfnguW7Gtt8Ey+dSt8uk4Dr3f0o4BYSeya4+7XA90n0ADrHzLq5+4PAZ0n0gzPFzD4RvP59SZmHufuPPhLEfTGJgjEf+Lll2DCM0jwVAklHrwKXApjZ2UAXAHe/K+lLb2299Q4FBgCLkjfk7t/b85yk2ReYWY6ZHQIMDp4zhUSnY/l7tmeJHmSby3lhcFy+O4k9genB/IuC+b2B0xt5fjHwQfCal+6ZaWaHuPtb7v4DYCPQ38wGA8vc/XYSvYMeTWLI1PMtMfbFnnG195wgr016L32ASnf/C/BrIO3HIJb9o0ND0ha0q/eL/F/u3tQlpLcAk81sNjCVxLH3hvwemGBm84E64Ep3rw4OkzRlUbDdnsC17l5lZveQOLcw2xIb2EDzw5E+DpwIzCWxB/Df7r7OzB4HPkHiF/ji4LUa8j/AW8CKYN3iYP6vgpPBRuLLfi6JMbK/ZGa1wDrgx+6+2cy+T2JEvBygFrgu2N5EYF7wb3h/sM14sM5/NPcPJJlFvY+KJDGzSSSOk/896iwirUWHhkREspz2CEREspz2CEREspwKgYhIllMhEBHJcioEIiJZToVARCTL/T8k+LTXEuT4cwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -356,10 +355,10 @@ } ], "source": [ - "plt.plot(np.sort(KinkyExample.aNrmNow),np.linspace(0.,1.,KinkyExample.AgentCount))\n", - "plt.xlabel('End-of-period assets')\n", - "plt.ylabel('Cumulative distribution')\n", - "plt.ylim(-0.01,1.01)\n", + "plt.plot(np.sort(KinkyExample.aNrmNow), np.linspace(0.0, 1.0, KinkyExample.AgentCount))\n", + "plt.xlabel(\"End-of-period assets\")\n", + "plt.ylabel(\"Cumulative distribution\")\n", + "plt.ylim(-0.01, 1.01)\n", "plt.show()" ] }, @@ -371,24 +370,12 @@ "\n", "The smaller point masses in this distribution are due to $\\texttt{HARK}$ drawing simulated income shocks from the discretized distribution, rather than the \"true\" lognormal distributions of shocks. For consumers who ended $t-1$ with $a_{t-1}=0$ in assets, there are only 8 values the transitory shock $\\theta_{t}$ can take on, and thus only 8 values of $m_t$ thus $a_t$ they can achieve; the value of $\\psi_t$ is immaterial to $m_t$ when $a_{t-1}=0$. You can verify this by changing $\\texttt{TranShkCount}$ to some higher value, like 25, in the dictionary above, then running the subsequent cells; the smaller point masses will not be visible to the naked eye." ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { - "@webio": { - "lastCommId": "779f6c5616b04b58baaaa0f6c348270c", - "lastKernelId": "a944b08f-0ae0-4c26-883f-9fab53a82ac3" - }, "jupytext": { "cell_metadata_filter": "collapsed,code_folding", - "formats": "ipynb,py:percent", - "notebook_metadata_filter": "all" + "formats": "ipynb,py:percent" }, "kernelspec": { "display_name": "Python 3", @@ -405,54 +392,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.9" - }, - "latex_envs": { - "LaTeX_envs_menu_present": true, - "autoclose": false, - "autocomplete": true, - "bibliofile": "biblio.bib", - "cite_by": "apalike", - "current_citInitial": 1, - "eqLabelWithNumbers": true, - "eqNumInitial": 1, - "hotkeys": { - "equation": "Ctrl-E", - "itemize": "Ctrl-I" - }, - "labels_anchors": false, - "latex_user_defs": false, - "report_style_numbering": false, - "user_envs_cfg": false - }, - "varInspector": { - "cols": { - "lenName": 16, - "lenType": 16, - "lenVar": 40 - }, - "kernels_config": { - "python": { - "delete_cmd_postfix": "", - "delete_cmd_prefix": "del ", - "library": "var_list.py", - "varRefreshCmd": "print(var_dic_list())" - }, - "r": { - "delete_cmd_postfix": ") ", - "delete_cmd_prefix": "rm(", - "library": "var_list.r", - "varRefreshCmd": "cat(var_dic_list()) " - } - }, - "types_to_exclude": [ - "module", - "function", - "builtin_function_or_method", - "instance", - "_Feature" - ], - "window_display": false + "version": "3.8.3" } }, "nbformat": 4, diff --git a/examples/ConsIndShockModel/KinkedRconsumerType.py b/examples/ConsIndShockModel/KinkedRconsumerType.py new file mode 100644 index 000000000..6b152264c --- /dev/null +++ b/examples/ConsIndShockModel/KinkedRconsumerType.py @@ -0,0 +1,226 @@ +# --- +# jupyter: +# jupytext: +# cell_metadata_filter: collapsed,code_folding +# formats: ipynb,py:percent +# text_representation: +# extension: .py +# format_name: percent +# format_version: '1.3' +# jupytext_version: 1.5.2 +# kernelspec: +# display_name: Python 3 +# language: python +# name: python3 +# --- + +# %% [markdown] +# # KinkedRconsumerType: Consumption-saving model with idiosyncratic income shocks and different interest rates on borrowing and saving + + +# %% code_folding=[0] +# Initial imports and notebook setup, click arrow to show + +import matplotlib.pyplot as plt +import numpy as np + +from HARK.ConsumptionSaving.ConsIndShockModel import KinkedRconsumerType +from HARK.utilities import plotFuncsDer, plotFuncs + +mystr = lambda number: "{:.4f}".format(number) + +# %% [markdown] +# The module $\texttt{HARK.ConsumptionSaving.ConsIndShockModel}$ concerns consumption-saving models with idiosyncratic shocks to (non-capital) income. All of the models assume CRRA utility with geometric discounting, no bequest motive, and income shocks are fully transitory or fully permanent. +# +# $\texttt{ConsIndShockModel}$ currently includes three models: +# 1. A very basic "perfect foresight" model with no uncertainty. +# 2. A model with risk over transitory and permanent income shocks. +# 3. The model described in (2), with an interest rate for debt that differs from the interest rate for savings. +# +# This notebook provides documentation for the third of these models. +# $\newcommand{\CRRA}{\rho}$ +# $\newcommand{\DiePrb}{\mathsf{D}}$ +# $\newcommand{\PermGroFac}{\Gamma}$ +# $\newcommand{\Rfree}{\mathsf{R}}$ +# $\newcommand{\DiscFac}{\beta}$ + +# %% [markdown] +# ## Statement of "kinked R" model +# +# Consider a small extension to the model faced by $\texttt{IndShockConsumerType}$s: that the interest rate on borrowing $a_t < 0$ is greater than the interest rate on saving $a_t > 0$. Consumers who face this kind of problem are represented by the $\texttt{KinkedRconsumerType}$ class. +# +# For a full theoretical treatment, this model analyzed in [A Theory of the Consumption Function, With +# and Without Liquidity Constraints](http://www.econ2.jhu.edu/people/ccarroll/ATheoryv3JEP.pdf) +# and its [expanded edition](http://www.econ2.jhu.edu/people/ccarroll/ATheoryv3NBER.pdf). +# +# Continuing to work with *normalized* variables (e.g. $m_t$ represents the level of market resources divided by permanent income), the "kinked R" model can be stated as: +# +# \begin{eqnarray*} +# v_t(m_t) &=& \max_{c_t} {~} U(c_t) + \DiscFac (1-\DiePrb_{t+1}) \mathbb{E}_{t} \left[ (\PermGroFac_{t+1}\psi_{t+1})^{1-\CRRA} v_{t+1}(m_{t+1}) \right], \\ +# a_t &=& m_t - c_t, \\ +# a_t &\geq& \underline{a}, \\ +# m_{t+1} &=& \Rfree_t/(\PermGroFac_{t+1} \psi_{t+1}) a_t + \theta_{t+1}, \\ +# \Rfree_t &=& \cases{\Rfree_{boro} \texttt{ if } a_t < 0 \\ +# \Rfree_{save} \texttt{ if } a_t \geq 0},\\ +# \Rfree_{boro} &>& \Rfree_{save}, \\ +# (\psi_{t+1},\theta_{t+1}) &\sim& F_{t+1}, \\ +# \mathbb{E}[\psi]=\mathbb{E}[\theta] &=& 1. +# \end{eqnarray*} + +# %% [markdown] +# ## Solving the "kinked R" model +# +# The solution method for the "kinked R" model is nearly identical to that of the $\texttt{IndShockConsumerType}$ on which it is based, using the endogenous grid method; see the notebook for that model for more information. The only significant difference is that the interest factor varies by $a_t$ across the exogenously chosen grid of end-of-period assets, with a discontinuity in $\Rfree$ at $a_t=0$. +# +# To correctly handle this, the $\texttt{solveConsKinkedR}$ function inserts *two* instances of $a_t=0$ into the grid of $a_t$ values: the first corresponding to $\Rfree_{boro}$ ($a_t = -0$) and the other corresponding to $\Rfree_{save}$ ($a_t = +0$). The two consumption levels (and corresponding endogenous $m_t$ gridpoints) represent points at which the agent's first order condition is satisfied at *exactly* $a_t=0$ at the two different interest factors. In between these two points, the first order