title | summary | aliases | ||
---|---|---|---|---|
Deploy and Maintain an Online TiDB Cluster Using TiUP |
Learns how to deploy and maintain an online TiDB cluster using TiUP. |
|
This document focuses on how to use the TiUP cluster component. For the complete steps of online deployment, refer to Deploy a TiDB Cluster Using TiUP.
Similar to the TiUP playground component used for a local test deployment, the TiUP cluster component quickly deploys TiDB for production environment. Compared with playground, the cluster component provides more powerful production cluster management features, including upgrading, scaling, and even operation and auditing.
For the help information of the cluster component, run the following command:
tiup cluster
Starting component `cluster`: /home/tidb/.tiup/components/cluster/v1.12.3/cluster
Deploy a TiDB cluster for production
Usage:
tiup cluster [command]
Available Commands:
check Precheck a cluster
deploy Deploy a cluster for production
start Start a TiDB cluster
stop Stop a TiDB cluster
restart Restart a TiDB cluster
scale-in Scale in a TiDB cluster
scale-out Scale out a TiDB cluster
destroy Destroy a specified cluster
clean (Experimental) Clean up a specified cluster
upgrade Upgrade a specified TiDB cluster
display Display information of a TiDB cluster
list List all clusters
audit Show audit log of cluster operation
import Import an existing TiDB cluster from TiDB-Ansible
edit-config Edit TiDB cluster config
reload Reload a TiDB cluster's config and restart if needed
patch Replace the remote package with a specified package and restart the service
help Help about any command
Flags:
-c, --concurrency int Maximum number of concurrent tasks allowed (defaults to `5`)
--format string (EXPERIMENTAL) The format of output, available values are [default, json] (default "default")
-h, --help help for tiup
--ssh string (Experimental) The executor type. Optional values are 'builtin', 'system', and 'none'.
--ssh-timeout uint Timeout in seconds to connect a host via SSH. Operations that don't need an SSH connection are ignored. (default 5)
-v, --version TiUP version
--wait-timeout uint Timeout in seconds to wait for an operation to complete. Inapplicable operations are ignored. (defaults to `120`)
-y, --yes Skip all confirmations and assumes 'yes'
To deploy the cluster, run the tiup cluster deploy
command. The usage of the command is as follows:
tiup cluster deploy <cluster-name> <version> <topology.yaml> [flags]
This command requires you to provide the cluster name, the TiDB cluster version (such as v8.4.0
), and a topology file of the cluster.
To write a topology file, refer to the example. The following file is an example of the simplest topology:
Note:
The topology file used by the TiUP cluster component for deployment and scaling is written using yaml syntax, so make sure that the indentation is correct.
---
pd_servers:
- host: 172.16.5.134
name: pd-134
- host: 172.16.5.139
name: pd-139
- host: 172.16.5.140
name: pd-140
tidb_servers:
- host: 172.16.5.134
- host: 172.16.5.139
- host: 172.16.5.140
tikv_servers:
- host: 172.16.5.134
- host: 172.16.5.139
- host: 172.16.5.140
tiflash_servers:
- host: 172.16.5.141
- host: 172.16.5.142
- host: 172.16.5.143
tiproxy_servers:
- host: 172.16.5.144
grafana_servers:
- host: 172.16.5.134
monitoring_servers:
- host: 172.16.5.134
By default, TiUP is deployed as the binary files running on the amd64 architecture. If the target machine is the arm64 architecture, you can configure it in the topology file:
global:
arch: "arm64" # Configures all machines to use the binary files of the arm64 architecture by default
tidb_servers:
- host: 172.16.5.134
arch: "amd64" # Configures this machine to use the binary files of the amd64 architecture
- host: 172.16.5.139
arch: "arm64" # Configures this machine to use the binary files of the arm64 architecture
- host: 172.16.5.140 # Machines that are not configured with the arch field use the default value in the global field, which is arm64 in this case.
...
