forked from EvaMaeRey/tidyverse_in_action
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathone_stream_wrangle.html
789 lines (735 loc) · 24 KB
/
one_stream_wrangle.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<title>one-stream wrangle</title>
<meta charset="utf-8" />
<meta name="author" content="Gina Reynolds, January 2020" />
<link href="libs/remark-css-0.0.1/default.css" rel="stylesheet" />
<link href="libs/remark-css-0.0.1/hygge.css" rel="stylesheet" />
<link href="libs/remark-css-0.0.1/ninjutsu.css" rel="stylesheet" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
# one-stream wrangle
## made with flipbookr and xaringan
### Gina Reynolds, January 2020
---
```r
library(gapminder)
library(tidyverse)
```
```
## ── Attaching packages ──────────────────────── tidyverse 1.2.1 ──
```
```
## ✓ ggplot2 3.3.0.9000 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.4
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
```
```
## ── Conflicts ─────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
```
```r
knitr::opts_chunk$set(cache = F, comment = "")
```
---
class: split-40
count: false
.column[.content[
```r
*gapminder
```
]]
.column[.content[
```
# A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
# … with 1,694 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
* filter(year == 2002)
```
]]
.column[.content[
```
# A tibble: 142 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 2002 42.1 25268405 727.
2 Albania Europe 2002 75.7 3508512 4604.
3 Algeria Africa 2002 71.0 31287142 5288.
4 Angola Africa 2002 41.0 10866106 2773.
5 Argentina Americas 2002 74.3 38331121 8798.
6 Australia Oceania 2002 80.4 19546792 30688.
7 Austria Europe 2002 79.0 8148312 32418.
8 Bahrain Asia 2002 74.8 656397 23404.
9 Bangladesh Asia 2002 62.0 135656790 1136.
10 Belgium Europe 2002 78.3 10311970 30486.
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
* select(-lifeExp)
```
]]
.column[.content[
```
# A tibble: 142 x 5
country continent year pop gdpPercap
<fct> <fct> <int> <int> <dbl>
1 Afghanistan Asia 2002 25268405 727.
2 Albania Europe 2002 3508512 4604.
3 Algeria Africa 2002 31287142 5288.
4 Angola Africa 2002 10866106 2773.
5 Argentina Americas 2002 38331121 8798.
6 Australia Oceania 2002 19546792 30688.
7 Austria Europe 2002 8148312 32418.
8 Bahrain Asia 2002 656397 23404.
9 Bangladesh Asia 2002 135656790 1136.
10 Belgium Europe 2002 10311970 30486.
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
* rename(gdp_per_cap = gdpPercap)
```
]]
.column[.content[
```
# A tibble: 142 x 5
country continent year pop gdp_per_cap
<fct> <fct> <int> <int> <dbl>
1 Afghanistan Asia 2002 25268405 727.
2 Albania Europe 2002 3508512 4604.
3 Algeria Africa 2002 31287142 5288.
4 Angola Africa 2002 10866106 2773.
5 Argentina Americas 2002 38331121 8798.
6 Australia Oceania 2002 19546792 30688.
7 Austria Europe 2002 8148312 32418.
8 Bahrain Asia 2002 656397 23404.
9 Bangladesh Asia 2002 135656790 1136.
10 Belgium Europe 2002 10311970 30486.
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
* mutate(gdp = gdp_per_cap * pop)
```
]]
