Skip to content

Latest commit

 

History

History
173 lines (145 loc) · 6.74 KB

README.md

File metadata and controls

173 lines (145 loc) · 6.74 KB

Official implementation of AAAI'2022 paper "Regularizing End-to-End Speech Translation with Triangular Decomposition Agreement"

Citation

Please cite our paper if you find this repository helpful in your research:

@article{du2021regularizing,
  title={Regularizing End-to-End Speech Translation with Triangular Decomposition Agreement},
  author={Du, Yichao and Zhang, Zhirui and Wang, Weizhi and Chen, Boxing and Xie, Jun and Xu, Tong},
  journal={arXiv preprint arXiv:2112.10991},
  year={2021}
}

Main Results

We evaluate the E2E-ST performance of our proposed approach (E2E-ST-TDA) on the MuST-C dataset with 8 languages, the results are as follows:

ST Results

The case-sensitive BLEU scores on MuST-C tst-COMMON set.

Model Params. Extra. En-De En-Fr En-Ru En-Es En-It En-Ro En-Pt En-Nl Avg.
E2E-ST-TDA$^s$ 32M 24.3 34.6 15.9 28.3 24.2 23.4 30.3 28.7 26.2
E2E-ST-TDA$^m$ 76M 25.4 36.1 16.4 29.6 25.1 23.9 31.1 29.6 27.2
E2E-ST-TDA$^m$ 76M ✔️ 27.1 37.4

ASR Results

The case-sensitive WER scores on MuST-C tst-COMMON set.

Model En-De En-Fr En-Ru En-Es En-It En-Ro En-Pt En-Nl Avg.
E2E-ST-TDA$^s$ 16.4 15.6 16.6 16.4 16.2 16.6 16.9 16.2 16.4
E2E-ST-TDA$^m$ 14.9 14.1 15.7 14.4 15.2 15.4 16.5 14.9 15.1

Requirements and Insallation

  • python = 3.6
  • pytorch = 1.8.1
  • torchaudio = 0.8.1
  • SoundFile = 0.10.3.post1
  • numpy = 1.19.5
  • omegaconf = 2.0.6
  • PyYAML = 5.4.1
  • sentencepiece = 0.1.96
  • sacrebleu = 1.5.1

You can install this project by

cd E2E-ST-TDA
pip install --editable ./

File structure

fairseq
├── data
│    ├── audio
│         └── speech_to_text_tda_datasets.py
├── tasks
│    └── speech_to_text_tda.py
├── criterions
│    └── label_smoothed_cross_entropy_with_tda.py
├── dataclass
│    └── configs.py
├── /
fairseq_cli
├── generate_tda.py
├── /
myscripts
├── train_tda.sh
├── eval_tda.sh

Instructions

Preparations and Configuration

Pretrained ASR Model

The pre-trained ASR model can be found at Fairseq S2T MuST-C Example.

Training Data

The TSV manifests we used are different from Fairseq S2T MuST-C Example, as follows:

id	audio	n_frames	speaker	src_lang	src_text	tgt_lang	tgt_text
ted_1_0	/data/share/ycdu/data/mustc/en-de/fbank80.zip:41:51328	160	spk.1	en	There was no motorcade back there.	de	Hinter mir war gar keine Autokolonne.

Config File

bpe_tokenizer:
  bpe: sentencepiece
  sentencepiece_model: /data/share/ycdu/data/mustc/en-de/kl_joint_data/spm_unigram10000_joint.model
input_channels: 1
input_feat_per_channel: 80
sampling_alpha: 1.0
specaugment:
  freq_mask_F: 27
  freq_mask_N: 1
  time_mask_N: 1
  time_mask_T: 100
  time_mask_p: 1.0
  time_wrap_W: 0
transforms:
  '*':
  - utterance_cmvn
  _train:
  - utterance_cmvn
  - specaugment
vocab_filename: /data/share/ycdu/data/mustc/en-de/kl_joint_data/spm_unigram10000_joint.txt
prepend_tgt_lang_tag: True

