forked from netstim/leaddbs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathea_absor.m
344 lines (244 loc) · 7.97 KB
/
ea_absor.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
function [regParams,Bfit,ErrorStats]=ea_absor(A,B,varargin)
%ABSOR is a tool for finding the rotation -- and optionally also the
%scaling and translation -- that best maps one collection of point coordinates to
%another in a least squares sense. It is based on Horn's quaternion-based method. The
%function works for both 2D and 3D coordinates, and also gives the option of weighting the
%coordinates non-uniformly. The code avoids for-loops so as to maximize speed.
%
%DESCRIPTION:
%
%As input data, one has
%
% A: a 2xN or 3xN matrix whos columns are the coordinates of N source points.
% B: a 2xN or 3xN matrix whos columns are the coordinates of N target points.
%
%The basic syntax
%
% [regParams,Bfit,ErrorStats]=absor(A,B)
%
%solves the unweighted/unscaled registration problem
%
% min. sum_i ||R*A(:,i) + t - B(:,i)||^2
%
%for unknown rotation matrix R and unknown translation vector t.
%
%ABSOR can also solve the more general problem
%
% min. sum_i w(i)*||s*R*A(:,i) + t - B(:,i)||^2
%
%where s>=0 is an unknown global scale factor to be estimated along with R and t
%and w is a user-supplied N-vector of weights. One can include/exclude any
%combination of s, w, and translation t in the problem formulation. Which
%parameters participate is controlled using the syntax,
%
% [regParams,Bfit,ErrorStats]=absor(A,B,'param1',value1,'param2',value2,...)
%
%with parameter/value pair options,
%
% 'doScale' - Boolean flag. If TRUE, the global scale factor, s, is included.
% Otherwise, it is assumed that s=1. Default=FALSE.
%
% 'doTrans' - Boolean flag. If TRUE, the translation, t, is included. Otherwise,
% zero translation is assumed. Default=TRUE.
%
% 'weights' - The length N-vector of weights, w. Default, no weighting.
%
%
%OUTPUTS:
%
%
% regParams: structure output with estimated registration parameters,
%
% regParams.R: The estimated rotation matrix, R
% regParams.t: The estimated translation vector, t
% regParams.s: The estimated scale factor.
% regParams.M: Homogenous coordinate transform matrix [s*R,t;[0 0 ... 1]].
%
% For 3D problems, the structure includes
%
% regParams.q: A unit quaternion [q0 qx qy qz] corresponding to R and
% signed to satisfy max(q)=max(abs(q))>0
%
% For 2D problems, it includes
%
% regParams.theta: the counter-clockwise rotation angle about the
% 2D origin
%
%
% Bfit: The rotation, translation, and scaling (as applicable) of A that
% best matches B.
%
%
% ErrorStats: structure output with error statistics. In particular,
% defining err(i)=sqrt(w(i))*norm( Bfit(:,i)-B(:,i) ),
% it contains
%
% ErrorStats.errlsq = norm(err)
% ErrorStats.errmax = max(err)
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Author: Matt Jacobson
% Copyright, Xoran Technologies, Inc. http://www.xorantech.com
%%Input option processing and set up
options.doScale = 0;
options.doTrans = 1;
options.weights = [];
for ii=1:2:length(varargin)
param=varargin{ii};
val=varargin{ii+1};
if strcmpi(param,'doScale'),
options.doScale=val;
elseif strcmpi(param,'weights')
options.weights=val;
elseif strcmpi(param,'doTrans')
options.doTrans=val;
else
error(['Option ''' param ''' not recognized']);
end
end
doScale = options.doScale;
doTrans = options.doTrans;
weights = options.weights;
if ~isempty(which('bsxfun'))
matmvec=@(M,v) bsxfun(@minus,M,v); %matrix-minus-vector
mattvec=@(M,v) bsxfun(@times,M,v); %matrix-minus-vector
else
matmvec=@matmvecHandle;
mattvec=@mattvecHandle;
end
dimension=size(A,1);
if dimension~=size(B,1),
error 'The number of points to be registered must be the same'
end
%%Centering/weighting of input data
if doTrans
if isempty(weights)
sumwts=1;
lc=mean(A,2); rc=mean(B,2); %Centroids
left = matmvec(A,lc); %Center coordinates at centroids
right = matmvec(B,rc);
else
sumwts=sum(weights);
weights=full(weights)/sumwts;
weights=weights(:);
sqrtwts=sqrt(weights.');
lc=A*weights; rc=B*weights; %weighted centroids
left = matmvec(A,lc);
left = mattvec(left,sqrtwts);
right = matmvec(B,rc);
right = mattvec(right,sqrtwts);
end
else
if isempty(weights)
sumwts=1;
left=A; right=B;
else
sumwts=sum(weights);
weights=full(weights)/sumwts;
weights=weights(:);
sqrtwts=sqrt(weights.');
left = mattvec(A,sqrtwts);
right = mattvec(B,sqrtwts);
end
end
M=left*right.';
%%Compute rotation matrix
switch dimension
case 2
Nxx=M(1)+M(4); Nyx=M(3)-M(2);
N=[Nxx Nyx;...
