-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker.py
80 lines (73 loc) · 2.55 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from vizdoom import *
import numpy as np
import torch
from torch import nn
import torch.optim as optim
from math import ceil
import time
import copy
from torchvision.utils import save_image
import os
import shutil
import argparse
from torchvision.transforms import ToTensor
from torchvision.transforms import Resize
from torchvision.utils import save_image
from PIL import Image
import cv2
class Worker:
def __init__(self, config_file_path, resolution, frame_repeat, use_depth):
self.config_file_path = config_file_path
self.resolution = tuple(resolution)
self.frame_repeat = frame_repeat
self.use_depth = use_depth
self.engine = self.initialize_vizdoom()
self.frame, self.depth = self.preprocess(self.engine.get_state())
self.actions = [[0, 0, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0]]
self.reward = 0.0
self.initial = 0
self.finished = 1
self.scores = []
def reset(self):
self.engine.new_episode()
self.frame, self.depth = self.preprocess(self.engine.get_state())
self.initial = 1
self.finished = 0
self.scores = []
def initialize_vizdoom(self):
game = DoomGame()
game.load_config(self.config_file_path)
game.set_window_visible(False)
game.set_mode(Mode.PLAYER)
game.set_screen_format(ScreenFormat.CRCGCB)
#game.set_screen_format(ScreenFormat.GRAY8)
game.set_screen_resolution(ScreenResolution.RES_160X120)
game.set_depth_buffer_enabled(self.use_depth)
game.init()
return game
def preprocess(self, state):
img = state.screen_buffer
img = np.moveaxis(img, [0,1,2], [2,0,1])
img = cv2.resize(img, self.resolution)
img = ToTensor() (img)
depth = None
if self.use_depth:
depth = state.depth_buffer
depth = cv2.resize(depth, self.resolution)
depth = np.expand_dims(depth, 2)
depth = ToTensor() (depth)
return img, depth
'''
def step(self, action):
if self.finished:
self.scores.append(self.engine.get_total_reward())
self.engine.new_episode()
self.engine.make_action(self.actions[action], self.frame_repeat)
self.reward = self.engine.get_last_reward()
self.finished = self.engine.is_episode_finished()
self.frame_prev = self.frame
if not self.finished:
self.frame = self.preprocess(self.engine.get_state())
'''
def shutdown(self):
self.engine.close()