condition *does not hold with equality*: the consumer will end the period with exactly $a_t=0$, consuming $c_t=m_t$, but his marginal utility of consumption exceeds the marginal value of saving and is less than the marginal value of borrowing. This generates a consumption function with *two* kinks: two concave portions (for borrowing and saving) with a linear segment of slope 1 in between. + +# %% [markdown] +# ## Example parameter values to construct an instance of KinkedRconsumerType +# +# The parameters required to create an instance of $\texttt{KinkedRconsumerType}$ are nearly identical to those for $\texttt{IndShockConsumerType}$. The only difference is that the parameter $\texttt{Rfree}$ is replaced with $\texttt{Rboro}$ and $\texttt{Rsave}$. +# +# While the parameter $\texttt{CubicBool}$ is required to create a valid $\texttt{KinkedRconsumerType}$ instance, it must be set to $\texttt{False}$; cubic spline interpolation has not yet been implemented for this model. In the future, this restriction will be lifted. +# +# | Parameter | Description | Code | Example value | Time-varying? | +# | :---: | --- | --- | --- | --- | +# | $\DiscFac$ |Intertemporal discount factor | $\texttt{DiscFac}$ | $0.96$ | | +# | $\CRRA $ |Coefficient of relative risk aversion | $\texttt{CRRA}$ | $2.0$ | | +# | $\Rfree_{boro}$ | Risk free interest factor for borrowing | $\texttt{Rboro}$ | $1.20$ | | +# | $\Rfree_{save}$ | Risk free interest factor for saving | $\texttt{Rsave}$ | $1.01$ | | +# | $1 - \DiePrb_{t+1}$ |Survival probability | $\texttt{LivPrb}$ | $[0.98]$ | $\surd$ | +# |$\PermGroFac_{t+1}$|Permanent income growth factor|$\texttt{PermGroFac}$| $[1.01]$ | $\surd$ | +# | $\sigma_\psi $ | Standard deviation of log permanent income shocks | $\texttt{PermShkStd}$ | $[0.1]$ |$\surd$ | +# | $N_\psi $ | Number of discrete permanent income shocks | $\texttt{PermShkCount}$ | $7$ | | +# | $\sigma_\theta $ | Standard deviation of log transitory income shocks | $\texttt{TranShkStd}$ | $[0.2]$ | $\surd$ | +# | $N_\theta $ | Number of discrete transitory income shocks | $\texttt{TranShkCount}$ | $7$ | | +# | $\mho$ | Probability of being unemployed and getting $\theta=\underline{\theta}$ | $\texttt{UnempPrb}$ | $0.05$ | | +# | $\underline{\theta} $ | Transitory shock when unemployed | $\texttt{IncUnemp}$ | $0.3$ | | +# | $\mho^{Ret}$ | Probability of being "unemployed" when retired | $\texttt{UnempPrb}$ | $0.0005$ | | +# | $\underline{\theta}^{Ret} $ | Transitory shock when "unemployed" and retired | $\texttt{IncUnemp}$ | $0.0$ | | +# | $(none)$ | Period of the lifecycle model when retirement begins | $\texttt{T_retire}$ | $0$ | | +# | $(none)$ | Minimum value in assets-above-minimum grid | $\texttt{aXtraMin}$ | $0.001$ | | +# | $(none)$ | Maximum value in assets-above-minimum grid | $\texttt{aXtraMax}$ | $20.0$ | | +# | $(none)$ | Number of points in base assets-above-minimum grid | $\texttt{aXtraCount}$ | $48$ | | +# | $(none)$ | Exponential nesting factor for base assets-above-minimum grid | $\texttt{aXtraNestFac}$ | $3$ | | +# | $(none)$ | Additional values to add to assets-above-minimum grid | $\texttt{aXtraExtra}$ | $None$ | | +# | $\underline{a} $ | Artificial borrowing constraint (normalized) | $\texttt{BoroCnstArt}$ | $None$ | | +# | $(none) $ |Indicator for whether $\texttt{vFunc}$ should be computed | $\texttt{vFuncBool}$ | $True$ | | +# | $(none)$ |Indicator for whether $\texttt{cFunc}$ should use cubic splines | $\texttt{CubicBool}$ | $False$ | | +# |$T$| Number of periods in this type's "cycle" |$\texttt{T_cycle}$| $1$ | | +# |(none)| Number of times the "cycle" occurs |$\texttt{cycles}$| $0$ | | +# +# These example parameters are almostidentical to those used for $\texttt{IndShockExample}$ in the prior notebook, except that the interest