forked from netstim/leaddbs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathea_detect_edges_3d.m
114 lines (87 loc) · 2.78 KB
/
ea_detect_edges_3d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function Y=ea_detect_edges_3d(varargin)
%% function detect_edges_3d for Nii-Images
% Andreas Horn, 2014
% in: X (image matrix), alpha (threshold), useimgtoolbox (use image toolbox
% or replacement function).
X=varargin{1};
alpha=varargin{2};
if nargin==3
useimgtbx=varargin{3};
else
useimgtbx=0;
end
Y=X;
dimensionality=size(X,3);
ea_dispercent(0,'Sampling');
for slice=1:dimensionality
if useimgtbx
edgedslice=edge(squeeze(X(:,:,slice)),'canny',alpha);
else
edgedslice=ea_edgedetection(squeeze(X(:,:,slice)),alpha);
end
Y(:,:,slice)=edgedslice;
ea_dispercent(slice/dimensionality);
end
ea_dispercent(1,'end');
function outimg=ea_edgedetection(inimg,alpha)
Nx1=10;Sigmax1=1;Nx2=10;Sigmax2=1;Theta1=pi/2;
Ny1=10;Sigmay1=1;Ny2=10;Sigmay2=1;Theta2=0;
% X-axis direction edge detection
filterx=d2dgauss(Nx1,Sigmax1,Nx2,Sigmax2,Theta1);
convimgx= conv2(inimg,filterx,'same');
% Y-axis direction edge detection
filtery=d2dgauss(Ny1,Sigmay1,Ny2,Sigmay2,Theta2);
convimgy=conv2(inimg,filtery,'same');
convimg=sqrt(convimgx.*convimgx+convimgy.*convimgy);
% Thresholding
maxintens=max(convimg(:));
minintens=min(convimg(:));
level=alpha*(maxintens-minintens)+minintens;
thinimg=max(convimg,level.*ones(size(convimg)));
% Thinning (Using interpolation to find the pixels where the norms of
% gradient are local maximum.)
[n,m]=size(thinimg);
outimg=zeros(n-1,m-1);
for i=2:n-1,
for j=2:m-1,
if thinimg(i,j) > level,
X=[-1,0,+1;-1,0,+1;-1,0,+1];
Y=[-1,-1,-1;0,0,0;+1,+1,+1];
Z=[thinimg(i-1,j-1),thinimg(i-1,j),thinimg(i-1,j+1);
thinimg(i,j-1),thinimg(i,j),thinimg(i,j+1);
thinimg(i+1,j-1),thinimg(i+1,j),thinimg(i+1,j+1)];
XI=[convimgx(i,j)/convimg(i,j), -convimgx(i,j)/convimg(i,j)];
YI=[convimgy(i,j)/convimg(i,j), -convimgy(i,j)/convimg(i,j)];
try
ZI=interp2(X,Y,Z,XI,YI);
end
if thinimg(i,j) >= ZI(1) && thinimg(i,j) >= ZI(2)
outimg(i,j)=maxintens;
else
outimg(i,j)=minintens;
end
else
outimg(i,j)=minintens;
end
end
end
[xx,yy]=meshgrid(1:n-1,1:m-1);
[xxq,yyq]=meshgrid(1:n,1:m);
outimg = interp2(yy',xx',outimg,yyq,xxq,'cubic')';
function h = d2dgauss(n1,sigma1,n2,sigma2,theta)
r=[cos(theta) -sin(theta);
sin(theta) cos(theta)];
h=zeros(n1,n2);
for i = 1 : n2
for j = 1 : n1
u = r * [j-(n1+1)/2 i-(n2+1)/2]';
h(i,j) = gauss(u(1),sigma1)*dgauss(u(2),sigma2);
end
end
h = h / sqrt(sum(sum(abs(h).*abs(h))));
% Function "gauss.m":
function y = gauss(x,std)
y = exp(-x^2/(2*std^2)) / (std*sqrt(2*pi));
% Function "dgauss.m"(first order derivative of gauss function):
function y = dgauss(x,std)
y = -x * gauss(x,std) / std^2;