Training

CUDA_VISIBLE_DEVICES=${CUDA_IDS} \
  fairseq-train ${MUSTC_ROOT}/en-${TGT_LANG}/kl_joint_data \
  --config-yaml config_joint.yaml --train-subset train_joint --valid-subset dev_joint \
  --save-dir ${ST_SAVE_DIR} --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${ASR_CHECKPOINT_FILENAME} \
  --criterion label_smoothed_cross_entropy_with_tda --report-accuracy --label-smoothing 0.1 --ignore-prefix-size 1 \
  --task speech_to_text_tda --arch s2t_transformer_tda_${MODEL_SIZE} --encoder-freezing-updates 0 \
  --update-freq 4 --optimizer adam --lr 1e-3 --lr-scheduler inverse_sqrt \
  --num-workers 0 --max-tokens 10000 --max-epoch 150 \
  --warmup-updates 10000 --clip-norm 10.0 --seed 1 \
  --word-level-kl-loss --word-kl-lambda 1.0 --speech-tgt-lang ${TGT_LANG} \
  --tensorboard-logdir ${ST_SAVE_DIR}/tensorboard 

where ST_SAVE_DIRis the checkpoint root path. The ST encoder is pre-trained by ASR for faster training and better performance: --load-pretrained-encoder-from <ASR_SAVE_DIR/ASR_CHECKPOINT_FILENAME>. We set --update-freq 4 to simulate 4 GPUs with 1 GPU. We add the target language tag <2de>/<2en> as the target BOS to distinguish the ST-BT path and the ASR-MT path, specifically, we set --ignore-prefix-size 1. Detailed training script can be found in E2E-ST-TDA/mymcripts/train_tda.sh.

Inference

CHECKPOINT_FILENAME=tda_checkpoint_${MODEL_SIZE}.pt
python scripts/average_checkpoints.py \
  --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"

if [ ${GEN_TASK} == "st" ]; then
  if [ ${GEN_DIRECTION} = "asr_st" ]; then
    GEN_SUBSET=tst-COMMON_st1
  elif [ ${GEN_DIRECTION} = "st_asr" ]; then
    GEN_SUBSET=tst-COMMON_st
  fi
  CUDA_VISIBLE_DEVICES=${CUDA_IDS}, \
    python ${GEN_SCRIPTS}/generate_tda.py  ${MUSTC_ROOT}/en-${TGT_LANG}/kl_joint_data \
    --config-yaml config_joint.yaml --gen-subset ${GEN_SUBSET} --task speech_to_text_tda \
    --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} --prefix-size 1 --speech-tgt-lang ${TGT_LANG} \
    --tda-task-type ${GEN_TASK} --tda-decoding-direction ${GEN_DIRECTION} \
    --max-tokens 50000 --beam 5 --scoring sacrebleu \
    --quiet
elif [ ${GEN_TASK} == "asr" ]; then
  if [ ${GEN_DIRECTION} = "asr_st" ]; then
    GEN_SUBSET=tst-COMMON_asr
  elif [ ${GEN_DIRECTION} = "st_asr" ]; then
    GEN_SUBSET=tst-COMMON_asr1
  fi
  CUDA_VISIBLE_DEVICES=${CUDA_IDS} \
    python ${GEN_SCRIPTS}/generate_tda.py ${MUSTC_ROOT}/en-${TGT_LANG}/kl_joint_data \
    --config-yaml config_joint.yaml --gen-subset ${GEN_SUBSET} --task speech_to_text_tda \
    --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} --speech-tgt-lang ${TGT_LANG} \
    --prefix-size 1 --max-tokens 50000 --scoring wer --wer-tokenizer 13a \
    --tda-task-type ${GEN_TASK} --tda-decoding-direction ${GEN_DIRECTION} \
    --quiet
fi

For inference, we force decoding from the target language tag (as BOS) via --prefix-size 1. We also provide well-trained models and vocabularies files for reproduction. Note that some parameters may need to be overridden using --model-overrides '{"key":"value"}'. Detailed inference script can be found in E2E-ST-TDA/mymcripts/eval_tda.sh.