rate on borrowing is 20% (like a credit card), and the interest rate on saving is 1%. Moreover, the artificial borrowing constraint has been set to $\texttt{None}$. The cell below defines a parameter dictionary with these example values. + +# %% code_folding=[0] +KinkedRdict = { # Click the arrow to expand this parameter dictionary + # Parameters shared with the perfect foresight model + "CRRA": 2.0, # Coefficient of relative risk aversion + "DiscFac": 0.96, # Intertemporal discount factor + "LivPrb": [0.98], # Survival probability + "PermGroFac": [1.01], # Permanent income growth factor + "BoroCnstArt": None, # Artificial borrowing constraint; imposed minimum level of end-of period assets + # New parameters unique to the "kinked R" model + "Rboro": 1.20, # Interest factor on borrowing (a < 0) + "Rsave": 1.01, # Interest factor on saving (a > 0) + # Parameters that specify the income distribution over the lifecycle (shared with IndShockConsumerType) + "PermShkStd": [0.1], # Standard deviation of log permanent shocks to income + "PermShkCount": 7, # Number of points in discrete approximation to permanent income shocks + "TranShkStd": [0.2], # Standard deviation of log transitory shocks to income + "TranShkCount": 7, # Number of points in discrete approximation to transitory income shocks + "UnempPrb": 0.05, # Probability of unemployment while working + "IncUnemp": 0.3, # Unemployment benefits replacement rate + "UnempPrbRet": 0.0005, # Probability of "unemployment" while retired + "IncUnempRet": 0.0, # "Unemployment" benefits when retired + "T_retire": 0, # Period of retirement (0 --> no retirement) + "tax_rate": 0.0, # Flat income tax rate (legacy parameter, will be removed in future) + # Parameters for constructing the "assets above minimum" grid (shared with IndShockConsumerType) + "aXtraMin": 0.001, # Minimum end-of-period "assets above minimum" value + "aXtraMax": 20, # Maximum end-of-period "assets above minimum" value + "aXtraCount": 48, # Number of points in the base grid of "assets above minimum" + "aXtraNestFac": 3, # Exponential nesting factor when constructing "assets above minimum" grid + "aXtraExtra": [None], # Additional values to add to aXtraGrid + # A few other paramaters (shared with IndShockConsumerType) + "vFuncBool": True, # Whether to calculate the value function during solution + "CubicBool": False, # Preference shocks currently only compatible with linear cFunc + "T_cycle": 1, # Number of periods in the cycle for this agent type + # Parameters only used in simulation (shared with PerfForesightConsumerType) + "AgentCount": 10000, # Number of agents of this type + "T_sim": 500, # Number of periods to simulate + "aNrmInitMean": -6.0, # Mean of log initial assets + "aNrmInitStd": 1.0, # Standard deviation of log initial assets + "pLvlInitMean": 0.0, # Mean of log initial permanent income + "pLvlInitStd": 0.0, # Standard deviation of log initial permanent income + "PermGroFacAgg": 1.0, # Aggregate permanent income growth factor + "T_age": None, # Age after which simulated agents are automatically killed +} + +# %% [markdown] +# ## Solving and examining the solution of the "kinked R" model +# +# The cell below creates an infinite horizon instance of $\texttt{KinkedRconsumerType}$ and solves its model by calling its $\texttt{solve}$ method. + +# %% +KinkyExample = KinkedRconsumerType(**KinkedRdict) +KinkyExample.cycles = 0 # Make the example infinite horizon +KinkyExample.solve() + +# %% [markdown] +# An element of a $\texttt{KinkedRconsumerType}$'s solution will have all the same attributes as that of a $\texttt{IndShockConsumerType}$; see that notebook for details. +# +# We can plot the consumption function of our "kinked R" example, as well as the MPC: + +# %% +print("Kinked R consumption