Save the file as /tmp/topology.yaml
. If you want to use TiDB v8.4.0 and your cluster name is prod-cluster
, run the following command:
{{< copyable "shell-regular" >}}
tiup cluster deploy -p prod-cluster v8.4.0 /tmp/topology.yaml
During the execution, TiUP asks you to confirm your topology again and requires the root password of the target machine (the -p
flag means inputting password):
Please confirm your topology:
TiDB Cluster: prod-cluster
TiDB Version: v8.4.0
Type Host Ports OS/Arch Directories
---- ---- ----- ------- -----------
pd 172.16.5.134 2379/2380 linux/x86_64 deploy/pd-2379,data/pd-2379
pd 172.16.5.139 2379/2380 linux/x86_64 deploy/pd-2379,data/pd-2379
pd 172.16.5.140 2379/2380 linux/x86_64 deploy/pd-2379,data/pd-2379
tiproxy 172.16.5.144 6000/3080 linux/x86_64 deploy/tiproxy-6000
tikv 172.16.5.134 20160/20180 linux/x86_64 deploy/tikv-20160,data/tikv-20160
tikv 172.16.5.139 20160/20180 linux/x86_64 deploy/tikv-20160,data/tikv-20160
tikv 172.16.5.140 20160/20180 linux/x86_64 deploy/tikv-20160,data/tikv-20160
tidb 172.16.5.134 4000/10080 linux/x86_64 deploy/tidb-4000
tidb 172.16.5.139 4000/10080 linux/x86_64 deploy/tidb-4000
tidb 172.16.5.140 4000/10080 linux/x86_64 deploy/tidb-4000
tiflash 172.16.5.141 9000/8123/3930/20170/20292/8234 linux/x86_64 deploy/tiflash-9000,data/tiflash-9000
tiflash 172.16.5.142 9000/8123/3930/20170/20292/8234 linux/x86_64 deploy/tiflash-9000,data/tiflash-9000
tiflash 172.16.5.143 9000/8123/3930/20170/20292/8234 linux/x86_64 deploy/tiflash-9000,data/tiflash-9000
prometheus 172.16.5.134 9090 deploy/prometheus-9090,data/prometheus-9090
grafana 172.16.5.134 3000 deploy/grafana-3000
Attention:
1. If the topology is not what you expected, check your yaml file.
2. Please confirm there is no port/directory conflicts in same host.
Do you want to continue? [y/N]:
After you enter the password, TiUP cluster downloads the required components and deploy them on the corresponding machines. When you see the following message, the deployment is successful:
Deployed cluster `prod-cluster` successfully
After the cluster is successfully deployed, view the cluster list by running the following command:
{{< copyable "shell-root" >}}
tiup cluster list
Starting /root/.tiup/components/cluster/v1.12.3/cluster list
Name User Version Path PrivateKey
---- ---- ------- ---- ----------
prod-cluster tidb v8.4.0 /root/.tiup/storage/cluster/clusters/prod-cluster /root/.tiup/storage/cluster/clusters/prod-cluster/ssh/id_rsa
After the cluster is successfully deployed, start the cluster by running the following command:
{{< copyable "shell-regular" >}}
tiup cluster start prod-cluster
If you forget the name of your cluster, view the cluster list by running tiup cluster list
.
TiUP uses systemd
to start a daemon process. If the process terminates unexpectedly, it will be pulled up after 15 seconds.
