-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmain.py
400 lines (316 loc) · 17.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import argparse
import warnings
from datetime import datetime
from glob import glob
from shutil import copyfile
from collections import OrderedDict
import torch.nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
from models.generator import Generator as Generator
from models.discriminator import Discriminator as Discriminator
from models.guidingNet import GuidingNet
from models.inception import InceptionV3
from train.train import trainGAN
from validation.validation import validateUN
from tools.utils import *
from datasets.datasetgetter import get_dataset
from tools.ops import initialize_queue
from tensorboardX import SummaryWriter
# Configuration
parser = argparse.ArgumentParser(description='PyTorch GAN Training')
parser.add_argument('--data_path', type=str, default='../data',
help='Dataset directory. Please refer Dataset in README.md')
parser.add_argument('--workers', default=4, type=int, help='the number of workers of data loader')
parser.add_argument('--model_name', type=str, default='GAN',
help='Prefix of logs and results folders. '
'ex) --model_name=ABC generates ABC_20191230-131145 in logs and results')
parser.add_argument('--epochs', default=250, type=int, help='Total number of epochs to run. Not actual epoch.')
parser.add_argument('--iters', default=1000, type=int, help='Total number of iterations per epoch')
parser.add_argument('--batch_size', default=32, type=int,
help='Batch size for training')
parser.add_argument('--val_num', default=190, type=int,help='Number of test images for each style')
parser.add_argument('--val_batch', default=10, type=int,
help='Batch size for validation. '
'The result images are stored in the form of (val_batch, val_batch) grid.')
parser.add_argument('--log_step', default=100, type=int)
parser.add_argument('--sty_dim', default=128, type=int, help='The size of style vector')
parser.add_argument('--output_k', default=400, type=int, help='Total number of classes to use')
parser.add_argument('--img_size', default=80, type=int, help='Input image size')
parser.add_argument('--dims', default=2048, type=int, help='Inception dims for FID')
parser.add_argument('--load_model', default=None, type=str, metavar='PATH',
help='path to latest checkpoint (default: None)'
'ex) --load_model GAN_20190101_101010'
'It loads the latest .ckpt file specified in checkpoint.txt in GAN_20190101_101010')
parser.add_argument('--validation', dest='validation', action='store_true',
help='Call for valiation only mode')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default='0', type=str,
help='GPU id to use.')
parser.add_argument('--ddp', dest='ddp', action='store_true', help='Call if using DDP')
parser.add_argument('--port', default='8993', type=str)
parser.add_argument('--iid_mode', default='iid+', type=str, choices=['iid', 'iid+'])
parser.add_argument('--w_gp', default=10.0, type=float, help='Coefficient of GP of D')
parser.add_argument('--w_rec', default=0.1, type=float, help='Coefficient of Rec. loss of G')
parser.add_argument('--w_adv', default=1.0, type=float, help='Coefficient of Adv. loss of G')
parser.add_argument('--w_vec', default=0.01, type=float, help='Coefficient of Style vector rec. loss of G')
parser.add_argument('--w_off', default=0.5, type=float, help='Coefficient of offset normalization. loss of G')
def main():
####################
# Default settings #
####################
args = parser.parse_args()
print("PYTORCH VERSION", torch.__version__)
args.data_dir = args.data_path
args.start_epoch = 0
args.train_mode = 'GAN'
den = args.iters//args.iters
# unsup_start : train networks with supervised data only before unsup_start
# separated : train IIC only until epoch = args.separated
# ema_start : Apply EMA to Generator after args.ema_start
args.unsup_start = 0
args.separated = 0
args.ema_start = 1
args.fid_start = 1
args.unsup_start = args.unsup_start // den
args.separated = args.separated // den
args.ema_start = args.ema_start // den
args.fid_start = args.fid_start // den
