-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp021.py
37 lines (25 loc) · 1.05 KB
/
p021.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
'''
Let d(n) be defined as the sum of proper divisors of n (numbers less than n
which divide evenly into n).
If d(a) = b and d(b) = a, where a != b, then a and b are an amicable pair and
each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55
and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and
142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
'''
import common
def sum_proper_divisors(n):
return sum(common.divisors(n)) - n
common.assertEquals(284, sum_proper_divisors(220))
common.assertEquals(220, sum_proper_divisors(284))
def amicable(n):
other = sum_proper_divisors(n)
return n != other and sum_proper_divisors(other) == n
common.assertEquals(True, amicable(220))
common.assertEquals(True, amicable(284))
common.assertEquals(False, amicable(12))
# perfect numbers are not amicable with themselves
common.assertEquals(False, amicable(6))
total = sum(i for i in range(1, 10001) if amicable(i))
common.submit(total, expected=31626)