TiUP provides the tiup cluster display
command to view the status of each component in the cluster. With this command, you don't have to log in to each machine to see the component status. The usage of the command is as follows:
{{< copyable "shell-root" >}}
tiup cluster display prod-cluster
Starting /root/.tiup/components/cluster/v1.12.3/cluster display prod-cluster
TiDB Cluster: prod-cluster
TiDB Version: v8.4.0
ID Role Host Ports OS/Arch Status Data Dir Deploy Dir
-- ---- ---- ----- ------- ------ -------- ----------
172.16.5.134:3000 grafana 172.16.5.134 3000 linux/x86_64 Up - deploy/grafana-3000
172.16.5.134:2379 pd 172.16.5.134 2379/2380 linux/x86_64 Up|L data/pd-2379 deploy/pd-2379
172.16.5.139:2379 pd 172.16.5.139 2379/2380 linux/x86_64 Up|UI data/pd-2379 deploy/pd-2379
172.16.5.140:2379 pd 172.16.5.140 2379/2380 linux/x86_64 Up data/pd-2379 deploy/pd-2379
172.16.5.134:9090 prometheus 172.16.5.134 9090 linux/x86_64 Up data/prometheus-9090 deploy/prometheus-9090
172.16.5.134:4000 tidb 172.16.5.134 4000/10080 linux/x86_64 Up - deploy/tidb-4000
172.16.5.139:4000 tidb 172.16.5.139 4000/10080 linux/x86_64 Up - deploy/tidb-4000
172.16.5.140:4000 tidb 172.16.5.140 4000/10080 linux/x86_64 Up - deploy/tidb-4000
172.16.5.141:9000 tiflash 172.16.5.141 9000/8123/3930/20170/20292/8234 linux/x86_64 Up data/tiflash-9000 deploy/tiflash-9000
172.16.5.142:9000 tiflash 172.16.5.142 9000/8123/3930/20170/20292/8234 linux/x86_64 Up data/tiflash-9000 deploy/tiflash-9000
172.16.5.143:9000 tiflash 172.16.5.143 9000/8123/3930/20170/20292/8234 linux/x86_64 Up data/tiflash-9000 deploy/tiflash-9000
172.16.5.134:20160 tikv 172.16.5.134 20160/20180 linux/x86_64 Up data/tikv-20160 deploy/tikv-20160
172.16.5.139:20160 tikv 172.16.5.139 20160/20180 linux/x86_64 Up data/tikv-20160 deploy/tikv-20160
172.16.5.140:20160 tikv 172.16.5.140 20160/20180 linux/x86_64 Up data/tikv-20160 deploy/tikv-20160
172.16.5.144:6000 tiproxy 172.16.5.144 6000/3080 linux/x86_64 Up - deploy/tiproxy-6000
The Status
column uses Up
or Down
to indicate whether the service is running normally.
For the PD component, |L
or |UI
might be appended to Up
or Down
. |L
indicates that the PD node is a Leader, and |UI
indicates that TiDB Dashboard is running on the PD node.
Note:
This section describes only the syntax of the scale-in command. For detailed steps of online scaling, refer to Scale a TiDB Cluster Using TiUP.
Scaling in a cluster means making some node(s) offline. This operation removes the specific node(s) from the cluster and deletes the remaining files.
Because the offline process of the TiKV and TiFlash components is asynchronous (which requires removing the node through API), and the process takes a long time (which requires continuous observation on whether the node is successfully taken offline), special treatment is given to the TiKV and TiFlash components.
-
For TiKV and TiFlash:
-
TiUP cluster takes the node offline through API and directly exits without waiting for the process to be completed.
-
Afterwards, when a command related to the cluster operation is executed, TiUP cluster examines whether there is a TiKV or TiFlash node that has been taken offline. If not, TiUP cluster continues with the specified operation; If there is, TiUP cluster takes the following steps:
- Stop the service of the node that has been taken offline.
- Clean up the data files related to the node.
- Remove the node from the cluster topology.
-
-
For other components:
- When taking the PD component down, TiUP cluster quickly deletes the specified node from the cluster through API, stops the service of the specified PD node, and deletes the related data files.
- When taking other components down, TiUP cluster directly stops the node service and deletes the related data files.
The basic usage of the scale-in command:
tiup cluster scale-in <cluster-name> -N <node-id>
To use this command, you need to specify at least two flags: the cluster name and the node ID. The node ID can be obtained by using the tiup cluster display
command in the previous section.