# Cuda Set-up
if args.gpu is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
args.multiprocessing_distributed = False
if len(args.gpu) > 1:
args.multiprocessing_distributed = True
print(args.multiprocessing_distributed)
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
print(args.distributed)
ngpus_per_node = torch.cuda.device_count()
args.ngpus_per_node = ngpus_per_node
print("MULTIPROCESSING DISTRIBUTED : ", args.multiprocessing_distributed)
# Logs / Results
if args.load_model is None:
args.model_name = '{}_{}'.format(args.model_name, datetime.now().strftime("%Y%m%d-%H%M%S"))
else:
args.model_name = args.load_model
makedirs('./logs')
makedirs('./results')
args.log_dir = os.path.join('./logs', args.model_name)
args.event_dir = os.path.join(args.log_dir, 'events')
args.res_dir = os.path.join('./results', args.model_name)
makedirs(args.log_dir)
dirs_to_make = next(os.walk('./'))[1]
not_dirs = ['.idea', '.git', 'logs', 'results', '.gitignore', '.nsmlignore', 'resrc']
makedirs(os.path.join(args.log_dir, 'codes'))
for to_make in dirs_to_make:
if to_make in not_dirs:
continue
makedirs(os.path.join(args.log_dir, 'codes', to_make))
makedirs(args.res_dir)
if args.load_model is None:
pyfiles = glob("./*.py")
for py in pyfiles:
copyfile(py, os.path.join(args.log_dir, 'codes') + "/" + py)
for to_make in dirs_to_make:
if to_make in not_dirs:
continue
tmp_files = glob(os.path.join('./', to_make, "*.py"))
for py in tmp_files:
copyfile(py, os.path.join(args.log_dir, 'codes', py[2:]))
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
if len(args.gpu) == 1:
args.gpu = 0
else:
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:'+args.port,
world_size=args.world_size, rank=args.rank)
# # of GT-classes
args.num_cls = args.output_k
# Classes to use
args.att_to_use = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399]
# IIC statistics
args.epoch_acc = []
args.epoch_avg_subhead_acc = []
args.epoch_stats = []
# Logging
logger = SummaryWriter(args.event_dir)
# build model - return dict
networks, opts = build_model(args)
# load model if args.load_model is specified
load_model(args, networks, opts)
cudnn.benchmark = True
# get dataset and data loader
train_dataset, val_dataset = get_dataset(args)
train_loader, val_loader, train_sampler = get_loader(args, {'train': train_dataset, 'val': val_dataset})
# map the functions to execute - un / sup / semi-
trainFunc, validationFunc = map_exec_func(args)
# print all the argument
print_args(args)
# All the test is done in the training - do not need to call
if args.validation:
validationFunc(val_loader, networks, 999, args, {'logger': logger})
return
# For saving the model
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
record_txt = open(os.path.join(args.log_dir, "record.txt"), "a+")
for arg in vars(args):
record_txt.write('{:35}{:20}\n'.format(arg, str(getattr(args, arg))))
record_txt.close()
# Run
#validationFunc(val_loader, networks, 0, args, {'logger': logger, 'queue': queue})
for epoch in range(args.start_epoch, args.epochs):
print("START EPOCH[{}]".format(epoch+1))
if (epoch + 1) % (args.epochs // 25) == 0:
save_model(args, epoch, networks, opts)
if args.distributed:
train_sampler.set_epoch(epoch)
if epoch == args.ema_start and 'GAN' in args.train_mode:
if args.distributed:
networks['G_EMA'].module.load_state_dict(networks['G'].module.state_dict())
else:
networks['G_EMA'].load_state_dict(networks['G'].state_dict())
trainFunc(train_loader, networks, opts, epoch, args, {'logger': logger})
validationFunc(val_loader, networks, epoch, args, {'logger': logger})
#################
# Sub functions #
#################
def print_args(args):
for arg in vars(args):
print('{:35}{:20}\n'.format(arg, str(getattr(args, arg))))
def build_model(args):
args.to_train = 'CDG'
networks = {}
opts = {}
if 'C' in args.to_train:
networks['C'] = GuidingNet(args.img_size, {'cont': args.sty_dim, 'disc': args.output_k})
networks['C_EMA'] = GuidingNet(args.img_size, {'cont': args.sty_dim, 'disc': args.output_k})
if 'D' in args.to_train:
networks['D'] = Discriminator(args.img_size, num_domains=args.output_k)
if 'G' in args.to_train:
networks['G'] = Generator(args.img_size, args.sty_dim, use_sn=False)
