-
Notifications
You must be signed in to change notification settings - Fork 8
/
ranger.py
255 lines (205 loc) · 10.9 KB
/
ranger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import math
import torch
from torch.optim.optimizer import Optimizer, required
import itertools as it
#from torch.optim import Optimizer
#credit - Lookahead implementation from LonePatient - https://github.com/lonePatient/lookahead_pytorch/blob/master/optimizer.py
#credit2 - RAdam code by https://github.com/LiyuanLucasLiu/RAdam/blob/master/radam.py
class Ranger(Optimizer):
def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95,0.999), eps=1e-5, weight_decay=0):
#parameter checks
if not 0.0 <= alpha <= 1.0:
raise ValueError('Invalid slow update rate: {alpha}')
if not 1 <= k:
raise ValueError('Invalid lookahead steps: {k}')
if not lr > 0:
raise ValueError('Invalid Learning Rate: {lr}')
if not eps > 0:
raise ValueError('Invalid eps: {eps}')
#parameter comments:
# beta1 (momentum) of .95 seems to work better than .90...
#N_sma_threshold of 5 seems better in testing than 4.
#In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.
#prep defaults and init torch.optim base
defaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay)
super().__init__(params,defaults)
#adjustable threshold
self.N_sma_threshhold = N_sma_threshhold
#now we can get to work...
#removed as we now use step from RAdam...no need for duplicate step counting
#for group in self.param_groups:
# group["step_counter"] = 0
#print("group step counter init")
#look ahead params
self.alpha = alpha
self.k = k
#radam buffer for state
self.radam_buffer = [[None,None,None] for ind in range(10)]
#self.first_run_check=0
#lookahead weights
#9/2/19 - lookahead param tensors have been moved to state storage.
#This should resolve issues with load/save where weights were left in GPU memory from first load, slowing down future runs.
#self.slow_weights = [[p.clone().detach() for p in group['params']]
# for group in self.param_groups]
#don't use grad for lookahead weights
#for w in it.chain(*self.slow_weights):
# w.requires_grad = False
def __setstate__(self, state):
print("set state called")
super(Ranger, self).__setstate__(state)
@property
def params(self):
"""Return an iterable of the parameters held by the optimizer."""
for param_group in self.param_groups:
for p in param_group['params']:
yield p
def clip_grad_norm(self, max_norm):
"""Clips gradient norm."""
if max_norm > 0:
return torch.nn.utils.clip_grad_norm_(self.params, max_norm)
else:
return math.sqrt(sum(p.grad.data.norm()**2 for p in self.params if p.grad is not None))
def multiply_grads(self, c):
"""Multiplies grads by a constant *c*."""
for p in self.params:
if p.grad is not None:
p.grad.data.mul_(c)
@property
def supports_memory_efficient_fp16(self):
return True
def step(self, closure=None):
loss = None
#note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
#Uncomment if you need to use the actual closure...
#if closure is not None:
#loss = closure()
#Evaluate averages and grad, update param tensors
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError('Ranger optimizer does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p] #get state dict for this param
if len(state) == 0: #if first time to run...init dictionary with our desired entries
#if self.first_run_check==0:
#self.first_run_check=1
#print("Initializing slow buffer...should not see this at load from saved model!")
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
#look ahead weight storage now in state dict
state['slow_buffer'] = torch.empty_like(p.data)
state['slow_buffer'].copy_(p.data)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
#begin computations
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
#compute variance mov avg
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
#compute mean moving avg
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state['step'] += 1
buffered = self.radam_buffer[int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
if N_sma > self.N_sma_threshhold:
step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
else:
step_size = 1.0 / (1 - beta1 ** state['step'])
buffered[2] = step_size
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
if N_sma > self.N_sma_threshhold:
denom = exp_avg_sq.sqrt().add_(group['eps'])
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
else:
p_data_fp32.add_(-step_size * group['lr'], exp_avg)
p.data.copy_(p_data_fp32)
#integrated look ahead...
#we do it at the param level instead of group level
if state['step'] % group['k'] == 0:
slow_p = state['slow_buffer'] #get access to slow param tensor
slow_p.add_(self.alpha, p.data - slow_p) #(fast weights - slow weights) * alpha
p.data.copy_(slow_p) #copy interpolated weights to RAdam param tensor
return loss
class AdamW(Optimizer):
""" Implements Adam algorithm with weight decay fix.
Parameters:
lr (float): learning rate. Default 1e-3.
betas (tuple of 2 floats): Adams beta parameters (b1, b2). Default: (0.9, 0.999)
eps (float): Adams epsilon. Default: 1e-6
weight_decay (float): Weight decay. Default: 0.0
correct_bias (bool): can be set to False to avoid correcting bias in Adam (e.g. like in Bert TF repository). Default True.
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.0, correct_bias=True):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
correct_bias=correct_bias)
super(AdamW, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(1.0 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1.0 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
step_size = group['lr']
if group['correct_bias']: # No bias correction for Bert
bias_correction1 = 1.0 - beta1 ** state['step']
bias_correction2 = 1.0 - beta2 ** state['step']
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if group['weight_decay'] > 0.0:
p.data.add_(-group['lr'] * group['weight_decay'], p.data)
return loss