For example, to make the TiKV node on 172.16.5.140
offline, run the following command:
{{< copyable "shell-regular" >}}
tiup cluster scale-in prod-cluster -N 172.16.5.140:20160
By running tiup cluster display
, you can see that the TiKV node is marked Offline
:
{{< copyable "shell-root" >}}
tiup cluster display prod-cluster
Starting /root/.tiup/components/cluster/v1.12.3/cluster display prod-cluster
TiDB Cluster: prod-cluster
TiDB Version: v8.4.0
ID Role Host Ports OS/Arch Status Data Dir Deploy Dir
-- ---- ---- ----- ------- ------ -------- ----------
172.16.5.134:3000 grafana 172.16.5.134 3000 linux/x86_64 Up - deploy/grafana-3000
172.16.5.134:2379 pd 172.16.5.134 2379/2380 linux/x86_64 Up|L data/pd-2379 deploy/pd-2379
172.16.5.139:2379 pd 172.16.5.139 2379/2380 linux/x86_64 Up|UI data/pd-2379 deploy/pd-2379
172.16.5.140:2379 pd 172.16.5.140 2379/2380 linux/x86_64 Up data/pd-2379 deploy/pd-2379
172.16.5.134:9090 prometheus 172.16.5.134 9090 linux/x86_64 Up data/prometheus-9090 deploy/prometheus-9090
172.16.5.134:4000 tidb 172.16.5.134 4000/10080 linux/x86_64 Up - deploy/tidb-4000
172.16.5.139:4000 tidb 172.16.5.139 4000/10080 linux/x86_64 Up - deploy/tidb-4000
172.16.5.140:4000 tidb 172.16.5.140 4000/10080 linux/x86_64 Up - deploy/tidb-4000
172.16.5.141:9000 tiflash 172.16.5.141 9000/8123/3930/20170/20292/8234 linux/x86_64 Up data/tiflash-9000 deploy/tiflash-9000
172.16.5.142:9000 tiflash 172.16.5.142 9000/8123/3930/20170/20292/8234 linux/x86_64 Up data/tiflash-9000 deploy/tiflash-9000
172.16.5.143:9000 tiflash 172.16.5.143 9000/8123/3930/20170/20292/8234 linux/x86_64 Up data/tiflash-9000 deploy/tiflash-9000
172.16.5.134:20160 tikv 172.16.5.134 20160/20180 linux/x86_64 Up data/tikv-20160 deploy/tikv-20160
172.16.5.139:20160 tikv 172.16.5.139 20160/20180 linux/x86_64 Up data/tikv-20160 deploy/tikv-20160
172.16.5.140:20160 tikv 172.16.5.140 20160/20180 linux/x86_64 Offline data/tikv-20160 deploy/tikv-20160
172.16.5.144:6000 tiproxy 172.16.5.144 6000/3080 linux/x86_64 Up - deploy/tiproxy-6000
After PD schedules the data on the node to other TiKV nodes, this node will be deleted automatically.
Note:
This section describes only the syntax of the scale-out command. For detailed steps of online scaling, refer to Scale a TiDB Cluster Using TiUP.
The scale-out operation has an inner logic similar to that of deployment: the TiUP cluster component firstly ensures the SSH connection of the node, creates the required directories on the target node, then executes the deployment operation, and starts the node service.
When you scale out PD, the node is added to the cluster by join
, and the configurations of services associated with PD are updated. When you scale out other services, the service is started directly and added to the cluster.
All services conduct correctness validation when they are scaled out. The validation results show whether the scaling-out is successful.
To add a TiKV node and a PD node in the tidb-test
cluster, take the following steps:
-
Create a
scale.yaml
file, and add IPs of the new TiKV and PD nodes:Note:
You need to create a topology file, which includes only the description of the new nodes, not the existing nodes.