.column[.content[
```
# A tibble: 142 x 6
country continent year pop gdp_per_cap gdp
<fct> <fct> <int> <int> <dbl> <dbl>
1 Afghanistan Asia 2002 25268405 727. 18363410424.
2 Albania Europe 2002 3508512 4604. 16153932130.
3 Algeria Africa 2002 31287142 5288. 165447670333.
4 Angola Africa 2002 10866106 2773. 30134833901.
5 Argentina Americas 2002 38331121 8798. 337223430800.
6 Australia Oceania 2002 19546792 30688. 599847158654.
7 Austria Europe 2002 8148312 32418. 264148781752.
8 Bahrain Asia 2002 656397 23404. 15362026094.
9 Bangladesh Asia 2002 135656790 1136. 154159077921.
10 Belgium Europe 2002 10311970 30486. 314369518653.
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
* mutate(europe = continent == "Europe")
```
]]
.column[.content[
```
# A tibble: 142 x 7
country continent year pop gdp_per_cap gdp europe
<fct> <fct> <int> <int> <dbl> <dbl> <lgl>
1 Afghanistan Asia 2002 25268405 727. 18363410424. FALSE
2 Albania Europe 2002 3508512 4604. 16153932130. TRUE
3 Algeria Africa 2002 31287142 5288. 165447670333. FALSE
4 Angola Africa 2002 10866106 2773. 30134833901. FALSE
5 Argentina Americas 2002 38331121 8798. 337223430800. FALSE
6 Australia Oceania 2002 19546792 30688. 599847158654. FALSE
7 Austria Europe 2002 8148312 32418. 264148781752. TRUE
8 Bahrain Asia 2002 656397 23404. 15362026094. FALSE
9 Bangladesh Asia 2002 135656790 1136. 154159077921. FALSE
10 Belgium Europe 2002 10311970 30486. 314369518653. TRUE
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
* select(country, year, gdp, europe, pop)
```
]]
.column[.content[
```
# A tibble: 142 x 5
country year gdp europe pop
<fct> <int> <dbl> <lgl> <int>
1 Afghanistan 2002 18363410424. FALSE 25268405
2 Albania 2002 16153932130. TRUE 3508512
3 Algeria 2002 165447670333. FALSE 31287142
4 Angola 2002 30134833901. FALSE 10866106
5 Argentina 2002 337223430800. FALSE 38331121
6 Australia 2002 599847158654. FALSE 19546792
7 Austria 2002 264148781752. TRUE 8148312
8 Bahrain 2002 15362026094. FALSE 656397
9 Bangladesh 2002 154159077921. FALSE 135656790
10 Belgium 2002 314369518653. TRUE 10311970
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
* mutate(europe_category =
* case_when(europe == T ~ "Europe",
* europe == F ~ "Not Europe"))
```
]]
.column[.content[
```
# A tibble: 142 x 6
country year gdp europe pop europe_category
<fct> <int> <dbl> <lgl> <int> <chr>
1 Afghanistan 2002 18363410424. FALSE 25268405 Not Europe
2 Albania 2002 16153932130. TRUE 3508512 Europe
3 Algeria 2002 165447670333. FALSE 31287142 Not Europe
4 Angola 2002 30134833901. FALSE 10866106 Not Europe
5 Argentina 2002 337223430800. FALSE 38331121 Not Europe
6 Australia 2002 599847158654. FALSE 19546792 Not Europe
7 Austria 2002 264148781752. TRUE 8148312 Europe
8 Bahrain 2002 15362026094. FALSE 656397 Not Europe
9 Bangladesh 2002 154159077921. FALSE 135656790 Not Europe
10 Belgium 2002 314369518653. TRUE 10311970 Europe
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
* arrange(-gdp)
```
]]
.column[.content[
```
# A tibble: 142 x 6
country year gdp europe pop europe_category
<fct> <int> <dbl> <lgl> <int> <chr>
1 United States 2002 1.12e13 FALSE 287675526 Not Europe
2 China 2002 3.99e12 FALSE 1280400000 Not Europe
3 Japan 2002 3.63e12 FALSE 127065841 Not Europe
4 Germany 2002 2.47e12 TRUE 82350671 Europe
5 India 2002 1.81e12 FALSE 1034172547 Not Europe
6 United Kingdom 2002 1.77e12 TRUE 59912431 Europe
7 France 2002 1.73e12 TRUE 59925035 Europe
8 Italy 2002 1.62e12 TRUE 57926999 Europe
9 Brazil 2002 1.46e12 FALSE 179914212 Not Europe
10 Mexico 2002 1.10e12 FALSE 102479927 Not Europe
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
* mutate(gdp_billions = gdp/1000000000)
```
]]
