comments | difficulty | edit_url |
---|---|---|
true |
Easy |
Given a string, write a function to check if it is a permutation of a palin drome. A palindrome is a word or phrase that is the same forwards and backwards. A permutation is a rearrangement of letters. The palindrome does not need to be limited to just dictionary words.
Example1:
Input: "tactcoa" Output: true(permutations: "tacocat"、"atcocta", etc.)
We use a hash table
The time complexity is
class Solution:
def canPermutePalindrome(self, s: str) -> bool:
cnt = Counter(s)
return sum(v & 1 for v in cnt.values()) < 2
class Solution {
public boolean canPermutePalindrome(String s) {
Map<Character, Integer> cnt = new HashMap<>();
for (int i = 0; i < s.length(); ++i) {
cnt.merge(s.charAt(i), 1, Integer::sum);
}
int sum = 0;
for (int v : cnt.values()) {
sum += v & 1;
}
return sum < 2;
}
}
class Solution {
public:
bool canPermutePalindrome(string s) {
unordered_map<char, int> cnt;
for (auto& c : s) {
++cnt[c];
}
int sum = 0;
for (auto& [_, v] : cnt) {
sum += v & 1;
}
return sum < 2;
}
};
func canPermutePalindrome(s string) bool {
vis := map[rune]bool{}
cnt := 0
for _, c := range s {
if vis[c] {
vis[c] = false
cnt--
} else {
vis[c] = true
cnt++
}
}
return cnt < 2
}
function canPermutePalindrome(s: string): boolean {
const set = new Set<string>();
for (const c of s) {
if (set.has(c)) {
set.delete(c);
} else {
set.add(c);
}
}
return set.size <= 1;
}
use std::collections::HashSet;
impl Solution {
pub fn can_permute_palindrome(s: String) -> bool {
let mut set = HashSet::new();
for c in s.chars() {
if set.contains(&c) {
set.remove(&c);
} else {
set.insert(c);
}
}
set.len() <= 1
}
}
class Solution {
func canPermutePalindrome(_ s: String) -> Bool {
var cnt = [Character: Int]()
for char in s {
cnt[char, default: 0] += 1
}
var sum = 0
for count in cnt.values {
sum += count % 2
}
return sum < 2
}
}
We use a hash table
Finally, we check whether the number of characters in the hash table is less than
The time complexity is
class Solution:
def canPermutePalindrome(self, s: str) -> bool:
vis = set()
for c in s:
if c in vis:
vis.remove(c)
else:
vis.add(c)
return len(vis) < 2
class Solution {
public boolean canPermutePalindrome(String s) {
Set<Character> vis = new HashSet<>();
for (int i = 0; i < s.length(); ++i) {
char c = s.charAt(i);
if (!vis.add(c)) {
vis.remove(c);
}
}
return vis.size() < 2;
}
}
class Solution {
public:
bool canPermutePalindrome(string s) {
unordered_set<char> vis;
for (auto& c : s) {
if (vis.count(c)) {
vis.erase(c);
} else {
vis.insert(c);
}
}
return vis.size() < 2;
}
};