--- pd_servers: - host: 172.16.5.140 tikv_servers: - host: 172.16.5.140
-
Perform the scale-out operation. TiUP cluster adds the corresponding nodes to the cluster according to the port, directory, and other information described in
scale.yaml
.{{< copyable "shell-regular" >}}
tiup cluster scale-out tidb-test scale.yaml
After the command is executed, you can check the status of the scaled-out cluster by running
tiup cluster display tidb-test
.
Note:
This section describes only the syntax of the upgrade command. For detailed steps of online upgrade, refer to Upgrade TiDB Using TiUP.
The rolling upgrade feature leverages the distributed capabilities of TiDB. The upgrade process is made as transparent as possible to the application, and does not affect the business.
Before the upgrade, TiUP cluster checks whether the configuration file of each component is rational. If so, the components are upgraded node by node; if not, TiUP reports an error and exits. The operations vary with different nodes.
-
Upgrade the PD node
- First, upgrade non-Leader nodes.
- After all the non-Leader nodes are upgraded, upgrade the Leader node.
- The upgrade tool sends a command to PD that migrates Leader to an already upgraded node.
- After the Leader role is switched to another node, upgrade the previous Leader node.
- During the upgrade, if any unhealthy node is detected, the tool stops this upgrade operation and exits. You need to manually analyze the cause, fix the issue and run the upgrade again.
-
Upgrade the TiKV node
- First, add a scheduling operation in PD that migrates the Region Leader of this TiKV node. This ensures that the upgrade process does not affect the business.
- After the Leader is migrated, upgrade this TiKV node.
- After the upgraded TiKV is started normally, remove the scheduling of the Leader.
-
Upgrade other services
- Stop the service normally and update the node.
The flags for the upgrade command is as follows:
Usage:
cluster upgrade <cluster-name> <version> [flags]
Flags:
--force Force upgrade won't transfer leader
-h, --help help for upgrade
--transfer-timeout int Timeout in seconds when transferring PD and TiKV store leaders (default 600)
Global Flags:
--ssh string (Experimental) The executor type. Optional values are 'builtin', 'system', and 'none'.
--wait-timeout int Timeout of waiting the operation
--ssh-timeout int Timeout in seconds to connect host via SSH, ignored for operations that don't need an SSH connection. (default 5)
-y, --yes Skip all confirmations and assumes 'yes'
For example, the following command upgrades the cluster to v8.4.0:
{{< copyable "shell-regular" >}}
tiup cluster upgrade tidb-test v8.4.0
If you want to dynamically update the component configurations, the TiUP cluster component saves a current configuration for each cluster. To edit this configuration, execute the tiup cluster edit-config <cluster-name>
command. For example:
{{< copyable "shell-regular" >}}
tiup cluster edit-config prod-cluster
TiUP cluster opens the configuration file in the vi editor. If you want to use other editors, use the EDITOR
environment variable to customize the editor, such as export EDITOR=nano
.
After editing the file, save the changes. To apply the new configuration to the cluster, execute the following command:
{{< copyable "shell-regular" >}}
tiup cluster reload prod-cluster
The command sends the configuration to the target machine and restarts the cluster to make the configuration take effect.
Note:
For monitoring components, customize the configuration by executing the
tiup cluster edit-config
command to add a custom configuration path on the corresponding instance. For example:
---
grafana_servers:
- host: 172.16.5.134
dashboard_dir: /path/to/local/dashboards/dir
monitoring_servers:
- host: 172.16.5.134
rule_dir: /path/to/local/rules/dir
alertmanager_servers:
- host: 172.16.5.134
config_file: /path/to/local/alertmanager.yml
The content and format requirements for files under the specified path are as follows:
- The folder specified in the
dashboard_dir
field ofgrafana_servers
must contain full*.json
files. - The folder specified in the
rule_dir
field ofmonitoring_servers
must contain full*.rules.yml
files. - For the format of files specified in the
config_file
field ofalertmanager_servers
, refer to the Alertmanager configuration template.
