forked from soumith/imagenet-multiGPU.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
271 lines (237 loc) · 9.26 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'optim'
--[[
1. Setup SGD optimization state and learning rate schedule
2. Create loggers.
3. train - this function handles the high-level training loop,
i.e. load data, train model, save model and state to disk
4. trainBatch - Used by train() to train a single batch after the data is loaded.
]]--
-- Setup a reused optimization state (for sgd). If needed, reload it from disk
local optimState = {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = opt.weightDecay
}
if opt.optimState ~= 'none' then
assert(paths.filep(opt.optimState), 'File not found: ' .. opt.optimState)
print('Loading optimState from file: ' .. opt.optimState)
optimState = torch.load(opt.optimState)
end
if opt.rngState ~= 'none' then
assert(paths.filep(opt.rngState), 'File not found: ' .. opt.rngState)
print('Loading RNG state from file: ' .. opt.rngState)
loadRNGState(opt.rngState, donkeys, opt.nDonkeys)
end
-- Learning rate annealing schedule. We will build a new optimizer for
-- each epoch.
--
-- By default we follow a known recipe for a 55-epoch training. If
-- the learningRate command-line parameter has been specified, though,
-- we trust the user is doing something manual, and will use her
-- exact settings for all optimization.
--
-- Return values:
-- diff to apply to optimState,
-- true IFF this is the first epoch of a new regime
local function paramsForEpoch(epoch)
if opt.LR ~= 0.0 then -- if manually specified
return { }
end
local regimes = {
-- start, end, LR, WD,
{ 1, 18, 1e-2, 5e-4, },
{ 19, 29, 5e-3, 5e-4 },
{ 30, 43, 1e-3, 0 },
{ 44, 52, 5e-4, 0 },
{ 53, 1e8, 1e-4, 0 },
}
for _, row in ipairs(regimes) do
if epoch >= row[1] and epoch <= row[2] then
return { learningRate=row[3], weightDecay=row[4] }, epoch == row[1]
end
end
end
-- 2. Create loggers.
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
local batchNumber
local top1_epoch, loss_epoch
trainConf = opt.conf and optim.ConfusionMatrix(classes) or nil
-- 3. train - this function handles the high-level training loop,
-- i.e. load data, train model, save model and state to disk
function train()
print('==> doing epoch on training data:')
print("==> online epoch # " .. epoch)
local params, newRegime = paramsForEpoch(epoch)
if newRegime then
optimState = {
learningRate = params.learningRate,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = params.weightDecay
}
end
batchNumber = 0
cutorch.synchronize()
-- set the dropouts to training mode
model:training()
local tm = torch.Timer()
top1_epoch = 0
loss_epoch = 0
if trainConf then trainConf:zero() end
for i=1,opt.epochSize do
-- queue jobs to data-workers
donkeys:addjob(
-- the job callback (runs in data-worker thread)
function()
local inputs, labels
local ok = xpcall(function()
inputs, labels = trainLoader:sample(opt.batchSize)
end, function()
print("ERROR!")
print(debug.traceback())
end);
if not ok then
return
end
-- check the error
return inputs, labels
end,
-- the end callback (runs in the main thread)
trainBatch
)
end
donkeys:synchronize()
cutorch.synchronize()
top1_epoch = top1_epoch * 100 / (opt.batchSize * opt.epochSize)
loss_epoch = loss_epoch / opt.epochSize
trainLogger:add{
['% top1 accuracy (train set)'] = top1_epoch,
['avg loss (train set)'] = loss_epoch
}
print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t'
.. 'average loss (per batch): %.2f \t '
.. 'accuracy(%%):\t top-1 %.2f\t',
epoch, tm:time().real, loss_epoch, top1_epoch))
print('\n')
-- save model
collectgarbage()
-- clear the intermediate states in the model before saving to disk
-- this saves lots of disk space
model:clearState()
saveDataParallel(paths.concat(opt.save, 'model_' .. epoch .. '.t7'), model) -- defined in util.lua
saveRNGState(paths.concat(opt.save, 'rngState_' .. epoch .. '.t7'), donkeys, opt.nDonkeys) -- defined in util.lua
torch.save(paths.concat(opt.save, 'optimState_' .. epoch .. '.t7'), optimState)
end -- of train()
-------------------------------------------------------------------------------------------
-- GPU inputs (preallocate)
local inputs = torch.CudaTensor()
local labels = torch.CudaTensor()
local timer = torch.Timer()
local dataTimer = torch.Timer()
local parameters, gradParameters = model:getParameters()
-- 4. trainBatch - Used by train() to train a single batch after the data is loaded.