.column[.content[
```
# A tibble: 142 x 7
country year gdp europe pop europe_category gdp_billions
<fct> <int> <dbl> <lgl> <int> <chr> <dbl>
1 United States 2002 1.12e13 FALSE 287675526 Not Europe 11247.
2 China 2002 3.99e12 FALSE 1280400000 Not Europe 3994.
3 Japan 2002 3.63e12 FALSE 127065841 Not Europe 3635.
4 Germany 2002 2.47e12 TRUE 82350671 Europe 2473.
5 India 2002 1.81e12 FALSE 1034172547 Not Europe 1806.
6 United Kingdom 2002 1.77e12 TRUE 59912431 Europe 1766.
7 France 2002 1.73e12 TRUE 59925035 Europe 1733.
8 Italy 2002 1.62e12 TRUE 57926999 Europe 1620.
9 Brazil 2002 1.46e12 FALSE 179914212 Not Europe 1463.
10 Mexico 2002 1.10e12 FALSE 102479927 Not Europe 1101.
# … with 132 more rows
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
* slice(1:8)
```
]]
.column[.content[
```
# A tibble: 8 x 7
country year gdp europe pop europe_category gdp_billions
<fct> <int> <dbl> <lgl> <int> <chr> <dbl>
1 United States 2002 1.12e13 FALSE 287675526 Not Europe 11247.
2 China 2002 3.99e12 FALSE 1280400000 Not Europe 3994.
3 Japan 2002 3.63e12 FALSE 127065841 Not Europe 3635.
4 Germany 2002 2.47e12 TRUE 82350671 Europe 2473.
5 India 2002 1.81e12 FALSE 1034172547 Not Europe 1806.
6 United Kingdom 2002 1.77e12 TRUE 59912431 Europe 1766.
7 France 2002 1.73e12 TRUE 59925035 Europe 1733.
8 Italy 2002 1.62e12 TRUE 57926999 Europe 1620.
```
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
*europe_or_not_2002
```
]]
.column[.content[
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
* # plot
*ggplot(data = europe_or_not_2002)
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_13_output-1.png)<!-- -->
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
# plot
ggplot(data = europe_or_not_2002) +
* aes(x = reorder(country, gdp_billions))
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_14_output-1.png)<!-- -->
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
# plot
ggplot(data = europe_or_not_2002) +
aes(x = reorder(country, gdp_billions)) +
* aes(y = gdp_billions)
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_15_output-1.png)<!-- -->
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
# plot
ggplot(data = europe_or_not_2002) +
aes(x = reorder(country, gdp_billions)) +
aes(y = gdp_billions) +
* geom_col()
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_16_output-1.png)<!-- -->
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
# plot
ggplot(data = europe_or_not_2002) +
aes(x = reorder(country, gdp_billions)) +
aes(y = gdp_billions) +
geom_col() +
* aes(fill = europe_category)
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_17_output-1.png)<!-- -->
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
# plot
ggplot(data = europe_or_not_2002) +
aes(x = reorder(country, gdp_billions)) +
aes(y = gdp_billions) +
geom_col() +
aes(fill = europe_category) +
* scale_y_log10()
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_18_output-1.png)<!-- -->
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
# plot
ggplot(data = europe_or_not_2002) +
aes(x = reorder(country, gdp_billions)) +
aes(y = gdp_billions) +
geom_col() +
aes(fill = europe_category) +
scale_y_log10() +
* coord_flip()
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_19_output-1.png)<!-- -->
]]
---
class: split-40
count: false
.column[.content[
```r
gapminder %>%
filter(year == 2002) %>%
select(-lifeExp) %>%
rename(gdp_per_cap = gdpPercap) %>%
mutate(gdp = gdp_per_cap * pop) %>%
mutate(europe = continent == "Europe") %>%
select(country, year, gdp, europe, pop) %>%
mutate(europe_category =
case_when(europe == T ~ "Europe",
europe == F ~ "Not Europe")) %>%
arrange(-gdp) %>%
mutate(gdp_billions = gdp/1000000000) %>%
slice(1:8) ->
europe_or_not_2002
# plot
ggplot(data = europe_or_not_2002) +
aes(x = reorder(country, gdp_billions)) +
aes(y = gdp_billions) +
geom_col() +
aes(fill = europe_category) +
scale_y_log10() +
coord_flip() +
* labs(title = "Eight largest economies, 2002")
```
]]
.column[.content[
![](one_stream_wrangle_files/figure-html/mini_auto_20_output-1.png)<!-- -->
]]
<style type="text/css">
.remark-code{line-height: 1.5; font-size: 70%}
</style>
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="libs/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"ratio": "16:10",
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();</script>
<script>
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>