When you execute tiup reload
, TiUP first deletes all old configuration files in the target machine and then uploads the corresponding configuration from the control machine to the corresponding configuration directory of the target machine. Therefore, if you want to modify a particular configuration file, make sure that all configuration files (including the unmodified ones) are in the same directory. For example, to modify Grafana's tidb.json
file, you need to first copy all the *.json
files from Grafana's dashboards
directory to your local directory. Otherwise, other JSON files will be missing from the target machine.
Note:
If you have configured the
dashboard_dir
field ofgrafana_servers
, after executing thetiup cluster rename
command to rename the cluster, you need to complete the following operations:
- In the local
dashboards
directory, change the cluster name to the new cluster name.- In the local
dashboards
directory, changedatasource
to the new cluster name, becausedatasource
is named after the cluster name.- Execute the
tiup cluster reload -R grafana
command.
For normal upgrade, you can use the upgrade
command. But in some scenarios, such as debugging, you might need to replace the currently running component with a temporary package. To achieve this, use the patch
command:
{{< copyable "shell-root" >}}
tiup cluster patch --help
Replace the remote package with a specified package and restart the service
Usage:
cluster patch <cluster-name> <package-path> [flags]
Flags:
-h, --help help for patch
-N, --node strings Specify the nodes
--offline Patch a stopped cluster
--overwrite Use this package in the future scale-out operations
-R, --role strings Specify the roles
--transfer-timeout uint Timeout in seconds when transferring PD and TiKV store leaders, also for TiCDC drain one capture (default 600)
Global Flags:
-c, --concurrency int max number of parallel tasks allowed (default 5)
--format string (EXPERIMENTAL) The format of output, available values are [default, json] (default "default")
--ssh string (EXPERIMENTAL) The executor type: 'builtin', 'system', 'none'.
--ssh-timeout uint Timeout in seconds to connect host via SSH, ignored for operations that don't need an SSH connection. (default 5)
--wait-timeout uint Timeout in seconds to wait for an operation to complete, ignored for operations that don't fit. (default 120)
-y, --yes Skip all confirmations and assumes 'yes'
If a TiDB hotfix package is in /tmp/tidb-hotfix.tar.gz
and you want to replace all the TiDB packages in the cluster, run the following command:
{{< copyable "shell-regular" >}}
tiup cluster patch test-cluster /tmp/tidb-hotfix.tar.gz -R tidb
You can also replace only one TiDB package in the cluster:
{{< copyable "shell-regular" >}}
tiup cluster patch test-cluster /tmp/tidb-hotfix.tar.gz -N 172.16.4.5:4000
Note:
Currently, TiUP cluster's support for TiSpark is still experimental. It is not supported to import a TiDB cluster with TiSpark enabled.
Before TiUP is released, TiDB Ansible is often used to deploy TiDB clusters. To enable TiUP to take over the cluster deployed by TiDB Ansible, use the import
command.
The usage of the import
command is as follows:
{{< copyable "shell-root" >}}
tiup cluster import --help
Import an exist TiDB cluster from TiDB-Ansible
Usage:
cluster import [flags]
Flags:
-d, --dir string The path to TiDB-Ansible directory
-h, --help help for import
--inventory string The name of inventory file (default "inventory.ini")
--no-backup Don't backup ansible dir, useful when there're multiple inventory files
-r, --rename NAME Rename the imported cluster to NAME
Global Flags:
--ssh string (Experimental) The executor type. Optional values are 'builtin', 'system', and 'none'.
