forked from sqlp/sedumi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauxfwdpr1.c
122 lines (117 loc) · 4.47 KB
/
auxfwdpr1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "blksdp.h"
/* ------------------------------------------------------------
PROCEDURE fwipr1 - I(dentity) P(lus) R(ank)1 forward solve.
INPUT:
p - length m floats
beta - length n floats
m, n - order of p and beta, resp.
UPDATED:
y - Length m. On input, contains the rhs. On output, the solution to
L(p,beta)*yNEW = yOLD
------------------------------------------------------------ */
void fwipr1(double *y, const double *p, const double *beta,
const mwIndex m, const mwIndex n)
{
mwIndex i;
double yi,betai,t;
if(n < 1) /* If L = I, y remains the same */
return;
/* ------------------------------------------------------------
Solve (eye(m) + tril(p*beta',-1)) * yNEW = yOLD,
where beta[n:m-1] = 0.
------------------------------------------------------------ */
yi = y[0];
betai = beta[0];
for(t=0.0, i=1; i < n; i++){
/* ------------------------------------------------------------
Let t = beta(0:i-1)'*y(0:i-1). Then solve yi from
t * p(i) + y(i) = yOLD(i)
------------------------------------------------------------ */
t += yi * betai;
yi = (y[i] -= t * p[i]);
betai = beta[i];
}
if(n < m){
t += yi * betai;
/* ------------------------------------------------------------
For i=n:m-1, t remains unchanged.
------------------------------------------------------------ */
addscalarmul(y+i, -t, p+i, m-n);
}
}
/* ------------------------------------------------------------
PROCEDURE fwipr1o - I(dentity) P(lus) R(ank)1 forward solve, O(rdered).
INPUT:
perm - length m permutation on p and y.
p - length m floats, corresponding to original indices (unpermuted).
beta - length n floats, corresponding to indices in pir (i.e. already
permuted); n <= m.
m, n - order of p and beta, resp.; n <= m.
UPDATED:
y - Length m. On input, contains the rhs. On output, the solution to
L(p(perm),beta)*yNEW(perm) = yOLD(perm)
------------------------------------------------------------ */
void fwipr1o(double *y, const mwIndex *perm, const double *p, const double *beta,
const mwIndex m, const mwIndex n)
{
mwIndex i, permi;
double yi,betai,t;
if(n < 1) /* If L = I, y remains the same */
return;
/* ------------------------------------------------------------
Solve (eye(m) + tril(p*beta',-1)) * yNEW(perm) = yOLD(perm),
where beta[n:m-1] = 0.
------------------------------------------------------------ */
yi = y[perm[0]];
betai = beta[0];
for(t=0.0, i=1; i < n; i++){
/* ------------------------------------------------------------
Let t = beta(0:i-1)'*y(perm(0:i-1)). Then solve yi from
t * p(perm(i)) + y(perm(i)) = yOLD(perm(i))
------------------------------------------------------------ */
t += yi * betai;
permi = perm[i];
yi = (y[permi] -= t * p[permi]);
betai = beta[i];
}
if(n < m){
t += yi * betai;
/* ------------------------------------------------------------
For i=n:m-1, t remains unchanged.
------------------------------------------------------------ */
for(; i < m; i++){
permi = perm[i];
y[permi] -= t * p[permi];
}
}
}