forked from TonnyL/Windary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MinimumPathSum.java
executable file
·50 lines (43 loc) · 1.36 KB
/
MinimumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
* Given a m x n grid filled with non-negative numbers,
* find a path from top left to bottom right which minimizes the sum of all numbers along its path.
* <p>
* Note: You can only move either down or right at any point in time.
* <p>
* Example 1:
* [[1,3,1],
* [1,5,1],
* [4,2,1]]
* Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.
* <p>
* Accepted.
*/
public class MinimumPathSum {
public int minPathSum(int[][] grid) {
if (grid.length == 0) {
return 0;
}
if (grid.length == 1) {
if (grid[0].length == 0) {
return 0;
}
if (grid[0].length == 1) {
return grid[0][0];
}
}
int[][] matrix = new int[grid.length][grid[0].length];
matrix[0][0] = grid[0][0];
for (int i = 1; i < grid.length; i++) {
matrix[i][0] = matrix[i - 1][0] + grid[i][0];
}
for (int i = 1; i < grid[0].length; i++) {
matrix[0][i] = matrix[0][i - 1] + grid[0][i];
}
for (int i = 1; i < grid.length; i++) {
for (int j = 1; j < grid[0].length; j++) {
matrix[i][j] = Math.min(matrix[i - 1][j] + grid[i][j], matrix[i][j - 1] + grid[i][j]);
}
}
return matrix[grid.length - 1][grid[0].length - 1];
}
}