--wait-timeout int Timeout of waiting the operation
--ssh-timeout int Timeout in seconds to connect host via SSH, ignored for operations that don't need an SSH connection. (default 5)
-y, --yes Skip all confirmations and assumes 'yes'
You can use either of the following commands to import a TiDB Ansible cluster:
{{< copyable "shell-regular" >}}
cd tidb-ansible
tiup cluster import
{{< copyable "shell-regular" >}}
tiup cluster import --dir=/path/to/tidb-ansible
To view the operation log, use the audit
command. The usage of the audit
command is as follows:
Usage:
tiup cluster audit [audit-id] [flags]
Flags:
-h, --help help for audit
If the [audit-id]
flag is not specified, the command shows a list of commands that have been executed. For example:
{{< copyable "shell-regular" >}}
tiup cluster audit
Starting component `cluster`: /home/tidb/.tiup/components/cluster/v1.12.3/cluster audit
ID Time Command
-- ---- -------
4BLhr0 2024-11-11T23:55:09+08:00 /home/tidb/.tiup/components/cluster/v1.12.3/cluster deploy test v8.4.0 /tmp/topology.yaml
4BKWjF 2024-11-11T23:36:57+08:00 /home/tidb/.tiup/components/cluster/v1.12.3/cluster deploy test v8.4.0 /tmp/topology.yaml
4BKVwH 2024-11-11T23:02:08+08:00 /home/tidb/.tiup/components/cluster/v1.12.3/cluster deploy test v8.4.0 /tmp/topology.yaml
4BKKH1 2024-11-11T16:39:04+08:00 /home/tidb/.tiup/components/cluster/v1.12.3/cluster destroy test
4BKKDx 2024-11-11T16:36:57+08:00 /home/tidb/.tiup/components/cluster/v1.12.3/cluster deploy test v8.4.0 /tmp/topology.yaml
The first column is audit-id
. To view the execution log of a certain command, pass the audit-id
of a command as the flag as follows:
{{< copyable "shell-regular" >}}
tiup cluster audit 4BLhr0
To run command on a host in the TiDB cluster, use the exec
command. The usage of the exec
command is as follows:
Usage:
cluster exec <cluster-name> [flags]
Flags:
--command string the command run on cluster host (default "ls")
-h, --help help for exec
-N, --node strings Only exec on host with specified nodes
-R, --role strings Only exec on host with specified roles
--sudo use root permissions (default false)
Global Flags:
--ssh-timeout int Timeout in seconds to connect host via SSH, ignored for operations that don't need an SSH connection. (default 5)
-y, --yes Skip all confirmations and assumes 'yes'
For example, to execute ls /tmp
on all TiDB nodes, run the following command:
{{< copyable "shell-regular" >}}
tiup cluster exec test-cluster --command='ls /tmp'
Before TiUP is released, you can control the cluster using tidb-ctl
, tikv-ctl
, pd-ctl
, and other tools. To make the tools easier to download and use, TiUP integrates them into an all-in-one component, ctl
.
Usage:
tiup ctl:v<CLUSTER_VERSION> {tidb/pd/tikv/etcd} [flags]
Flags:
-h, --help help for tiup
This command has a corresponding relationship with those of the previous tools:
tidb-ctl [args] = tiup ctl tidb [args]
pd-ctl [args] = tiup ctl pd [args]
tikv-ctl [args] = tiup ctl tikv [args]
etcdctl [args] = tiup ctl etcd [args]
For example, if you previously view the store by running pd-ctl -u http://127.0.0.1:2379 store
, now you can run the following command in TiUP:
{{< copyable "shell-regular" >}}
tiup ctl:v<CLUSTER_VERSION> pd -u http://127.0.0.1:2379 store
You can use the check
command to perform a series of checks on the environment of the target machine and output the check results. By executing the check
command, you can find common unreasonable configurations or unsupported situations. The command flag list is as follows:
Usage:
tiup cluster check <topology.yml | cluster-name> [flags]
Flags:
--apply Try to fix failed checks
--cluster Check existing cluster, the input is a cluster name.
--enable-cpu Enable CPU thread count check
--enable-disk Enable disk IO (fio) check
--enable-mem Enable memory size check
-h, --help help for check
-i, --identity_file string The path of the SSH identity file. If specified, public key authentication will be used.
-p, --password Use password of target hosts. If specified, password authentication will be used.
