-
Notifications
You must be signed in to change notification settings - Fork 24
/
train_R50_seg_adam_optimizer_2d.py
278 lines (233 loc) · 12.9 KB
/
train_R50_seg_adam_optimizer_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import argparse
import logging
import sys
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from torch import optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
from torch.optim.lr_scheduler import ExponentialLR
import os
from dataloader.dataset_ete import SegmentationDataset_train, SegmentationDataset
from utils.endtoend import dice_loss
from utils.func import (
parse_config,
load_config
)
from evaluate import evaluate, evaluate_3d_iou
#from models.segmentation import UNet
import segmentation_models_pytorch as smp
import numpy as np
import random
num_classes = 2
np.random.seed(42)
random.seed(42)
torch.manual_seed(42)
def train_net(net,
cfg,
trial,
device,
epochs: int = 30,
train_batch_size: int = 128,
val_batch_size: int = 128,
learning_rate: float = 0.1,
val_percent: float = 0.1,
save_checkpoint: bool = True,
img_scale = (224, 224),
amp: bool = True,
out_dir : str= './checkpoint/'):
# 1. Create dataset
train_dir_img = Path(cfg.dataloader.train_dir_img)
train_dir_mask = Path(cfg.dataloader.train_dir_mask)
val_dir_img = Path(cfg.dataloader.valid_dir_img)
val_dir_mask = Path(cfg.dataloader.valid_dir_mask)
test_dir_img = Path(cfg.dataloader.test_dir_img)
test_dir_mask = Path(cfg.dataloader.test_dir_mask)
non_label_text = cfg.dataloader.non_label
have_label_text = cfg.dataloader.have_label
dir_checkpoint = Path(out_dir)
Path(dir_checkpoint).mkdir(parents=True, exist_ok=True)
train_dataset = SegmentationDataset_train(nonlabel_path= non_label_text, havelabel_path= have_label_text, dataset = cfg.base.dataset_name, scale= img_scale)
val_dataset = SegmentationDataset(name_dataset=cfg.base.dataset_name, images_dir = val_dir_img, masks_dir = val_dir_mask, scale = img_scale)
test_dataset = SegmentationDataset(name_dataset=cfg.base.dataset_name, images_dir = test_dir_img, masks_dir= test_dir_mask, scale = img_scale)
n_train = len(train_dataset)
n_val = len(val_dataset)
# 3. Create data loaders
loader_args = dict(num_workers=10, pin_memory=True)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size, **loader_args)
import time
val_loader = DataLoader(val_dataset, shuffle=False, drop_last=True, batch_size=val_batch_size, **loader_args)
test_loader = DataLoader(test_dataset, shuffle=False, drop_last=True, **loader_args)
experiment = wandb.init(project='U-Net', resume='allow', anonymous='must')
experiment.config.update(dict(epochs=epochs, train_batch_size=train_batch_size, val_batch_size=val_batch_size, learning_rate=learning_rate,
val_percent=val_percent, save_checkpoint=save_checkpoint, img_scale=img_scale,
amp=amp))
logging.info(f'''Starting training:
Epochs: {epochs}
Train batch size: {train_batch_size}
Val batch size: {val_batch_size}
Learning rate: {learning_rate}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_checkpoint}
Device: {device.type}
Images scaling: {img_scale}
Mixed Precision: {amp}
''')
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
# optimizer = optim.RMSprop(net.parameters(), lr=learning_rate, weight_decay=1e-8, momentum=0.9)
optimizer = optim.Adam(net.parameters(), lr=learning_rate, betas=(cfg.train.beta1, cfg.train.beta2), eps=1e-08, weight_decay=cfg.train.weight_decay)
if cfg.train.scheduler:
print("Use scheduler")
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=1e-05)
# optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-8)
# scheduler = ExponentialLR(optimizer, gamma=1.11)
# optimizer= optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', patience=2) # goal: maximize Dice score
grad_scaler = torch.cuda.amp.GradScaler(enabled=amp)
criterion = nn.CrossEntropyLoss()
global_step = 0
best_value = 0
# 5. Begin training
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
images = batch['image']
true_masks = batch['mask_ete']
images = images.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.long)
with torch.cuda.amp.autocast(enabled=amp):
masks_pred = net(images)
loss = criterion(masks_pred, true_masks) \
+ dice_loss(F.softmax(masks_pred, dim=1).float(),
F.one_hot(true_masks, num_classes).permute(0, 3, 1, 2).float(),
multiclass=True)
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
clip_value = 1
torch.nn.utils.clip_grad_norm_(net.parameters(), clip_value)
grad_scaler.step(optimizer)
grad_scaler.update()
pbar.update(images.shape[0])
global_step += 1
epoch_loss += loss.item()
experiment.log({
'train loss': loss.item(),
'step': global_step,
'epoch': epoch
})
pbar.set_postfix(**{'loss (batch)': loss.item()})
if cfg.train.scheduler:
scheduler.step()
# Evaluation round
if global_step % (n_train // (1 * train_batch_size)) == 0:
val_dice_score, val_iou_score = evaluate(net, val_loader, device, 1)
val_score = val_dice_score
if (val_score > best_value):
best_value = val_score
logging.info("New best dice score: {} at epochs {}".format(best_value, epoch+1))
torch.save(net.state_dict(), str(dir_checkpoint/'checkpoint_{}_{}_best_{}.pth'.format(cfg.base.dataset_name, cfg.base.original_checkpoint, str(trial))))
logging.info('Validation Dice score: {}, IoU score {}'.format(val_dice_score, val_iou_score))
if epoch + 1 == epochs:
val_dice_score, val_iou_score = evaluate(net, val_loader, device, 1)
logging.info('Validation Dice score: {}, IoU score {}'.format(val_dice_score, val_iou_score))
if save_checkpoint:
torch.save(net.state_dict(), str(dir_checkpoint / 'checkpoint_epoch{}.pth'.format(epoch + 1)))
logging.info(f'Checkpoint {epoch + 1} saved!')