networks['G_EMA'] = Generator(args.img_size, args.sty_dim, use_sn=False)
if args.distributed:
if args.gpu is not None:
print('Distributed to', args.gpu)
torch.cuda.set_device(args.gpu)
args.batch_size = int(args.batch_size / args.ngpus_per_node)
args.workers = int(args.workers / args.ngpus_per_node)
for name, net in networks.items():
if name in ['inceptionNet']:
continue
net_tmp = net.cuda(args.gpu)
networks[name] = torch.nn.parallel.DistributedDataParallel(net_tmp, device_ids=[args.gpu], output_device=args.gpu)
else:
for name, net in networks.items():
net_tmp = net.cuda()
networks[name] = torch.nn.parallel.DistributedDataParallel(net_tmp)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
for name, net in networks.items():
networks[name] = net.cuda(args.gpu)
else:
for name, net in networks.items():
networks[name] = torch.nn.DataParallel(net).cuda()
if 'C' in args.to_train:
opts['C'] = torch.optim.Adam(
networks['C'].module.parameters() if args.distributed else networks['C'].parameters(),
1e-4, weight_decay=0.001)
if args.distributed:
networks['C_EMA'].module.load_state_dict(networks['C'].module.state_dict())
else:
networks['C_EMA'].load_state_dict(networks['C'].state_dict())
if 'D' in args.to_train:
opts['D'] = torch.optim.RMSprop(
networks['D'].module.parameters() if args.distributed else networks['D'].parameters(),
1e-4, weight_decay=0.0001)
if 'G' in args.to_train:
opts['G'] = torch.optim.RMSprop(
networks['G'].module.parameters() if args.distributed else networks['G'].parameters(),
1e-4, weight_decay=0.0001)
return networks, opts
def load_model(args, networks, opts):
if args.load_model is not None:
check_load = open(os.path.join(args.log_dir, "checkpoint.txt"), 'r')
to_restore = check_load.readlines()[-1].strip()
load_file = os.path.join(args.log_dir, to_restore)
if os.path.isfile(load_file):
print("=> loading checkpoint '{}'".format(load_file))
checkpoint = torch.load(load_file, map_location='cpu')
args.start_epoch = checkpoint['epoch']
if not args.multiprocessing_distributed:
for name, net in networks.items():
tmp_keys = next(iter(checkpoint[name + '_state_dict'].keys()))
if 'module' in tmp_keys:
tmp_new_dict = OrderedDict()
for key, val in checkpoint[name + '_state_dict'].items():
tmp_new_dict[key[7:]] = val
net.load_state_dict(tmp_new_dict)
networks[name] = net
else:
net.load_state_dict(checkpoint[name + '_state_dict'])
networks[name] = net
for name, opt in opts.items():
opt.load_state_dict(checkpoint[name.lower() + '_optimizer'])
opts[name] = opt
print("=> loaded checkpoint '{}' (epoch {})"
.format(load_file, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.log_dir))
def get_loader(args, dataset):
train_dataset = dataset['train']
val_dataset = dataset['val']
print(len(val_dataset))
train_dataset_ = train_dataset['TRAIN']
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset_)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(train_dataset_, batch_size=args.batch_size,
shuffle=(train_sampler is None), num_workers=args.workers,
pin_memory=True, sampler=train_sampler, drop_last=False)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch, shuffle=True,
num_workers=0, pin_memory=True, drop_last=False)
val_loader = {'VAL': val_loader, 'VALSET': val_dataset, 'TRAINSET': train_dataset['FULL']}
return train_loader, val_loader, train_sampler
def map_exec_func(args):
if args.train_mode == 'GAN':
trainFunc = trainGAN
validationFunc = validateUN
return trainFunc, validationFunc
def save_model(args, epoch, networks, opts):
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % args.ngpus_per_node == 0):
check_list = open(os.path.join(args.log_dir, "checkpoint.txt"), "a+")
# if (epoch + 1) % (args.epochs//10) == 0:
with torch.no_grad():
save_dict = {}
save_dict['epoch'] = epoch + 1
for name, net in networks.items():
save_dict[name+'_state_dict'] = net.state_dict()
if name in ['G_EMA', 'C_EMA']:
continue
save_dict[name.lower()+'_optimizer'] = opts[name].state_dict()
print("SAVE CHECKPOINT[{}] DONE".format(epoch+1))
save_checkpoint(save_dict, check_list, args.log_dir, epoch + 1)
check_list.close()
if __name__ == '__main__':
main()