--user string The user name to login via SSH. The user must has root (or sudo) privilege.
By default, this command is used to check the environment before deployment. By specifying the --cluster
flag to switch the mode, you can also check the target machines of an existing cluster, for example:
# check deployed servers before deployment
tiup cluster check topology.yml --user tidb -p
# check deployed servers of an existing cluster
tiup cluster check <cluster-name> --cluster
The CPU thread count check, memory size check, and disk performance check are disabled by default. For the production environment, it is recommended that you enable the three checks and make sure they pass to obtain the best performance.
- CPU: If the number of threads is greater than or equal to 16, the check is passed.
- Memory: If the total size of physical memory is greater than or equal to 32 GB, the check is passed.
- Disk: Execute
fio
test on the partitions ofdata_dir
and record the results.
When running the checks, if the --apply
flag is specified, the program automatically repairs the failed items. Automatic repair is limited to some items that can be adjusted by modifying the configuration or system parameters. Other unrepaired items need to be handled manually according to the actual situation.
Environment checks are not necessary for deploying a cluster. For the production environment, it is recommended to perform environment checks and pass all check items before deployment. If not all the check items are passed, the cluster might be deployed and run normally, but the best performance might not be obtained.
All operations above performed on the cluster machine use the SSH client embedded in TiUP to connect to the cluster and execute commands. However, in some scenarios, you might also need to use the SSH client native to the control machine system to perform such cluster operations. For example:
- To use a SSH plug-in for authentication
- To use a customized SSH client
Then you can use the --ssh=system
command-line flag to enable the system-native command-line tool:
- Deploy a cluster:
tiup cluster deploy <cluster-name> <version> <topo> --ssh=system
. Fill in the name of your cluster for<cluster-name>
, the TiDB version to be deployed (such asv8.4.0
) for<version>
, and the topology file for<topo>
. - Start a cluster:
tiup cluster start <cluster-name> --ssh=system
- Upgrade a cluster:
tiup cluster upgrade ... --ssh=system
You can add --ssh=system
in all cluster operation commands above to use the system's native SSH client.
To avoid adding such a flag in every command, you can use the TIUP_NATIVE_SSH
system variable to specify whether to use the local SSH client:
export TIUP_NATIVE_SSH=true
# or
export TIUP_NATIVE_SSH=1
# or
export TIUP_NATIVE_SSH=enable
If you specify this environment variable and --ssh
at the same time, --ssh
has higher priority.
Note:
During the process of cluster deployment, if you need to use a password for connection (
-p
) orpassphrase
is configured in the key file, you must ensure thatsshpass
is installed on the control machine; otherwise, a timeout error is reported.
The TiUP data is stored in the .tiup
directory in the user's home directory. To migrate the control machine, you can take the following steps to copy the .tiup
directory to the corresponding target machine:
-
Execute
tar czvf tiup.tar.gz .tiup
in the home directory of the original machine. -
Copy
tiup.tar.gz
to the home directory of the target machine. -
Execute
tar xzvf tiup.tar.gz
in the home directory of the target machine. -
Add the
.tiup
directory to thePATH
environment variable.If you use
bash
and you are atidb
user, you can addexport PATH=/home/tidb/.tiup/bin:$PATH
in~/.bashrc
and executesource ~/.bashrc
. Then make corresponding adjustments according to the shell and the user you use.
Note:
It is recommended that you back up the
.tiup
directory regularly to avoid the loss of TiUP data caused by abnormal conditions, such as disk damage of the control machine.
If the meta files used for operation and maintenance (O&M) are lost, managing the cluster using TiUP will fail. It is recommended that you back up the meta files regularly by running the following command:
tiup cluster meta backup ${cluster_name}
If the meta files are lost, you can restore them by running the following command:
tiup cluster meta restore ${cluster_name} ${backup_file}
Note:
The restore operation overwrites the current meta files. Therefore, it is recommended to restore the meta files only when they are lost.