Nyx -Nxx];
[V,D]=eig(N);
[trash,emax]=max(real( diag(D) )); emax=emax(1);
q=V(:,emax); %Gets eigenvector corresponding to maximum eigenvalue
q=real(q); %Get rid of imaginary part caused by numerical error
q=q*sign(q(2)+(q(2)>=0)); %Sign ambiguity
q=q./norm(q);
R11=q(1)^2-q(2)^2;
R21=prod(q)*2;
R=[R11 -R21;R21 R11]; %map to orthogonal matrix
case 3
[Sxx,Syx,Szx, Sxy,Syy,Szy, Sxz,Syz,Szz]=dealr(M(:));
N=[(Sxx+Syy+Szz) (Syz-Szy) (Szx-Sxz) (Sxy-Syx);...
(Syz-Szy) (Sxx-Syy-Szz) (Sxy+Syx) (Szx+Sxz);...
(Szx-Sxz) (Sxy+Syx) (-Sxx+Syy-Szz) (Syz+Szy);...
(Sxy-Syx) (Szx+Sxz) (Syz+Szy) (-Sxx-Syy+Szz)];
[V,D]=eig(N);
[trash,emax]=max(real( diag(D) )); emax=emax(1);
q=V(:,emax); %Gets eigenvector corresponding to maximum eigenvalue
q=real(q); %Get rid of imaginary part caused by numerical error
[trash,ii]=max(abs(q)); sgn=sign(q(ii(1)));
q=q*sgn; %Sign ambiguity
%map to orthogonal matrix
quat=q(:);
nrm=norm(quat);
if ~nrm
disp 'Quaternion distribution is 0'
end
quat=quat./norm(quat);
q0=quat(1);
qx=quat(2);
qy=quat(3);
qz=quat(4);
v =quat(2:4);
Z=[q0 -qz qy;...
qz q0 -qx;...
-qy qx q0 ];
R=v*v.' + Z^2;
otherwise
error 'Points must be either 2D or 3D'
end
%%
if doScale
summ = @(M) sum(M(:));
sss=summ( right.*(R*left))/summ(left.^2);
if doTrans
t=rc-R*(lc*sss);
else
t=zeros(dimension,1);
end
else
sss=1;
if doTrans
t=rc-R*lc;
else
t=zeros(dimension,1);
end
end
regParams.R=R;
regParams.t=t;
regParams.s=sss;
if dimension==2
regParams.M=[sss*R,t;[0 0 1]];
regParams.theta=atan2(q(2),q(1))*360/pi;
else%dimension=3
regParams.M=[sss*R,t;[0 0 0 1]];
regParams.q=q/norm(q);
end
if nargout>1
Bfit=(sss*R)*A;
if doTrans
Bfit=matmvec(Bfit,-t);
end
end
if nargout>2
l2norm = @(M,dim) sqrt(sum(M.^2,dim));
err=l2norm(Bfit-B,1);
if ~isempty(weights), err=err.*sqrtwts; end
ErrorStats.errlsq=norm(err)*sqrt(sumwts); %unnormalize the weights
ErrorStats.errmax=max(err);
end
function M=matmvecHandle(M,v)
%Matrix-minus-vector
for ii=1:size(M,1)
M(ii,:)=M(ii,:)-v(ii);
end
function M=mattvecHandle(M,v)
%Matrix-times-vector
for ii=1:size(M,1)
M(ii,:)=M(ii,:).*v;
end
function varargout=dealr(v)
varargout=num2cell(v);