function trainBatch(inputsCPU, labelsCPU)
if not inputsCPU then
print("Loader error. Skipping batch.")
return
end
cutorch.synchronize()
collectgarbage()
local dataLoadingTime = dataTimer:time().real
timer:reset()
local outputsCPU = torch.FloatTensor(opt.batchSize, nClasses)
local err, auxerr, totalerr, outputs
feval = function(x)
outputs = model:forward(inputs)
local model_outputs = outputs:sub(1, -1, 1, nClasses)
err = criterion:forward(model_outputs, labels)
totalerr = err
local gradOutputs = criterion:backward(model_outputs, labels)
if model.auxClassifiers and model.auxClassifiers > 0 then
local allGradOutputs = torch.Tensor():typeAs(gradOutputs):resizeAs(outputs)
allGradOutputs:sub(1, -1, 1, nClasses):copy(gradOutputs)
auxerr = {}
for i=1,model.auxClassifiers do
local first = i * nClasses + 1
local last = (i+1) * nClasses
local classifier_outputs = outputs:sub(1, -1, first, last)
auxerr[i] = criterion:forward(classifier_outputs, labels)
totalerr = totalerr + auxerr[i] * model.auxWeights[i]
local auxGradOutput = criterion:backward(classifier_outputs, labels) * model.auxWeights[i]
allGradOutputs:sub(1, -1, first, last):copy(auxGradOutput)
end
gradOutputs = allGradOutputs
end
-- This division could go into chunkedFeval but is in here for performance reasons
gradOutputs:mul(1.0 / opt.batchChunks)
model:backward(inputs, gradOutputs)
return totalerr, gradParameters
end
local chunkedInputsCPU, chunkedLabelsCPU
local transferToGPU = function(from, to)
chunkedInputsCPU = inputsCPU:sub(from, to)
chunkedLabelsCPU = labelsCPU:sub(from, to)
inputs:resize(chunkedInputsCPU:size()):copy(chunkedInputsCPU)
labels:resize(chunkedLabelsCPU:size()):copy(chunkedLabelsCPU)
end
-- This simulates feval by dividing every batch into chunks and calling
-- the original function
local chunkedFeval = function(x)
local chunk_size = math.floor(opt.batchSize / opt.batchChunks)
local err_accumulator = 0
for i=1,opt.batchChunks do
local chunk_start = chunk_size * (i-1) + 1
-- Take all remaining samples in the last iteration
local chunk_end = i < opt.batchChunks and chunk_size * i or -1
transferToGPU(chunk_start, chunk_end)
local loss, _ = feval(x)
err_accumulator = err_accumulator + loss
outputsCPU:sub(chunk_start, chunk_end):copy(outputs:sub(1, -1, 1, nClasses))
end
totalerr = err_accumulator / opt.batchChunks
return total_loss, gradParameters
end
model:zeroGradParameters()
optim.adam(chunkedFeval, parameters, optimState)
-- DataParallelTable's syncParameters
if model.needsSync then
model:syncParameters()
end
cutorch.synchronize()
batchNumber = batchNumber + 1
loss_epoch = loss_epoch + totalerr
-- top-1 error
local top1 = 0
do
local _,max_prediction = outputsCPU:max(2)
for i=1,opt.batchSize do
if max_prediction[i][1] == labelsCPU[i] then
top1_epoch = top1_epoch + 1;
top1 = top1 + 1
end
end
top1 = top1 * 100 / opt.batchSize;
end
print(('Epoch: [%d][%d/%d]\tTime %.3f Err %.4f Top1-%%: %.2f LR %.0e DataLoadingTime %.3f'):format(
epoch, batchNumber, opt.epochSize, timer:time().real, totalerr, top1,
optimState.learningRate, dataLoadingTime))
if model.auxClassifiers and model.auxClassifiers > 0 then
print(string.format('\t main model: Err %.4f', err))
for i=1,model.auxClassifiers do
print(string.format('\tclassifier %d: Err %.4f (* %.1f = %.4f)', i, auxerr[i], model.auxWeights[i], auxerr[i] * model.auxWeights[i]))
end
end
if trainConf then trainConf:batchAdd(outputsCPU, labelsCPU) end
dataTimer:reset()
end