if epoch > 0 and epoch != (epochs % 2 - 1) :
os.remove( str(dir_checkpoint/'checkpoint_epoch{}.pth'.format(epoch)))
logging.info("Evalutating on test set")
logging.info("Loading best model on validation")
net.load_state_dict(torch.load(str(dir_checkpoint/'checkpoint_{}_{}_best_{}.pth'.format(cfg.base.dataset_name, cfg.base.original_checkpoint, str(trial)))))
test_dice, test_iou = evaluate(net, test_loader, device, 1)
logging.info("Test dice score {}, IoU score {}".format(test_dice, test_iou))
logging.info("Loading model at last epochs %d" %epochs)
net.load_state_dict(torch.load(str(dir_checkpoint/'checkpoint_epoch{}.pth'.format(epochs))))
test_dice_last, test_iou_last = evaluate(net, test_loader, device, 1)
logging.info("Test dice score {}, IoU score {}".format(test_dice_last, test_iou_last))
return test_dice, test_iou, test_dice_last, test_iou_last
def eval(cfg, out_dir, net, device, img_scale, trial):
test_dir_img = Path(cfg.dataloader.test_dir_img)
test_dir_mask = Path(cfg.dataloader.test_dir_mask)
test_dataset = SegmentationDataset(name_dataset=cfg.base.dataset_name, images_dir = test_dir_img, masks_dir= test_dir_mask, scale = img_scale)
loader_args = dict(num_workers=10, pin_memory=True)
test_loader = DataLoader(test_dataset, shuffle=False, drop_last=True, **loader_args)
dir_checkpoint = Path(out_dir)
print("Trial", trial+1)
logging.info("Evalutating on test set")
logging.info("Loading best model on validation")
net.load_state_dict(torch.load(str(dir_checkpoint/'checkpoint_{}_{}_best_{}.pth'.format(cfg.base.dataset_name, cfg.base.original_checkpoint, str(trial)))))
test_dice, test_iou = evaluate(net, test_loader, device, 1)
logging.info("Test dice score {}, IoU score {}".format(test_dice, test_iou))
return test_dice, test_iou
#if __name__ == '__main__':
def train_2d_R50(yml_args, cfg):
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
cuda_string = 'cuda:' + cfg.base.gpu_id
device = torch.device(cuda_string if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
try:
_2d_dices = []
_2d_ious = []
_2d_dices_last = []
_2d_ious_last = []
if not yml_args.use_test_mode:
for trial in range(3):
print ("----"*3)
if cfg.base.original_checkpoint == "scratch":
net = smp.Unet(encoder_name="resnet50", encoder_weights=None, in_channels=3, classes=num_classes)
else:
print ("Using pre-trained models from", cfg.base.original_checkpoint)
net = smp.Unet(encoder_name="resnet50", encoder_weights=cfg.base.original_checkpoint,
in_channels=3, classes=num_classes)
net.to(device=device)
print("Trial", trial + 1)
_2d_dice, _2d_iou, _2d_dice_last, _2d_iou_last = train_net(net=net, cfg=cfg, trial=trial,
epochs=cfg.train.num_epochs,
train_batch_size=cfg.train.train_batch_size,
val_batch_size=cfg.train.valid_batch_size,
learning_rate=cfg.train.learning_rate,
device=device,
val_percent=10.0 / 100,
img_scale = (cfg.base.image_shape, cfg.base.image_shape),
amp=False,
out_dir= cfg.base.best_valid_model_checkpoint)
_2d_dices.append(_2d_dice.item())
_2d_ious.append(_2d_iou.item())
_2d_dices_last.append(_2d_dice_last.item())
_2d_ious_last.append(_2d_iou_last.item())
print ("Average performance on best valid set")
print("2d dice {}, mean {}, std {}".format(_2d_dices, np.mean(_2d_dices), np.std(_2d_dices)))
print("2d iou {}, mean {}, std {}".format(_2d_ious, np.mean(_2d_ious), np.std(_2d_ious)))
print ("Average performance on the last epoch")
print("2d dice {}, mean {}, std {}".format(_2d_dices_last, np.mean(_2d_dices_last), np.std(_2d_dices_last)))
print("2d iou {}, mean {}, std {}".format(_2d_ious_last, np.mean(_2d_ious_last), np.std(_2d_ious_last)))
else:
for trial in range(3):
print ("----"*3)
if cfg.base.original_checkpoint == "scratch":
net = smp.Unet(encoder_name="resnet50", encoder_weights=None, in_channels=3, classes=num_classes)
else:
print ("Using pre-trained models from", cfg.base.original_checkpoint)
net = smp.Unet(encoder_name="resnet50", encoder_weights=cfg.base.original_checkpoint ,in_channels=3,
classes=num_classes)
net.to(device=device)
_2d_dice, _2d_iou = eval(cfg = cfg, out_dir = cfg.base.best_valid_model_checkpoint, net = net, device = device,
img_scale = (cfg.base.image_shape, cfg.base.image_shape), trial=trial)
_2d_dices.append(_2d_dice.item())
_2d_ious.append(_2d_iou.item())
print ("Average performance on best valid set")
print("2d dice {}, mean {}, std {}".format(_2d_dices, np.mean(_2d_dices), np.std(_2d_dices)))
print("2d iou {}, mean {}, std {}".format(_2d_ious, np.mean(_2d_ious), np.std(_2d_ious)))
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
sys.exit(0)