function:") +plotFuncs(KinkyExample.solution[0].cFunc, KinkyExample.solution[0].mNrmMin, 5) + +print("Kinked R marginal propensity to consume:") +plotFuncsDer(KinkyExample.solution[0].cFunc, KinkyExample.solution[0].mNrmMin, 5) + +# %% [markdown] +# ## Simulating the "kinked R" model +# +# In order to generate simulated data, an instance of $\texttt{KinkedRconsumerType}$ needs to know how many agents there are that share these particular parameters (and are thus *ex ante* homogeneous), the distribution of states for newly "born" agents, and how many periods to simulated. These simulation parameters are described in the table below, along with example values. +# +# | Description | Code | Example value | +# | :---: | --- | --- | +# | Number of consumers of this type | $\texttt{AgentCount}$ | $10000$ | +# | Number of periods to simulate | $\texttt{T_sim}$ | $500$ | +# | Mean of initial log (normalized) assets | $\texttt{aNrmInitMean}$ | $-6.0$ | +# | Stdev of initial log (normalized) assets | $\texttt{aNrmInitStd}$ | $1.0$ | +# | Mean of initial log permanent income | $\texttt{pLvlInitMean}$ | $0.0$ | +# | Stdev of initial log permanent income | $\texttt{pLvlInitStd}$ | $0.0$ | +# | Aggregrate productivity growth factor | $\texttt{PermGroFacAgg}$ | $1.0$ | +# | Age after which consumers are automatically killed | $\texttt{T_age}$ | $None$ | +# +# Here, we will simulate 10,000 consumers for 500 periods. All newly born agents will start with permanent income of exactly $P_t = 1.0 = \exp(\texttt{pLvlInitMean})$, as $\texttt{pLvlInitStd}$ has been set to zero; they will have essentially zero assets at birth, as $\texttt{aNrmInitMean}$ is $-6.0$; assets will be less than $1\%$ of permanent income at birth. +# +# These example parameter values were already passed as part of the parameter dictionary that we used to create $\texttt{KinkyExample}$, so it is ready to simulate. We need to set the $\texttt{track_vars}$ attribute to indicate the variables for which we want to record a *history*. + +# %% +KinkyExample.track_vars = ["mNrmNow", "cNrmNow", "pLvlNow"] +KinkyExample.initializeSim() +KinkyExample.simulate() + +# %% [markdown] +# We can plot the average (normalized) market resources in each simulated period: + +# %% +plt.plot(np.mean(KinkyExample.history["mNrmNow"], axis=1)) +plt.xlabel("Time") +plt.ylabel("Mean market resources") +plt.show() + +# %% [markdown] +# Now let's plot the distribution of (normalized) assets $a_t$ for the current population, after simulating for $500$ periods; this should be fairly close to the long run distribution: + +# %% +plt.plot(np.sort(KinkyExample.aNrmNow), np.linspace(0.0, 1.0, KinkyExample.AgentCount)) +plt.xlabel("End-of-period assets") +plt.ylabel("Cumulative distribution") +plt.ylim(-0.01, 1.01) +plt.show() + +# %% [markdown] +# We can see there's a significant point mass of consumers with *exactly* $a_t=0$; these are consumers who do not find it worthwhile to give up a bit of consumption to begin saving (because $\Rfree_{save}$ is too low), and also are not willing to finance additional consumption by borrowing (because $\Rfree_{boro}$ is too high). +# +# The smaller point masses in this distribution are due to $\texttt{HARK}$ drawing simulated income shocks from the discretized distribution, rather than the "true" lognormal distributions of shocks. For consumers who ended $t-1$ with $a_{t-1}=0$ in assets, there are only 8 values the transitory shock $\theta_{t}$ can take on, and thus only 8 values of $m_t$ thus $a_t$ they can achieve; the value of $\psi_t$ is immaterial to $m_t$ when $a_{t-1}=0$. You can verify this by changing $\texttt{TranShkCount}$ to some higher value, like 25, in the dictionary above, then running the subsequent cells; the smaller point masses will not be visible to the naked eye.